Minerals and ore deposits exploration using meta-heuristic based optimization on magnetic data
Abstract
The difficulties in unravelling the tectonic structures, in some cases, prevent the understanding of the ore bodies' geometry, leading to mistakes in mineral exploration, mine planning, evaluation of ore deposits, and even mineral exploitation. For that reason, many geophysical techniques are introduced to reveal the type, dimension, and geometry of these structures. Among them, electric methods, self-potential, electromagnetic, magnetic and gravity methods. Global meta-heuristic technique using Whale Optimization Algorithm (WOA) has been utilized for assessing model parameters from magnetic anomalies due to a thin dike, a dipping dike, and a vertical fault like/shear zone geological structure. These structures are commonly associated with mineralization. This modern algorithm was firstly applied on a free-noise synthetic data and to a noisy data with three different levels of random noise to simulate natural and artificial anomaly disturbances. Good results obtained through the inversion of such synthetic examples prove the validity and applicability of our algorithm. Thereafter, the method is applied to real case studies taken from different ore mineralization resembling different geologic conditions. Data are taken from Canada, United States, Sweden, Peru, India, and Australia. The obtained results revealed good correlation with previous interpretations of these real field examples.