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Abstract: Gravity data used for a recovery of the Moho depths should (optimally) com-

prise only the gravitational signal of the Moho geometry. This theoretical assumption

is typically not required in classical isostatic models, which are applied in gravimetric

inverse methods for a recovery of the Moho interface. To overcome this theoretical defi-

ciency, we formulate the gravimetric inverse problem for the consolidated crust-stripped

gravity disturbances, which have (theoretically) a maximum correlation with the Moho

geometry, while the gravitational contributions of anomalous density structures within

the lithosphere and sub-lithosphere mantle (including the core-mantle boundary) should

be subtracted from these gravity data. In the absence of a reliable 3-D Earth’s density

model, our definitions are limited to the crustal and upper mantle density structures. The

gravimetric forward modeling technique is applied to compute these gravity data using

available models of major known anomalous crustal and upper mantle density structures.

The gravimetric inverse problem is defined by means of the (non-linear) Fredholm integral

equation of the first kind. After linearization of the integral equation, the solution to the

gravimetric inverse problem is given in a frequency domain. The inverse problem is for-

mulated for a generalized crustal compensation model. It implies that the compensation

equilibrium is (theoretically) attained by both, the variable depth and density of com-

pensation. A theoretical definition of this generalized crustal compensation model and a

formulation of the gravimetric inverse problem for finding the Moho depths are given in

this study.
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1. Introduction

The results of seismic surveys have been primarily used in global and re-
gional geophysical studies investigating the lithosphere structure. Soller et
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al. (1982) derived the global Moho seismic model with a 2× 2 arc-deg spa-
tial resolution. The global Moho model compiled with a spectral resolution
complete to degree 30 of spherical harmonics was presented by Čadek and
Martinec (1991). Shapiro and Ritzwoller (2002) and Meier et al. (2007)
compiled the global Moho models also based purely on seismic data anal-
ysis. Nataf and Ricard (1996) derived the global model of the crust and
upper mantle density structures based on the analysis of seismic data and
additional constraining information such as heat flow and chemical compo-
sition. For global studies the most often used (publically available) global
crustal model is the CRUST2.0 (Bassin et al., 2000). The CRUST2.0 model
contains information on the crustal density structure including the upper
mantle. The CRUST2.0 is an upgrade of the CRUST5.1 (Mooney et al.,
1998). Both these models were compiled based on seismic data published
until 1995 and a detailed compilation of ice and sediment thickness. The
globally averaged data from active seismic methods and deep drilling profiles
were used to predict the crustal structure where no seismic measurements
were available (most of Africa, South America, Greenland and large parts of
oceans) by a generalization to similar geological and tectonic settings (see
e.g., Tsoulis, 2004). The CRUST1.0 is the latest version, compiled with a
1× 1 arc-deg spatial resolution.

Over large areas of the world with a sparse coverage of seismic data,
the gravimetric or combined gravimetric/seismic methods are applied. In
gravimetric studies of the isostasy, two basic concepts have been commonly
adopted, assuming that the topographic mass surplus and the oceanic mass
deficiency are compensated either by a variable depth or density of compen-
sation. The Pratt-Hayford isostatic model is based on adopting a constant
depth of compensation while considering a variable density contrast (Pratt,
1855; Hayford, 1909; Hayford and Bowie, 1912). In the Airy-Heiskanen
isostatic model a constant density contrast is assumed while a depth of
compensation is variable (Airy 1855; Heiskanen and Vening Meinesz, 1958).
Vening Meinesz (1931) modified the Airy-Heiskanen theory by introducing
a regional isostatic compensation based on a thin plate lithospheric flexure
model (cf. Watts, 2001). Results of seismic studies acquired that the conti-
nental crust has a typical thickness of about 30 to 50 km with the largest
crustal thickness (up to ∼ 80 km) along the convergent tectonic plate bound-
aries in the Andes (i.e., the ocean-to-continent subduction zone) and in the
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Himalayas (i.e., the continent-to-continent collision zone) extending beneath
the Tibet Plateau. The oceanic crustal thickness is typically between 5 and
15 km (cf. Bassin et al., 2000). These large variations in the crustal thick-
ness as well as a general agreement between the crustal thickness estimated
from seismic and gravity surveys more or less support the Airy-Heiskanen
and Vening Meinesz theories of isostasy. According to the Airy-Heiskanen
theory of a local compensation, there is no correlation between neighboring
crustal columns. However, it is well known that the isostatic compensation is
valid only at long wavelengths due to rigidity of the elastic lithosphere and
viscosity of the asthenosphere, which are approximated more realistically
by the Vening Meinesz isostatic model based on a regional compensation
mechanism. In regional models the compensating masses are distributed
laterally. To achieve this Vening Meinesz (1931) assumed that the crust
is a homogeneous elastic plate floating on a viscous mantle. The regional
compensation model was later adopted in the Parker-Oldenburg isostatic
method (Oldenburg, 1974). A similar method based on the iterative 3-D
gravity inversion with integration of seismologic data was developed and
applied by Braitenberg and Zadro (1999). Moritz (1990) utilized the Ven-
ing Meinesz inverse problem in solving the isostatic-gravimetric model for
estimating the Moho depths. The methods of Parker-Oldenburg and Moritz
are very similar. In fact both these models use the interface detection theory
(Dorman and Lewis, 1970). It implies that the Bouguer gravity anomaly
relates to elevation/depth at a certain position. Sjöberg (2009) formulated
Moritz’s problem, called herein the Vening Meinesz-Moritz (VMM) prob-
lem of isostasy, as that of solving a non-linear Fredholm integral equation
of the first kind. Sampietro et al. (2013) developed the method for the
Moho recovery using the GOCE gravity gradient data; see also Braitenberg
et al. (2010) and Sampietro (2011).

The isostatic mass balance depends on loading and effective elastic thick-
ness, rigidity, rheology of the lithosphere and viscosity of the asthenosphere
(see e.g., Watts, 2001). Moreover, geodynamic processes such as the glacial
isostatic adjustment, present-day glacial melting, plate motion and mantle
convection contribute to the time-dependent isostatic balance. The classi-
cal isostatic models are typically not able to model realistically the actual
Moho geometry without using additional constraining information (mainly
from results of seismic surveys). Moreover, seismic studies revealed that the
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Moho depth and density contrast vary significantly (cf. Geiss, 1987; Mar-
tinec, 1994; Kaban et al., 2003; Sjöberg and Bagherbandi, 2011). A possible
way to partially overcome theoretical limitations of classical isostatic models
is to use these models for different areas of the world based on the expec-
tation that a particular isostatic model would better reproduce the reality.
Following this principle, Wild and Heck (2004) and Makhloof (2007) applied
the Airy-Heiskanen model over continents and the Pratt-Hayford model over
oceans. Sjöberg and Bagherbandi (2011) proposed a more generalized con-
cept. They developed and applied a least-squares approach, which combined
seismic and gravity data in the VMM isostatic inverse scheme for a simul-
taneous estimation of the Moho depth and density contrast. They also
presented and applied the non-isostatic correction to model for discrepan-
cies between the isostatic and seismic models (cf. Bagherbandi and Sjöberg,
2012).

In gravimetric studies the anomalous density structure not only within
the crust but essentially within the whole lithosphere should be modeled
(cf. Kaban et al., 1999, 2004; Tenzer et al., 2009a; 2012a). Moreover,
large portion of the isostatic mass balance is attributed to variable sub-
lithosphere mantle density structure, which has significant effect especially
on a long-wavelength part of the isostatic gravity spectra and consequently
on the respective Moho geometry (cf. Sjöberg, 2009). The gravitational
field generated by all known anomalous density structures should be mod-
eled and subsequently removed from observed gravity field in prior of solving
the gravimetric inverse problem. One example can be given in Greenland
and Antarctica where the application of the ice (density contrast) stripping
correction to gravity data is essential for a realistic interpretation of gravi-
metric results. Another significant gravitational contribution to be modelled
and subsequently subtracted from gravity data is due to large sedimentary
basins. Braitenberg et al. (2006) and Wienecke et al. (2007), for instance,
demonstrated that the misfit of the isostatic assumption of the Moho in-
terface to a long-wavelength part of the gravity field is explained by large
sedimentary basins and rigidity variations of the crustal plate.

In this study, the gravimetric inverse problem for finding the Moho
depths is formulated for a generalized crustal compensation model. This
compensation model assumes that the isostatic mass balance within the
crust is attained not only by a variable depth of compensation (i.e., vari-
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able Moho depth), but also a variable density of compensation (i.e., vari-
able Moho density contrast). It is further assumed that the (lateral) Moho
density contrast is known from available models of the crustal and upper
mantle structures. The application of the developed numerical approach on
synthetic or real data is out of the scope of this study.

2. Functional model

We formulate a functional model between the (given) consolidated crust-
stripped gravity disturbances δgcs and the (unknown) Moho depths D (by
means of Newton’s volumetric integral) in the following form

δgcs (r,Ω) = −G

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) ∫ R

r′=R−D(Ω′)

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′dΩ′, (1)

where G = 6.674 × 10−11 m3kg−1s−2 is Newton’s gravitational constant;
R = 6371× 103 m is the Earth’s mean radius; Δρc/m is the (laterally vary-
ing) Moho density contrast (in kgm−3); � is the Euclidean spatial distance
of two points (r,Ω) and (r′,Ω′); ψ is the respective spherical distance; and
dΩ′ = cosφ′ dφ′ dλ′ is the infinitesimal surface element on the unit sphere.
The 3-D position is defined in the spherical coordinate system (r,Ω); where
r is the spherical radius, and Ω = (φ, λ) denotes the spherical direction
with the spherical latitude φ and longitude λ. The full spatial angle is
denoted as Φ = {Ω′ = (φ′, λ′) : φ′ ∈ [−π/2, π/2] ∧ λ′ ∈ [0, 2π)}. The un-
known parameter in Eq. (1) is the Moho depth D ′, while it is assumed that
the laterally varying Moho density contrast Δρc/m is a priori known (for
instance, from results of seismic surveys). The consolidated crust-stripped
gravity disturbances δgcs on the left-hand side of Eq. (1) are obtained from
the gravity disturbances δg after applying the topographic and stripping
gravity corrections of major known anomalous crustal density structures.
The reasons of facilitating gravity disturbances instead of more commonly
used gravity anomalies were discussed in detail by Vajda et al. (2007).

The numerical procedures applied in the gravimetric forward modeling
of these gravity corrections were given in Tenzer et al. (2008; 2009a; 2010a;
2010b; 2011a). The global results of the topographic and crust components
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stripping gravity corrections and the step-wise consolidated crust-stripped
gravity data were presented and discussed in Tenzer et al. (2009b, 2012b).
Tenzer et al. (2011b) demonstrated that the consolidated crust-stripped
gravity disturbances are significantly correlated with the Moho geometry;
the correlation coefficient between these two quantities is 0.96; see also
Tenzer et al. (2009b). The GRS-80 (Moritz, 1990) normal gravity field is
typically considered in computing the gravity disturbances. Alternatively,
more complex Earth’s model can be adopted, such as the Preliminary Ref-
erence Earth Model (PREM; Dziewonski and Anderson, 1981).

Introducing the radial integral kernel function K as

K
(
r, ψ,D′) = −

∫ R

r′=R−D′

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′, (2)

Equation (1) becomes

δgcs (r,Ω) = G

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) K (

r, ψ,D′) dΩ′, (3)

where D (Ω′) ≡ D′. The expression in Eq. (3) is a non-linear Fredholm
integral equation of the first kind. Its linearization is done by applying the
Taylor series with respect to the Moho depth values D ′, while disregard-
ing the higher than first-order terms. The relative linearization errors in
Eq. (3) are of order ∼ 1× 10−3. Tenzer et al. (2012b) estimated that rela-
tive uncertainties in the computed values of the consolidated crust-stripped
gravity disturbances δgcs can reach ∼ 10%. The linearization errors are
thus completely negligible. The linearization yields

δgcs (r,Ω) ∼= gi (r,Ω) + G

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) ∂

∂D′K
(
r, ψ,D′) δD′ dΩ′, (4)

where δD′ is the (differential) Moho depth correction. The compensation
attraction gi in Eq. (4) is computed from the a priori (initial) Moho depths
D′

0 (using, for instance, the CRUST1.0 Moho depths) according to the fol-
lowing expression

gi (r,Ω) =−G

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) ∫ R

r′=R−D′
0

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′dΩ′ =

=G

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) K (

r, ψ,D′
0

)
dΩ′. (5)
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It is assumed that the values of the Moho density contrast Δρc/m in Eq. (5)
are a priori known (e.g., from the CRUST1.0). We further define the com-
plete crust-stripped (relative to the upper mantle lateral density) isostatic
gravity disturbance δgm as (Tenzer et al., 2012b)

δgm (r,Ω) = δgcs (r,Ω)− gi (r,Ω) . (6)

Inserting from Eq. (6) back to Eq. (4), we get

δgm (r,Ω) = G

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) T

(
r, ψ,D′) δD′ dΩ′, (7)

where

T
(
r, ψ,D′) = ∂

∂D′K
(
r, ψ,D′) . (8)

The linearized integral equation in Eq. (7) defines the relation between the
input gravity data δgm and the unknown (and sought) Moho correction
terms δD′. These correction terms are found based on solving the gravi-
metric inverse problem. The application of δD ′ to the a priori (initial) Moho
model D′

0 yields the final result D′; i.e., D′ = D′
0 + δD′.

3. Spectral form of integral kernels K and T

The spectral representation of the reciprocal spatial distance �−1 for the
external convergence domain r ≥ R (and r ′ < R) reads (e.g. Heiskanen and
Moritz, 1967)

�−1 (r, ψ, r′) = 1

r

∞∑
n=0

(
r′

r

)n

Pn (t), (9)

where Pn is the Legendre polynomial of degree n with argument t = cosψ;
cosψ = sinφ sinφ′+cosφ cosφ′ cos (λ′ − λ). From Eq. (9), the radial deriva-
tive of �−1 is found to be

∂ �−1 (r, ψ, r′)
∂ r

= − 1

r′2
∞∑
n=0

(
r′

r

)n+2

(n+ 1) Pn (t) . (10)
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Substitution from Eq. (10) to Eq. (2) yields

K
(
r, ψ,D′) = ∫ R

r′=R−D′

∞∑
n=0

(
r′

r

)n+2

(n+ 1) Pn (t) dr′. (11)

Solving the integral of K in Eq. (11), we get

K
(
r, ψ,D′) = r

∞∑
n=0

(
r′

r

)n+3 n+ 1

n+ 3
Pn (t)

∣∣∣∣∣
R

r′=R−D′
. (12)

After substituting for the integral limits in Eq. (12), we arrive at

K
(
r, ψ,D′) = r

∞∑
n=0

(
R

r

)n+3
[
1−

(
1− D′

R

)n+3
]
n+ 1

n+ 3
Pn (t). (13)

Inserting for K in Eq. (8) from Eq. (13) and solving the radial derivative,
the spectral representation of the integral kernel T is found to be

T
(
r, ψ,D′)= ∂K

∂D′ = r
∞∑
n=0

(
R

r

)n+3 ∂

∂D′

[
1−

(
1− D′

R

)n+3
]
n+ 1

n+ 3
Pn (t) =

=
∞∑
n=0

(
R

r

)n+2 (n+ 1) (n+ 3)

n+ 3
Pn (t)

(
1− D′

R

)n+2

=

=
∞∑
n=0

(
R−D′

r

)n+2

(n+ 1) Pn (t). (14)

Denoting τ = (R−D′) /r, Eq. (14) is finally rewritten as

T (t, τ) =
∞∑
n=0

τn+2 (n+ 1) Pn (t). (15)

If the input gravity data δgm at the surface points are downward continued
to sea level in prior of solving the gravimetric inverse problem, the kernel T
becomes

T (t, τ0) =
∞∑
n=0

τn+2
0 (n+ 1) Pn (t), (16)
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where τ0 = 1−D′/R.
The integral kernel T (t, τ0) has a singularity for τ0 → 1∧t→ 1. However,

this singularity does not occur in the numerical solution because D ′ > 0.
For t = 1 (τ0 < 1): T (1, τ0) = τ20 (1− τ0)

−2.

4. Spectral model of the gravimetric inverse problem

The input gravity data in the linearized integral equation (Eq. 7) of solving
the gravimetric inverse problem are formed by the complete crust-stripped
isostatic gravity disturbances δgm. These gravity data are obtained from
δgcs after applying the compensation attraction gi relative to the lateral
density of the upper mantle (Eq. 5). As already stated this stripping grav-
ity correction is computed from a priori Moho model (and using a variable
density contrast of the Moho interface). This gravitational contribution
thus represents the initial Moho geometry with respect to which the Moho
corrections are solved for. Whereas the consolidated crust-stripped gravity
disturbances δgcs should have a maximum correlation with the Moho geom-
etry, the complete crust-stripped isostatic gravity disturbances δgm should
have (theoretically) a minimum correlation with the Moho geometry, espe-
cially if the initial Moho model closely approximates the final gravimetric
Moho solution. However, the gravitational signals of the deep mantle het-
erogeneities (including the core-mantle boundary) are still present in these
refined gravity data. In the absence of a reliable 3-D global mantle model,
this gravitational contribution can be treated in the spectral domain by
subtracting a long-wavelength part of gravity spectrum (to a certain degree
of spherical harmonics) from the isostatic gravity field spectrum.

From Eq. (15), the spectral representation of the integral kernel T (t, τ)
is given by

T (t, τ) =
∞∑
n=0

(
R

r

)n+2

(n+ 1)

(
1− D′

R

)n+2

Pn (t) . (17)

Substituting from Eq. (17) to the integral equation in Eq. (7), we arrive at

δgm (r,Ω) =G
∞∑
n=0

(
R

r

)n+2

(n+ 1)

∫∫
Ω′∈Φ

Δρc/m(Ω′)
(
1− D′

R

)n+2

×

× Pn(t) δD
′ dΩ′. (18)
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Since the expansion of the integral kernel T (t, τ) into a series of spheri-
cal functions converges uniformly for the external domain r > R, the inter-
change of summation and integration in Eq. (18) is permissible (cf. Moritz,
1990). The application of the binomial theorem to the term (1−D ′/R)n+2

on the right-hand side of Eq. (18) yields

(
1− D′

R

)n+2
∼=

n+2∑
k=0

(
n+ 2
k

)
(−1)k

Rk
D′k. (19)

Inserting from Eq. (19) back to Eq. (18), we get

δgm (r,Ω) =G
∞∑
n=0

(
R

r

)n+2

(n+ 1)×

×
n+2∑
k=0

(
n+ 2
k

)
(−1)k

Rk

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) D′kδD′ Pn (t) dΩ′. (20)

We further define the Moho-correction spherical function δMn of degree n
as

δMn (Ω) =
2n+ 1

4π

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) D′δD′ Pn (t) dΩ′ =

=
n∑

m=−n

δMn,m Yn,m (Ω), (21)

where Yn,m are the (fully-normalized) surface spherical harmonic functions
of degree n and order m, and δMn,m are the Moho corrections coefficients.

The corresponding higher-order terms
{
δM

(k)
n : k = 2, 3, 4, ...

}
read

δM(k)
n (Ω) =

2n + 1

4π

∫∫
Ω′∈Φ

Δρc/m
(
Ω′) D′kδD′ Pn (t) dΩ′ =

=
n∑

m=−n

δM(k)
n,m Yn,m (Ω). (22)

From Eqs. (20–22), we get

δgm (r,Ω) = 4πG
∞∑
n=0

(
R

r

)n+2 n+ 1

2n+ 1
×
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×
n+2∑
k=0

(
n+ 2
k

)
(−1)k

Rk

n∑
m=−n

δM(k)
n,m Yn,m (Ω). (23)

To relate the spherical functions δMn (and their higher-order terms)
with spherical harmonics, which describe the Earth’s gravity field, the con-
stituents on the right-hand side of Eq. (22) are scaled by the geocentric
gravitational constant GM = 3986005 × 108 m3s−2. For the spherical ap-
proximation, the geocentric gravitational constant is given by (e.g., Novák,
2010)

GM =
4π

3
GR3 ρ̄Earth, (24)

where ρ̄Earth = 5500 kgm−3 is the Earth’s mean mass density.
Combining Eqs. (23) and (24) and limiting the spectral solution to a

certain interval Nmin ≤ n ≤ Nmax of spherical harmonics, we get

δgm (r,Ω) =
GM

R2

Nmax∑
n=Nmin

(
R

r

)n+2

(n+ 1)
n∑

m=−n

F δM
n,mYn,m (Ω), (25)

where Nmin and Nmax are the lower and upper summation indexes respec-
tively. The numerical coefficients F δM

n,m are given by

F δM
n,m =

1

2n + 1

3

ρ̄Earth

n+2∑
k=0

(
n+ 2
k

)
(−1)k

Rk+1
δM(k)

n,m . (26)

The gravimetric inverse problem in Eq. (25) can be simplified by assuming
only a constant value of the Moho density contrast Δρc/m. Hence

δgm (r,Ω) =
GM

R2

Nmax∑
n=Nmin

(
R

r

)n+2

(n+ 1)
n∑

m=−n

F δD
n,mYn,m (Ω), (27)

where the coefficients F δD
n,m read

F δD
n,m =

3

2n + 1

Δρc/m

ρ̄Earth

n+2∑
k=0

(
n+ 2
k

)
(−1)k

Rk+1
δD(k)

n,m . (28)
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The coefficients δDn,m and their higher-order terms
{
δD

(k)
n,m : k = 2, 3, 4, ...

}
are defined as follows

δD(k)
n (Ω) =

2n+ 1

4π

∫∫
Ω′∈Φ

D′kδD′ Pn (t) dΩ′ =

=
n∑

m=−n

δD(k)
n,m Yn,m (Ω). (29)

The lower summation index Nmin in Eqs. (25) and (27) determines the
maximum degree of spherical harmonics, which should be removed from
the input gravity field. It is expected that a subtracted long-wavelength
gravity contribution is attributed mainly to the mantle structure and the
core-mantle boundary. However, our current knowledge about the spatial
mantle density structure is restricted by the lack of reliable global data.
A possible way how to estimate the degree Nmin of long-wavelength spheri-
cal harmonic terms which should be removed from the gravity field was given
by Eckhardt (1983). The principle of this procedure is based on finding the
representative depth of gravity signal attributed to each spherical harmonic
degree term. The spherical harmonics which have the depth below a cer-
tain limit (chosen, for instance, as the maximum Moho depth) are removed
from the gravity field. Nonetheless, the complete subtraction of the gravity
signal from the mantle density structure using this procedure is question-
able, because there is hardly any unique spectral distinction between the
long-wavelength gravity signal from the mantle and the expected higher-
frequency signal of the Moho geometry. Tenzer et al. (2012b) demonstrated
the presence of significant correlation (> 0.6) between the mantle gravity
signal and the Moho geometry at the medium gravity spectrum (between
60 and 90 of spherical harmonics degree terms). On the other hand, the
gravity signal of the core-mantle boundary could be completely subtracted
from the refined gravity data as it is fully attributed to a long-wavelength
part of gravity field.

5. Model uncertainties

The expected largest uncertainties in the estimated Moho depths are mainly
due to inaccuracies of crustal models currently available. As stated before,
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the relative errors in computed values of the consolidated crust-stripped
gravity data can reach ∼ 10% (Tenzer et al., 2012b). The global models of
the Earth’s gravity field, topography, ice, and bathymetry have a relatively
high resolution and accuracy. The computation of the gravity data, which
are corrected for the gravitational contributions of these density components
can thus be done with a sufficient accuracy. On the other hand, the datasets
of the spatial density distribution of sediments and consolidated (crystalline)
crust have a low accuracy and resolution (i.e., the CRUST1.0 data). The
computation of respective gravity corrections and corrected gravity data is
thus restricted especially over large parts of the world where these data
are not available or their accuracy and resolution are very low. Čadek and
Martinec (1991) estimated uncertainties of the Moho depths in their global
crustal thickness model to be ∼ 20% (5 km) for the oceanic crust and of
∼ 10% (3 km) for the continental crust. The results of more recent seismic
and gravity studies, however, revealed that these error estimates are too
optimistic. Grad et al. (2009), for instance, demonstrated that the Moho
uncertainties (estimated based on processing the seismic data) under the
Europe regionally exceed 10 km with the average error of more than 4 km.
Much larger Moho uncertainties are expected over large parts of the world
where the seismic data are sparse.

Similarly as uncertainties in the input gravity data, the errors in the
Moho density contrast propagate proportionally to the errors in the esti-
mated Moho depths. In regional studies covering areas with a relatively
homogenous lithospheric structure, the constant value of the Moho density
contrast can be adopted. There are several methods of treating the Moho
density contrast in regional isostatic solutions. The most commonly used
approach is based on the best fitting of the regional isostatic solution to
seismic data. Steffen et al. (2011), for instance, applied this principle to
model the Moho depths beneath Tien Shan. The assumption of a constant
Moho density contrast, however, might not be sufficient in global gravimetric
studies. As discussed in Introduction, results of seismic and gravity studies
confirmed large variations of the Moho density contrast. Consequently, this
assumption might yields large errors in the estimated global Moho depths.
For this reason, the functional model for finding the Moho depths was for-
mulated under the assumption that the variable Moho density contrast is a
priori known from global seismic models.
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6. Summary and concluding remarks

The gravimetric inverse problem for a determination of the Moho geometry
was derived by adopting a generalized crustal compensation model. This
compensation model assumes a variable depth and density of compensa-
tion. The functional relation between the gravity data and the (unknown)
Moho depths was established by means of the (non-linear) Fredholm inte-
gral equation of the first kind (Eq. 3). This functional relation takes into
consideration the variable Moho density contrast. The gravity data in this
functional model should have (theoretically) a maximum correlation with
the (a priori) Moho geometry. The linearization was applied by means of
incorporating the adopted compensation model (Eq. 4) which should mini-
mize the correlation between the input gravity data and the Moho geometry.
The solution to the gravimetric inverse problem was derived in a frequency
domain.

This functional model facilitates all available information on the density
distribution within the crust and mantle. In the absence of a reliable 3-D
mantle density model, we took into consideration only the major known
crustal and upper mantle density structures (available from seismic sur-
veys). Whereas in classical isostatic models the isostatic mass balance is
established based on a particular hypothesis about the crustal density struc-
ture, this model takes into consideration also the density structure of the
upper mantle. This is done practically by assuming a variable density con-
trast at the Moho interface in the computation of the compensation attrac-
tion (Eq. 5) and formulation of the linearized observation equation (Eq. 7).
Moreover, this functional model allows treating the (unknown) deep mantle
heterogeneities (including the core-mantle boundary) in a spectral domain
by excluding the long-wavelength spherical functions (to a certain degree)
directly from the functional model (Eq. 25).

Formulation of the functional model in a spectral domain allows the selec-
tion of a maximum degree of spherical harmonics used in solving the inverse
problem. In this way, the gravimetric forward modelling of the gravity field
quantities is realized only up a maximum degree of spherical harmonics
which contain the signature of the Moho geometry, while a high-frequency
part of the gravity spectrum (which comprises mainly a signal from shallow
crustal density structures) is disregarded.
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Vajda P., Vańıček P., Novák P., Tenzer R., Ellmann A., 2007: Secondary indirect effects
in gravity anomaly data inversion or interpretation. J. Geophys. Res., 112, B6,
B06411, 1–13, doi:10.1029/2006JB004470.
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