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Abstract: The aim of this paper is to find a plausible and stable solution for the inverse

geophysical magnetic problem. Most of the inverse problems in geophysics are considered

as ill-posed ones. This is not necessarily due to complex geological situations, but it may

arise because of ill-conditioned kernel matrix. To deal with such ill-conditioned matrix,

one may truncate the most ill part as in truncated singular value decomposition method

(TSVD). In such a method, the question will be where to truncate? In this paper, for

comparison, we first try the adaptive pruning algorithm for the discrete L-curve criterion

to estimate the regularization parameter for TSVD method. Linear constraints have been

added to the ill-conditioned matrix. The same problem is then solved using a global

optimizing and regularizing technique based on Parameterized Trust Region Sub-problem

(PTRS). The criteria of such technique are to choose a trusted region of the solutions

and then to find the satisfying minimum to the objective function. The ambiguity is

controlled mainly by proper choosing the trust region. To overcome the natural decay in

kernel with depth, a specific depth weighting function is used. A Matlab-based inversion

code is implemented and tested on two synthetic total magnetic fields contaminated with

different levels of noise to simulate natural fields. The results of PTRS are compared

with those of TSVD with adaptive pruning L-curve. Such a comparison proves the high

stability of the PTRS method in dealing with potential field problems. The capability of

such technique has been further tested by applying it to real data from Saudi Arabia and

Italy.
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1. Introduction

Inverse potential field problems, which we aim to solve here, represent typical
ill-posed problems. This is due to the invariable contamination of data with
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noise and such data is acquired in a limited number of observation points.
These problems are said to be ill-posed or ill-conditioned, which means that
the solutions are non-unique and unstable. Most literature reformulated
such problems into a system of equations having better condition by adding
different kinds of constraints to control the results as much as possible. For
example, Last and Kubik (1983) imposed a condition that the volume of
the causative body to be minimum and have a definite upper boundary for
the unknown physical property. Guillen and Menichetti (1984) constrained
the source to have minimal moment of inertia with respect to the center
of gravity or to an axis of given dip passing through it. Abdelazeem et al.
(1998) used a quadratic programming with both equality and inequality
constraints to invert the gravity anomalies.

We investigated the synthetic models of Last and Kubik (1983) carefully
and it is found that all data kernel matrices have low condition numbers.
When the same subsurface models were taken in different numbers of rows
and/or columns, their technique failed to invert; this is because such matri-
ces have higher condition numbers than the original ones. Such cases can
now be classified as ill-posed/ill-conditioned problems. Thence, it is obvious
that in ill-posed problems, a proper solution will not be achieved even when
using constraints if traditional techniques are utilized.

Therefore, to solve these problems we need special strategies known as
regularization techniques. To regularize such a problem, at first, the ill-
posedness of the problem has to be tested by calculating the condition
number of the kernel matrix. The higher the condition number, the higher
the ill-posedness of the problem. Secondly, any conventional regularization
tool can be used in order to have acceptable trusted solutions (Tikhonov
and Arsenin, 1977). Recently, such a problem is tackled using different
forms (Zhdanov, 1993). Tezkan et al. (2000) used regularization with con-
jugate gradient to invert radiomagnetotelluric field to delineate industrial
and domestic waste sites in Germany. Portniaguine and Zhdanov (2002)
developed a regularization technique, based on the traditional Tikhonov
regularization theory, by using a weighted model parameters based on sen-
sitivity analysis and fine focused inversion and applied it to 3-D magnetic
problems. However, they didn’t mention what will be the case if data were
contaminated with high levels of noise. Fedi et al. (2005) presented a new
tool, the Depth Resolution Plot (DRP) for regularizing inverse potential
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field problems. Silva et al. (2007) used the entropic regularization to es-
timate the density contrast of elongated prismatic cell with known tops
and bottoms. Abdelazeem et al. (2007) used TSVD with adaptive pruning
L-curve technique to invert the ill-posed gravity problem. Blaschek et al.
(2008) used a new regularization scheme based on the Minimum Gradient
Support (MGS) and active constraint balancing to invert the induced polar-
ization data. Ardalan et al. (2011) used an alternative method for density
variation modeling of the crust from constrained inversion of the terrestrial
gravity data. Pašteka et al. (2012) used Tikhonov regularization for stable
downward continuation of geophysical potential fields.

To summarize, the magnetic inverse problem is, intrinsically, non-unique
and its numerical solution is unstable. This means that any small per-
turbation in the data (noise) causes large variation in the solution. Such
problem is a highly ill-posed one. We applied (Grodzevich, 2004) regular-
ization technique for formulating generalized solutions that are stable even
with perturbed data. The method is an extension to the traditional trust-
region approach combined with L-curve. The regularization parameter is
deduced during inversion. The radius of the trust region is changed during
iteration; to improve the solution. The method has been applied to invert
two synthetic examples with different levels of noise in order to test its
stability in highly perturbed data condition. The method is compared to
TSVD with adaptive pruning L-curve (Hansen et al., 2007), which was ap-
plied successfully to invert the gravity inverse problem (Abdelazeem, 2007).
Finally, the method has been applied to a total field anomaly from Saudi
Arabia and a vertical gradient field from Italy in order to test its validity.

2. Ill-posed problem

To clarify the source of ill-posedness of our problem and why the regular
inversion tools are not the optimum choice, let us begin from the initial
description of the magnetic field. The magnetic field is expressed (Blakley,
1996) in an integral equation of the form

f(P ) =

∫
R

s(Q)ψ(P,Q) dv (1)
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where f(P ) is the magnetic field at P (the observation point), s(Q) de-
scribes the magnetization at Q, ψ(P,Q) is a function that depends on the
geometric placement of observation point P and source point Q. R is the
volume/area occupied by the causative source and Q is the point of integra-
tion within R. This equation is known as Fredholm integral of the first kind
(Morse and Feshbach, 1953). Now to study this problem, the subsurface
domain is divided into a set of M rectangular prismatic cells. Each cell
has a constant susceptibility of s value, assuming that there is no remnant
magnetization and the demagnetization effect is negligible. Thus, only the
induced magnetization is considered. Using the discrete quadrature rule for
discretizing such integration (Baker, 1977), the above integral equation is
approximated as follows:

b∫
a

d∫
c

ψ(P,Q) s(Q)dPdQ ∼=
N∑
i=1

M∑
j=1

wiw
′
j ψ(Pi, Qj)s(Qj) = f(pi), (2)

where s(Qj), ψ(Pi, Qj) and f(Pi) are the approximation of s(Q), ψ(P,Q)
and f(P ) respectively, wi = b−a

N and w
′
j = d−c

M , where [a, b] is the outer
integral interval, [c, d] is the inner integral interval, N is the number of data
points and M is the number of prisms. When equation (2) is written in
matrix notation, one obtains the system: GN×MsM = DN , where GN×M

is an N ×M matrix, which quantifies the effect of the j th cell on the ith

data point. The elements of G, s and D are given by gij = wiw
′
jψij(Pi, Qj),

Di = f(Pi),sj = s(Qj), i=1,2,., N and j=1,2,.., M . As data is always
contaminated with noise, we will consider the measured data D = D + η,
where η is a random vector of uncorrelated noise. Then, the problem to be
solved is:

min
s

∥∥∥Gs−D
∥∥∥2 (3)

Using a reasonably accurate discretization to obtain G will result in a highly
ill-conditioned matrix with a singular spectrum that decays to zero gradu-
ally, a large cluster of small singular values, and high-frequency components
of the singular vectors associated with small singular values (Rojas and
Sorensen, 2002). If, in addition, the Discrete Picard Condition (Hansen,
1990) holds, the expansion coefficients of the exact data vector D will decay
to zero faster than the singular values of G, while the expansion coefficients
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of the noise vector η remains constant. Therefore, the solutions correspond-
ing to small singular values are magnified by the noise. As a consequence
of the ill conditioning of the matrix G and the presence of noise in data,
applying standard numerical methods such as those discussed in Dennis
and Schnabel (1983) to Eq. 3 will produce meaningless solutions with very
large norm. Therefore, to solve these problems, we need special techniques
known as regularization or smoothing methods. Such methods focus on
recovering information about the desired solution from the solution of a
better conditioned problem that is related to the problem with noisy data
but incorporates additional information about the desired solution. The
formulation of the new problem involves a special parameter (the regular-
ization parameter), used to control the effect of the noise on the solution.
The conditioning of the new problem depends on the choice of the regular-
ization parameter. Good surveys on regularization methods can be found
for example in (Zhdanov, 1993 and Hansen, 1998).

In the next two sections, we will give a brief introduction to the concepts
of regularization strategies employed for solving our ill-posed problem.

3. Method

In order to introduce the method applied in this paper, we have to mention
some essential concepts used. Firstly, the classical Tikhonov regularization
form, which is the base for most regularizing tools. Secondly, the trust re-
gion sub-problem (TRS) form, which is the base also for many regularizing
tools and for the main tool used here. Thirdly, the L-curve criterion which
is sometimes implemented with other tools to choose the optimum regu-
larized solution. Lastly, we will mention the Picard condition and its use
in testing the ill-posedness of the problem. Then, the main tool used, Pa-
rameterized Trust Region Sub-problem, PTRS method (Grodzevich, 2004)
is presented. Another method is presented to be applied here, in order to
clarify the strength of the PTRS, named TSVD with adaptive pruning L-
curve (Hansen et al., 2007).

3.1. Tikhonov and TRS forms

The classical Tikhonov regularization approach is one of the most popular
regularization approaches for solving discrete forms of ill-conditioned linear
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algebraic system given in Eq. 3. Tikhonov regularization problem takes the
form

(GTG+ α2I)sα = GT D̄, (4)

where α is the regularization parameter and sα is the regularized solution.
The success of the Tikhonov regularization technique depends on making
a good choice of the regularization parameter α, which is not easy to find.
The reason is that the solution sα is too sensitive to perturbations in D,
i.e., a small change in D may produce a large change in sα.

On the other hand, it is well known that a trust-region sub-problem
(TRS) method is quite attractive optimization technique, which finds a
direction and a step size in an efficient and reliable manner with the help
of a quadratic model of the objective function (Gander, 1978). In general,
the trust-region methods define a region around the current iteration within
which they trust the model to be an adequate representation of the objective
function, and then choose the step to be the approximate minimizer of the
model in this trust-region. In effect, they choose the direction and length of
the step simultaneously. If a step is not acceptable, they reduce the size of
the region and find a new minimizer. The step direction changes whenever
the size of the trust-region is altered. To approach the TRS form, we should
begin with the constrained least-squares problem, which takes the form

min
s

∥∥Gs− D̄
∥∥
2, subject to ‖ s ‖ 2 ≤ ε. (5)

Regularization depends here on choosing the parameter ε. The problem can
be re-formulated as μ(A, a, ε) the so called trust-region sub-problem TRS
(Fortin and Wolkowics, 2004) as:

μ(A, a, ε) min q(s) := sTAs− 2aT s, subject to‖ s ‖ 2
2 ≤ ε2, (6)

where A := GTG is aM×M symmetric (m > 2), a := GT D̄ is an m-vector.
ε is the trust-region’s fixed radius (positive scalar), and s is the m-vector of
unknowns. All matrix and vector entries are real.

3.2. L-curve criterion and Picard condition

The L-curve criterion is based on a log-log plot of the corresponding values of
the residual and solution norms (log

∥∥Gsk − D̄
∥∥
2, log ‖sk‖2), k = 1, . . . , p.
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The optimal regularization parameter corresponds to a point near the cor-
ner. Singular Value Decomposition (SVD) of the matrix G is a tool that
helps in understanding the L-curve analysis. It can be written as:

G=USVT, (7)

where matrix S is a diagonal n × n matrix consisting of singular values σi

of G, σ1 ≥...≥ σn and U, V are orthogonal matrices, i.e:

UTU = I, V TV = I. (8)

So, the Tikhonov regularized solution sα can be written by substituting the
SVD of matrix G into Eq. 4 as:

‖sα‖22 = D̄TU(S(S2 + α2I))2UT D̄ =
n∑

i=1

(fi
UT
i D̄

σi
)2. (9)

So,

∥∥Gsα − D̄
∥∥2
2 =

n∑
i=1

((1 − fi) U
T
i D̄)2, (10)

where fi is the so called Tikhonov filter factors, defined as:

fi =
σ2i

σ2i + α2
. (11)

Such expressions (Eq. 9 and 10) can be used to illustrate what happens to
the solution in the presence of noise. So, when adding uncorrelated noise
η, this would result in extra contribution to the solution caused by noise
components. Then, the true solutions so can be expressed as (Fortin and
Wolkowics, 2004):

‖so‖22 =
n∑

i=1

(
UT
i D

σi
+
UT
i η

σi
)

2

, (12)

assuming that both G and s are invertible.
So, for small singular values these contributions will be very large, when-

ever the noise vector is not orthogonal to the corresponding singular vectors,
Ui. This simply clarifies why the naive least squares solution is not mean-
ingful and a regularized solution should be sought instead. Even if there
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is no noise, the problem is still there if the matrix has very small singular

values (close to zero). It is required that
∣∣∣UT

i D
∣∣∣ should decay faster than σi.

This is known as a Picard condition. It is guaranteed that if such condition
is satisfied, the least squares solution has a reasonable norm and is thus
physically meaningful (Hansen, 1999). Then, TRS can be used to form the
L-curve (Fortin and Wolkowics, 2004) as:

L(G, D̄) :=
{(

log(ε), log
∥∥Gsε − D̄

∥∥ ) : ε > 0, sε is optimal for TRS
}
.(13)

As we are now familiar with the TRS and L-curve concepts, it is time to
demonstrate in details the proposed PTRS method and briefly the well
known TSVD with L-curve pruning.

3.3. PTRS and TSVD regularization techniques

PTRS method is an extension of the traditional TRS approach. Grodzevich
(2004) has explained the PTRS method as an effective tool that can be used
in conjunction with the L-curve maximum curvature criterion. The classical
algorithm for solving TRS, with a given trust-region radius ε, is based on
solving Eq. 4 for various choices of α, and using a Cholesky factorization
of GTG + α2I (Moré and Sorensen, 1983). More recently, a parameterized
trust-region approach to find the regularized solution xε, has been used by
Rojas and Sorensen (2002). Then, Grodzevich and Wolkowics (2009) have
extended the traditional TRS approach that makes use of L-curve maximum
curvature criterion, which is applied here to solve our problem. It is assumed
that the easy case holds, and that the optimum point lies on the boundary
of the feasible region, i.e. ‖ s∗‖ = ε. Grodzevich and Wolkowics (2009)
also showed that the TRS algorithm visits, each iteration, a point on the
L-curve. Therefore, the trust-region radius ε can be dynamically changed
to steer the algorithm to the elbow of the L-curve. For further details on
the method, the reader can refer to Grodzevich and Wolkowics (2009).

As the kernel function decays with the inverse squared depth, the inverted
model will mostly be concentrated near the surface. This tendency can
be overcome by introducing a depth weighting to counteract the natural
geometric decay. Li and Oldenberg (1998) have shown that it was reasonable
to approximate the decay with depth by a function of the form w(z) =
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1/(z+z0)
β/2, where β is usually equal to 2 and z0 depends upon a reference

level. We used the diagonal matrix:

Wmi = 1/(zmi + ε)β, (14)

where β = 0.9 (Boulanger and Chouteau, 2001) and a small ε to prevent
singularity when z is close to 0.

To compare the inverted solutions (magnetic susceptibilities) to the true
ones in synthetic examples; the Pearson correlation coefficient (r) of two set
of observations {(xi,yi): i=1,..,n} is used where

rcorr =

n∑
i=1

(xi − x) (yi − y)√
n∑

i=1
(xi − x)2

n∑
i=1

(yi − y)2
, (15)

x and y are the mean values of x and y, which represent synthetic and in-
verted susceptibilities in our case. When the two sets of data are identical,
r is unity, while they differ when r << 1.

The above method is used to invert the Earth’s magnetic field. The in-
verted profile is assumed to be taken over an array of prismatic cells with
different unknown magnetic susceptibilities. The complete code is written in
Matlab 2009a and the function of the PTRS regularization tool, Grodzevich
(2004), is implemented. The inputs are the number of rows and columns
of the subsurface model, the width of each cell, vector of true susceptibil-
ities for synthetic example, noise ratio is introduced to synthetic data as
well as the magnetic parameters like the inclination, declination, total field
etc. The code calculates the magnetic field of the synthetic model and adds
also the required noise. The output is the inverted susceptibilities of the
subsurface cells. The number of data points in real examples is usually less
than the number of unknowns. Therefore, an interpolation function is used
to increase the data in order to get an even or over-determined problem.
Finally, the inverted model is drawn using a color scale to present the dis-
tribution of subsurface susceptibilities.

For the sake of comparison, the L-curve pruning with adaptive L-curve
method is chosen to invert the same earth models as a robust tool described
by Hansen et al. (2007). It has been applied successfully on gravity ill-
posed inverse problem (Abdelazeem et al., 2007). Its idea simply is to locate
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the corner of a discrete L-curve using truncated singular value decomposi-
tion (TSVD). A sequence of pruned L-curves is used to capture the global
features of the curve. The main idea was to remove the right amount of
points from the discrete L-curve, so the corner can easily be found using the
remaining set of points. For more details refer to the above two papers.

4. Synthetic examples

The new PTRS method (Grodzevich and Wolkowics, 2009) is tested using
two synthetic examples contaminated with different noise levels. The TSVD
method with L-curve pruning (Hansen et al., 2007) is also applied to the
same examples for comparison.

4.1. Example 1

The first synthetic example (Model 1) consists of 160 square cells arranged
in 8 rows and 20 columns. The ambient field is assumed to be 40 000 nT
with a direction of inclination 60◦ (same as inclination of cell magnetiza-
tion) and declination 3◦. The Azimuth of the measured data is taken as
zero. The data points are 160, i.e. our problem is an even-determined one.
The condition number of matrix G is found to be 1.6932 ·1012. As the noise
free data is not an actual case, we start with low perturbed data (Signal to
Noise Ratio, SNR = 90 dB). The Picard condition is tested for noise free
data (Fig. 1a) and also for highly perturbed one (Fig. 1b), 15 dB, to illus-
trate the effect of noise on Picard plot. The Picard condition is satisfied
till the first 80 prisms (in noise free case) and till the first 60 prisms (when
15 dB noise is added), where the singular values σ decay faster than the
Fourier coefficients. The singular values decay from the order of 105 to the
order of 10−7 causing the condition number to be of the order of 1012.

Different noise levels have been added to the data and the problem is
solved using both the proposed PTRS method and TSVD with pruning
L-curve for comparison. The inverted earth models together with the ob-
served and inverted magnetic fields are shown in Figs. 2 and 3. The Earth’s
model is dramatically distorted using TSVD with pruning L-curve, when
SNR = 60 dB, is added to data. On the other hand, the PTRS method has
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Fig. 1. The Picard plot for synthetic example 1, a) for noise free and b) for 15 dB noise
level implemented.

been applied successfully to the same model with noise ratio varying from
80 dB to 15 dB, i.e. higher noise has been added. Subsequently, the Pear-
son correlation coefficient rcorr calculated between the inverted and actual
data are nearly complete coincidence (0.99 to 0.98) for both methods. Also,
the correlation coefficient is calculated between the inverted susceptibilities
(solutions) and the actual values, which is presented in Table 1 for differ-
ent noise ratios. It slightly decreases with increasing noise using the PTRS
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Fig. 2. Inverted earth models, using TSVD with L-curve pruning, together with true and
inverted magnetic fields when adding different noise levels to data, a) 90 dB, b) 80 dB, c)
70 dB, d) 60 dB to data, e) 50 dB and f) True model.

method. When the same model was inverted using TSVD with adaptive
pruning L-curve (Hansen et al., 2007 and Abdelazeem et al., 2007), the in-
verted model was acceptable, nevertheless the two bottom rows of prisms
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Fig. 3. Inverted earth models, using PTRS, together with true and inverted magnetic
fields when adding different noise levels to data, a) 80 dB, b) 70 dB, c) 60 dB and d) 30
dB e) 25 dB, f) 15 dB to data and g) the true earth model.

attain very high susceptibilities, which dominated the rest of the plausi-
ble model. The correlation factors between inverted susceptibilities using
PTRS and TSVD with pruning L-curve and true ones are presented also in
Table 1.
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Table 1. The Pearson correlation coefficient between true and inverted vectors of mag-
netic susceptibilities resulted from PTRS and TSVD with pruning L-curve for model 1,
using different SNR

SNR (dB) rcorrcorr between inverted and true susceptibilities

PTRS TSVD

90 0.90 0.75

80 0.90 0.75

70 0.89 0.45

60 0.80 0.09

50 0.80 0.09

30 0.79 –

25 0.78 –

15 0.58 –

Notice the dramatic decrease in the correlation factor with increasing noise,
i.e. when decreasing SNR.

4.2. Example 2

The second synthetic example (Model 2) represents two bodies, an outcrop-
ping inclined dike and a buried massive body. The number of square cells
(M) is 160 and the data points (N) are 200. The ambient field F is assumed
to be 40 000 nT, the inclination of the field is 60◦, and the declination is
2◦. The inclination of all prisms is assumed to be identical and equal to the
field inclination. Magnetization is assumed to be induced, but the program
is designed to hold the remnant magnetization if it exists. The condition
number of the kernel matrix is found to be 5.4879 1014. The Picard plot is
shown in Fig. 4 for both noise free and contaminated data, 15 dB. Figs. 5a,
b, c and d show the TSVD solutions for data contaminated with SNR of
90 dB to 60 dB. True model is shown in Fig. 5e. On the other hand, the
PTRS method is applied using SNR from 80 dB to 15 dB on the same data.
The results (Fig. 6) are accepted till 20 dB noise level, as the depth to top
is accepted. When 15 dB has been added to the data, the depth to top
becomes nearer to surface. Table 2 shows that the correlation coefficient
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between true and inverted models by PTRS are closer to unity, while those
inverted by TSVD with pruning L-curve ranges from 0.75 for 90 dB SNR to
0.09 for 60 dB SNR. These results prove the stability of PTRS with higher
levels of noise.

Table 2. Summarizes the results of model 2 through different noise levels and the corre-
sponding change in Pearson correlation factor between true and inverted vectors (magnetic
susceptibilities) using PTRS and TSVD with L-curve pruning

SNR (dB) Correlation between inverted and
true magnetic susceptibility vectors

PTRS TSVD (pruning)

90 0.91 0.75

80 0.91 0.75

70 0.90 0.45

60 0.88 0.09

50 0.81 0.09

40 0.81 –

25 0.80 –

20 0.79 –

15 0.63 –

5. Field examples

PTRS method has been further applied to a real total magnetic field data
from Saudi Arabia over Al Ji’lani basic intrusion (example 1), and a vertical
gradient magnetic field of an archeological site in Italy (example 2).

5.1. Field example 1

The Precambrian Al Ji’lani basic intrusion forms an oval outcrop (9×6 km)
over 50 km2 of relatively flat well-exposed country, 10 km southwest of Ad
Dawadimi district, Kingdom of Saudi Arabia. Within the oval-shaped out-
crop area of the intrusion, there is a total exposed thickness of 2,600 m of
rock which dips inward, and consists of amphibolitized and fresh gabbros,
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Fig. 4. Picard plot for example 2, (a) for noise free data, and b) for 15 dB noise level
implemented.

troctolites, norites, and anorthosites (Al Shanti, 1974). The Al Ji’lani lay-
ered intrusion has its major axis trends N 42◦ W. The intrusion is made
up of rather uniform concentric layers dipping radially inward. Dips are
generally steep, the marginal layers dipping 50–70◦ and the central layers
dipping about 20◦. Local distortions in dips and layering are due to later
dike and granitic intrusions as displayed in the central area.

The layered intrusion has a marked, well defined, aeromagnetic signa-
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Fig. 5. Inverted earth models, using TSVD with adaptive pruning L-curve, together with
true and inverted magnetic fields when adding different noise levels to data, a) 90 dB,
b) 80 dB, c) 70 dB, d) 60 dB to data and e) the true earth model.

ture within the surrounding area of low magnetic relief, as shown in Fig. 7.
Lambolez (1968) qualitatively interpreted the magnetic pattern to indicate
a deep-rooted basic mass with a rather sharp and steeply dipping contact
and noted the presence of marked subsidiary anomalies within the structure.
The suggested structure of a steep-sided mass is important relative to the
alternative possibility that the intrusion has a shallow lopolithic floor ad-

115



Abdelazeem M. M.: Solving ill-posed magnetic inverse problem . . . (99–123)

Fig. 6. Inverted earth models, using PTRS method, together with true and inverted
magnetic fields when adding different noise levels, a) 60 dB, b) 40 dB, c) 25 dB and d)
20 dB e) 15 dB to data and f) The true model with color scale used for susceptibility.

jacent to the outermost ring of basic rock. Present geologic investigations
suggest roof pendent intrusion instead of deep rooted mass. The PTRS
technique has been applied to reveal the present doubt.

The area of study and the studied profiles A-A’ and B-B’ are shown in
Fig. 7. Declination of the area is 2◦35′ and the total field is 40 000 nT.
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Fig. 7. Al Ji’lani intrusion, Saudi Arabia. a) Location map with a satellite image retrieved
from Google Earth. b) The RTP magnetic over the area under study with the two profiles
subjected to inversion.
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Fig. 8. Inversion results for field example 1 over a) profile A-A’ and b) profile B-B’.
Picard plots are shown as sub-plots.
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The regional trend is subtracted from profiles A-A’ and B-B’ before inver-
sion tool is used. Fig. 8a shows the profile A-A’ and the inverted model
together with the Picard plot as a sub-plot. The profile A-A’ is of total
length 1598 m. The model Earth is subdivided into 1280 square cells (M),
arranged in 20 rows and 64 columns. The data points (N) are interpolated
to 1280 data points. The Picard plot proves the ill-posedness of the prob-
lem represented by the fast decaying of the σi (condition number ∼ 1020)

with respect to slower decay of
∣∣∣UT

i d
∣∣∣. The Picard condition is only satisfied

in the first 200 cells. Consequently, PTRS method is applied to solve this
highly ill-posed problem. The inverted earth model suggests two bodies.
One is to the left with maximum depth of 249 m and the other to the right
with maximum depth of 149 m. The profile B-B’ is of total length 1515 m.
The earth model is subdivided into 1220 square cells arrange as 20 rows and
61 columns. So, the unit is nearly the same as that in first model (∼ 25 m).
Inverted model over profile B-B’ is shown in Fig. 8b with its Picard plot
also showing severe ill-posedness. The condition number ∼ 1020, which is
more than that appeared in the synthetic examples. The inverted model,
using PTRS method, suggests also two near bodies, the one to the left one
extends to 273 m and the right one has a maximum depth of 149 m. This
result confirms the roof bendent intrusion hypothesis over the deep rooted
base mass.

5.2. Field example 2

The PTRS has also been applied to magnetic data in a well-studied area
of the Sabine Necropolis at Motelibretti, Rome, Italy (Stocco et al., 2009).
This archeological site is characterized by chamber tombs, and we have
to find its position and size. A N–S profile is extracted from the vertical
gradient field of the vertical component map of the area and subjected to
inversion using PTRS technique. Although no constraints are added except
the method’s powerful dynamic trust region estimation, the results show a
remarkable compatibility to previous results (Stocco et al., 2009). Fig. 9a
demonstrates Stocco’s inversion results, whereas the inverted earth model
using PTRS is shown in Fig. 9b. The ill-posedness of the problem is obvious
from the Picard plot. The inversion results show a depth and shape of the
two buried rooms very close to Stocco’s model.
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Fig. 9. Inversion results for field example 2 (Sabine Necropolis at Motelibretti, Rome,
Italy). a) Inverted model of magnetic field profile over the Sabine Necropolis, at Mon-
telibretti, Rome, Italy (Stocco, 2009). b) Inverted earth model using PTRS for the same
profile.

6. Conclusion

Some magnetic inverse problems cannot be solved with standard inversion
tools. This is due to instability, sensitivity to noise content in data or ill-
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conditioned kernel matrix. The ill-posedness of the problem appears when
the condition number is in the order of ∼ 105 or higher. The higher the
condition number, the stronger the ill-posedness of the problem. This ill-
posedness will appear clearly in the Picard plot represented by the fast decay

of the σi with respect to slower decay of
∣∣∣UT

i d
∣∣∣. In such cases we should use

regularizing techniques. In this paper a computationally efficient Parame-
terized Trust Region Sub-problem technique (PTRS) has been applied to
the magnetic inverse problem. A comparison between TSVD with adaptive
pruning L-curve technique and the newly proposed PTRS approach, using
two synthetic examples with different noise levels, suggests higher stability
of the PTRS against higher noise levels. As shown in the examples, the
dynamically changed trust-region radius ε is a key element to find the sat-
isfying minimum to the objective function by steering the algorithm to the
elbow of the L-curve.

Successful use of the proper weighting to the kernel function minimizes
the tendency of the calculated model to cluster near the surface. PTRS
approach appears to work well in practice as illustrated by application to
different field examples of various degrees of ill-posedness.

In summary this inversion approach seems promising for real magnetic
inverse problem solution where much noise content in the data is expected.
The potential of this approach across a range of applications merits further
testing on more complicated geologic problems.
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