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Abstract: The gravimetric inverse problem for finding the Moho density contrast is

formulated in this study. The solution requires that the crust density structure and

the Moho depths are a priori known, for instance, from results of seismic studies. The

relation between the isostatic gravity data (i.e., the complete-crust stripped isostatic

gravity disturbances) and the Moho density contrast is defined by means of the Fredholm

integral equation of the first kind. The closed analytical solution of the integral equation

is given. Alternative expressions for solving the inverse problem of isostasy are defined

in frequency domain. The isostatic gravity data are computed utilizing methods for

a spherical harmonic analysis and synthesis of the gravity field. For this purpose, we

define various spherical functions, which define the crust density structures and the Moho

interface globally.
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1. Introduction

In gravimetric studies of the isostasy, two basic concepts have been com-
monly adopted, assuming that the topographic mass surplus and the oceanic
mass deficiency are compensated either by a variable thickness or density
of compensation. In the Pratt–Hayford model, the isostatic mass balance
is attained by a variable density of compensation (Pratt, 1855; Hayford,
1909; Hayford and Bowie, 1912). The Airy–Heiskanen model assumes that
a depth of compensation is variable (Airy, 1855; Heiskanen and Vening
Meinesz, 1958). Vening Meinesz (1931) modified the Airy–Heiskanen the-
ory by introducing a regional instead of local compensation. Moritz (1990)
generalized Vening Meinesz’s inverse problem for a global isostatic com-
pensation mechanism and applied a spherical approximation to the prob-
lem. Sjöberg (2009) formulated Moritz’s problem, called herein the Vening

83doi: 10.2478/congeo-2013-0006



Tenzer R.: Inverse problem for the gravimetric modeling . . . (83–98)

Meinesz-Moritz (VMM) problem of isostasy, as that of solving a non-linear
Fredholm integral equation of the first kind. The seismic studies revealed
that not only the Moho depth but also the Moho density contrast varies
significantly (cf. Geiss, 1987; Martinec, 1994; Kaban et al., 2003; Sjöberg
and Bagherbandi, 2011). The isostatic model should then be formulated
based on assumption that both these quantities (i.e., Moho depth and den-
sity contrast) are variable. Following this concept, Sjöberg and Bagherbandi
(2011) generalized the VMM problem. They developed and applied a least-
squares approach, which combined seismic and gravity data in the isostatic
inverse scheme for a simultaneous estimation of the Moho depth and density
contrast. Later, they also presented and applied the non-isostatic correc-
tion to model for discrepancies between the isostatic and seismic models (cf.
Bagherbandi and Sjöberg, 2012).

In gravimetric studies, the anomalous density structure not only within
the crust but essentially within the whole lithosphere should be modeled (cf.
e.g., Kaban et al., 1999; Tenzer et al., 2009a, 2012c). Moreover, large por-
tion of the isostatic mass balance is attributed to variable sub-lithosphere
mantle density structure, which has significant effect especially on a long-
wavelength part of the isostatic gravity spectra and consequently on the
respective Moho geometry (cf. Sjöberg, 2009). The gravitational field gen-
erated by all known anomalous density structures should thus be modeled
and subsequently removed from observed gravity field prior to solving the
gravimetric inverse problem.

In this study, the gravimetric inverse problem for finding the Moho den-
sity contrast is formulated using available models of the crust density struc-
ture and the Moho geometry. The solution is numerically realized in two
steps. First, the gravimetric forward modeling is applied to compute the
isostatic gravity data. These isostatic gravity data are then used to find
the Moho density contrast based on solving the inverse problem of isostasy.
In the absence of a reliable global mantle density model, the gravimetric
problem is here formulated only for the crust mass balance.

2. Functional model

We formulate the functional model for finding the Moho density contrast
(by means of Newton’s volumetric integral) in the following form
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δgcs (r,Ω)=−G
∫∫
Ω′∈Φ

Δρc/m (
Ω′)∫ R

r′=R−D(Ω′)

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′dΩ′, (1)

where G = 6.674 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant;
R = 6371 × 103 m is the Earth’s mean radius (which approximates the
geocentric radii of the geoid surface); � is the Euclidean spatial distance of
two points (r,Ω) and (r′,Ω′), ψ is the respective spherical distance; and
dΩ′ = cosφ′dφ′dλ′ is the infinitesimal surface element on the unit sphere.
The 3-D position is defined in the system of spherical coordinates (r,Ω);
where r is the spherical radius, and Ω = (φ, λ) denotes the spherical direc-
tion with the spherical latitude φ and longitude λ. The full spatial angle is
denoted as Φ = {Ω′ = (φ′, λ′) : φ′ ∈ [−π/2, π/2] ∧ λ′ ∈ [0, 2π)}. The geo-
centric radius r of the observation surface point is computed as r ∼= R +H,
where H is the topographic height. The Moho depths D ′ are taken relative
to the sphere of radius R.

The unknown parameter in Eq. (1) is the laterally varying Moho density
contrast Δρc/m, while it is assumed that the Moho depths D ′ are a pri-
ori known (for instance, from results of seismic surveys). The consolidated
crust-stripped gravity disturbances δgcs on the left-hand side of Eq. (1) are
obtained from the gravity disturbances δg after applying the topographic
and stripping gravity corrections of major known anomalous crust density
structures. The global results of the topographic and crust components
stripping gravity corrections and the step-wise consolidated crust-stripped
gravity data were presented and discussed in Tenzer et al. (2009b, 2012c).
Tenzer et al. (2011) demonstrated that these gravity data have a correla-
tion with the Moho geometry of 0.96; see also Tenzer et al. (2009b).

The volumetric integral on the right-hand side of Eq. (1) is further di-
vided into two constituents, which are defined for the average (constant)
value of the Moho density contrast Δρc/m and the correction term δΔρc/m

(Ω′) = Δρc/m(Ω′) − Δρc/m. Hence,

δgcs (r,Ω) = −G Δρc/m
∫∫
Ω′∈Φ

∫ R

r′=R−D(Ω′)

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′dΩ′ −

− G
∫∫
Ω′∈Φ

δΔρc/m (
Ω′)∫ R

r′=R−D(Ω′)

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′dΩ′. (1a)
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The first constituent on the right-hand side of Eq. (1a) is the complete-
crust stripped gravitational correction gi. Subtracting this term from the
consolidated crust-stripped gravity disturbances δgcs, we arrive at

δgm(r,Ω) = −G
∫∫
Ω′∈Φ

δΔρc/m(Ω′)
∫ R

r′=R−D(Ω′)

∂ �−1(r, ψ, r′)
∂ r

r′ 2 dr′dΩ′, (1b)

where δgm = δgcs − gi is the complete crust-stripped (relative to the upper
mantle density) isostatic gravity disturbance. These isostatic gravity distur-
bances describe the gravity field generated by the regularized Earth of which
topography is removed and the actual crust structures (beneath the geoid
surface down to the Moho interface) are replaced by a homogeneous crust
model of the adopted (constant) reference density of the upper(most) man-
tle (see Tenzer et al., 2009a). For the reference crust density of 2670 kg/m3,
the average value of the Moho density contrast Δρc/m of 485 kg/m3 can be
recommended. This value was estimated based on minimizing the correla-
tion between the gravity and Moho depth data (cf. Tenzer et al., 2011).
It closely agrees with the value of 480 kg/m3 adopted in the definition of
the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981,
Table 1), which was derived based on results of seismic studies. The iso-
static gravity disturbances δgm on the right-hand side of Eq. (1b) are used
as the input gravity data. The unknown parameters to be estimated are the
correction terms δΔρc/m. The expressions for the gravimetric forward mod-
eling of δgcs and δgm are reviewed in Appendices A and B, respectively. In
Sections 3 and 4, we derive the solution to the gravimetric inverse problem
(Eq. 1b) in spatial and spectral domains.

The definition of the complete crust-stripped isostatic gravity distur-
bances δgm has analogy with the definition of the isostatic gravity data in
the VMM model (see Sjöberg, 2009). The principal difference between these
two definitions is in using the gravity disturbances instead of gravity anoma-
lies. Moreover, the definition of δgm is based on minimizing their correlation
with the Moho geometry. Tenzer and Bagherbandi (2012e) reformulated
the VMM inverse problem of isostasy for the isostatic gravity disturbances.
They also demonstrated that the results obtained using the isostatic gravity
disturbances have a better agreement with the seismic Moho model. Sjöberg
(2013) summarized the definitions of the isostatic gravity field quantities for
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the potential and gravity data types. He also gave a theoretical explanation
to the numerical results of Tenzer and Bagherbandi (2012e).

3. Spatial form

Let us first define the radial integral kernel function K as

K
(
r, ψ, r′

)
= −

∫ R

r′=R−D(Ω′)

∂ �−1 (r, ψ, r′)
∂ r

r′2 dr′. (2)

Substitution from Eq. (2) back to Eq. (1b) then yields

δgm (r,Ω) ∼= G
∫∫
Ω′∈Φ

δΔρc/m (
Ω′) K (

r, ψ, r′
)

dΩ′. (3)

The expression in Eq. (3) is a Fredholm integral equation of the first kind.
The closed analytical form of K reads (Martinec, 1998, Eq. 3.54)

K
(
r, ψ, r′

)
=

∣∣∣∣∣
[ (
r′2 + 3r2

)
t+

(
1 − 6t2

)
r r′

]
�−1 (r, ψ, r′)+

+ r (3t− 1) ln
∣∣ r′ − rt+ �

(
r, ψ, r′

) ∣∣ ∣∣∣∣∣
R−D′

r′=R

, (4)

whereD(Ω′) ≡ D′; t = cosψ, and cosψ = sinφ sinφ′+cosφ cosφ′ cos(λ′−λ).
Substitution of the integral limits in Eq. (4) yields

K
(
r, ψ, r′

)
=

[ (
R2 − 2RD′ +D′2 + 3r2

)
t+ r

(
1 − 6t2

) (
R −D′) ]×

× �−1 (r, ψ, R −D′)− [(
R2 + 3r2

)
t+ rR

(
1 − 6t2

) ]
�−1 (r, ψ, R) +

+ r (3t− 1) ln
∣∣∣∣ R −D′ − r t+ � (r, ψ, R −D′)

R − r t+ � (r, ψ, R)

∣∣∣∣, (5)

where �(r, ψ, R −D′) and �(r, ψ, R) are given by

�
(
r, ψ, R −D′) =

√
r2 + (R −D′)2 − 2 r (R −D′) t , (6)

� (r, ψ, R) =
√
r2 + R2 − 2R r t. (7)
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A weak singularity of Newton’s integral kernel for ψ → 0 can, for instance,
be solved by finding the closed analytical solution for the inner-zone inte-
gration domain according to the procedure described by Sjöberg (2009).

4. Spectral form

To define the solution of Eq. (1b) in spectral domain, the fundamental
harmonic function �−1 for the external convergence domain r ≥ R (and
r′ < R) is presented in the following form (e.g., Heiskanen and Moritz,
1967)

�−1 (r, ψ, r′) =
1
r

∞∑
n=0

(
r′

r

)n

Pn (t), (8)

where Pn is the Legendre polynomial of degree n. From Eq. (8), the radial
derivative of �−1 is found to be

∂ �−1 (r, ψ, r′)
∂ r

= − 1
r′2

∞∑
n=0

(
r′

r

)n+2

(n+ 1) Pn (t) . (9)

The substitution from Eq. (9) to Eq. (2) yields

K
(
r, ψ, r′

)
=
∫ R

r′=R−D′

∞∑
n=0

(
r′

r

)n+2

(n+ 1) Pn (t) dr′ . (10)

Solving the integral of K in Eq. (10), we get

K
(
r, ψ, r′

)
= r

∞∑
n=0

(
r′

r

)n+3 n+ 1
n+ 3

Pn (t)

∣∣∣∣∣
R

r′=R−D′
. (11)

Substituting for the integral limits in Eq. (11), we arrive at

K
(
r, ψ, r′

)
=

∞∑
n=0

(
1
r

)n+2 n+ 1
n+ 3

[
Rn+3 − (

R −D′)n+3
]

Pn (t) =

= r
∞∑

n=0

(
R
r

)n+3 n+ 1
n+ 3

[
1 −

(
1 − D′

R

)n+3
]

Pn (t). (12)

The term (1 − D′/R)n+3 on the right-hand side of Eq. (12) is further ex-
pressed by means of the binomial theorem as follows
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(
1 − D′

R

)n+3
∼=

n+3∑
k=0

(
n+ 3
k

)
(−1)k

Rk
D′k. (13)

After substituting from Eq. (13) to Eq. (12), the spectral representation of
K is found to be

K
(
r, ψ, r′

)
= −r

∞∑
n=0

(
R
r

)n+3 n+ 1
n+ 3

n+3∑
k=1

(
n+ 3
k

)
(−1)k

Rk
D′k Pn (t) . (14)

From Eqs. (14) and (3), we have

δgm (r,Ω) = G
∞∑

n=0

(
R
r

)n+2

(n+ 1)
∫∫
Ω′∈Φ

δΔρc/m (
Ω′) D′ (Ω′) Pn (t) dΩ′ −

− GR
∞∑

n=0

(
R
r

)n+2 n+ 1
n+ 3

n+3∑
k=2

(
n+ 3
k

)
(−1)k

Rk
×

×
∫∫
Ω′∈Φ

δΔρc/m (
Ω′) D′k (Ω′) Pn (t) dΩ′. (15)

Since the expansion of the integral kernel K into a series of spherical
functions converges uniformly for the external domain r > R, the inter-
change of summation and integration in Eq. (15) was permitted.

We define the spherical Moho density-depth function Mn of degree n as

Mn (Ω) =
2n+ 1

4π

∫∫
Ω′∈Φ

Δρc/m (
Ω′) D (

Ω′) Pn (t) dΩ′ =

=
n∑

m=−n

Mn,m Yn,m (Ω). (16)

The corresponding higher-order terms
{
M

(k)
n : k = 2, 3, 4, ...

}
read

M (k)
n (Ω) =

2n + 1
4π

∫∫
Ω′∈Φ

Δρc/m (
Ω′) Dk (Ω′) Pn (t) dΩ′ =

=
n∑

m=−n

M (k)
n,m Yn,m (Ω). (17)
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The spherical coefficients Mn,m describe globally the Moho geometry
scaled by the Moho density contrast. The same definitions are given for the
correction term δΔρc/m. Hence

δM (k)
n (Ω) =

2n+ 1
4π

∫∫
Ω′∈Φ

δΔρc/m (
Ω′) Dk (Ω′) Pn (t) dΩ′ =

=
n∑

m=−n

δM (k)
n,m Yn,m (Ω) (k = 1, 2, 3, ...) . (18)

Substitution from Eq. (18) back to Eq. (15) yields

δgm (r,Ω) = 4πG
∞∑

n=0

(
R
r

)n+2 n+ 1
2n+ 1

n∑
m=−n

δMn,m Yn,m (Ω) −

− 4πGR
∞∑

n=0

(
R
r

)n+2 1
2n+ 1

n+ 1
n+ 3

×

×
n+3∑
k=2

(
n+ 3
k

)
(−1)k

Rk

n∑
m=−n

δM (k)
n,m Yn,m (Ω). (19)

To relate the spherical functions Mn and δMn (and their higher-order
terms) with spherical harmonics, which describe the Earth’s gravity field,
the constituents on the right-hand side of Eq. (19) are scaled by the geo-
centric gravitational constant GM = 3986005 × 108 m3 s−2.

For the spherical approximation, the geocentric gravitational constant is
given by (e.g., Novák, 2010)

GM =
4π
3

GR3 ρ̄Earth, (20)

where ρ̄Earth = 5500 kg m−3 is the Earth’s mean mass density.
Combining Eqs. (19) and (20) and limiting the spectral resolution up to

the maximum degree n̄ of spherical harmonics, we arrive at

δgm (r,Ω) = −GM
R2

∞∑
n=0

(
R
r

)n+2 n∑
m=−n

F δM
n,m Yn,m (Ω). (21)

The numerical coefficients F δM
n,m in Eq. (21) read
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F δM
n,m =

1
2n+ 1

3
ρ̄Earth

n+ 1
n+ 3

n+3∑
k=1

(
n+ 3
k

)
(−1)k

Rk+1
δM (k)

n,m . (22)

The system of observation equations is formed for the correction terms
δMn,m according to Eq. (21). The solution is carried out iteratively us-
ing, for instance, a condition of the convergence between results of two
successive steps (k and k+1) as follows:

∥∥∥δMk+1
n,m − δMk

n,m

∥∥∥
2
≤ c, where c is

a limit of convergence.

5. Discussion

Tenzer et al. (2012c) estimated that the relative errors in the computed
values of δgcs could reach as much as 10% mainly due to large uncertain-
ties of currently available global crust structure models. Since these errors
propagate proportionally to the Moho density contrast errors, the same rel-
ative uncertainties can be expected in the estimated values of the Moho
density contrast especially over areas with variable crustal density struc-
tures. Large errors in the estimated values of the Moho density contrast are
also expected due to uncertainties within the Moho geometry. Most of the
errors in the Moho depth data are linearly related with the errors in the
Moho density contrast. These errors propagate to the computed values of
δgm (and subsequently to δMn,m) through uncertainties of the coefficients
Dn,m (see Eq. B4), which are generated from discrete values of the Moho
depths.

Grad et al. (2009), for instance, demonstrated that the Moho depths
uncertainties (estimated based on processing the seismic data) under the
Europe regionally exceed 10 km with the average error of more than 4 km.
Much larger Moho depth uncertainties are expected over large parts of the
world where the seismic data are absent or insufficient. Additional errors
in the estimated Moho density contrast are due to the unmodeled gravita-
tional signal from the variable density structures within the mantle litho-
sphere and sub-lithosphere mantle and eventually also from the geometry of
the core-mantle interface. If known, the gravitational signal of anomalous
density structures within the mantle should be treated in the same way as
the crustal density structures. This can be done by applying the additional
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gravity stripping correction of the anomalous mantle density structures.
However, our current knowledge of spatial mantle density structures is re-
stricted by the lack of reliable global data. A possible way how to partially
overcome this problem is to remove the long-wavelength spherical harmonic
terms from the isostatic gravity field. The principle of this procedure is
based on finding the representative depth of gravity signal attributed to
each spherical harmonic degree term (cf. Eckhardt, 1983). The spherical
harmonics which have the depth below a certain limit (chosen, for instance,
as the maximum Moho depth) are removed from the gravity field. Nonethe-
less, the complete subtraction of the gravity signal of mantle density struc-
tures using this procedure is still questionable, because there is hardly any
unique spectral distinction between the long-wavelength gravity signal from
the mantle and the expected higher-frequency signal of the Moho geometry.

Sjöberg and Bagherbandi (2011) applied the least-square method to si-
multaneously estimate the Moho depth and density contrast globally using
the gravimetric and seismic models. Tenzer et al. (2012a, 2012b) used to
same method to determine the Moho density contrast under oceans and
continents.

6. Conclusions

The gravimetric inverse problem for finding the Moho density contrast was
formulated by means of a Fredholm integral equation of the first kind. This
method utilizes the direct functional relation between the isostatic gravity
data and the Moho density contrast. The observation equations were de-
scribed using the spatial and spectral representations of the integral kernel.

The gravimetric inverse model directly incorporated the seismic models
into the solution. This was done through the gravimetric forward mod-
eling of the gravity data corrected for the gravitational contributions of
the topographic and anomalous density structures within the Earth’s crust.
Moreover, the information on the Moho depths was required in forming the
observation equations, which define the relation between the isostatic grav-
ity data and the Moho density contrast.

A principal theoretical advantage of this method is that the relation be-
tween the unknown (and sought) Moho density contrast and isostatic grav-
ity disturbances can be readily reformulated for all known Earth’s density
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structures. The realistic estimation of the Moho density contrast is possi-
ble only when global crust (and essentially also mantle) density model is
available with a sufficient accuracy.
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Appendix A: Consolidated crust-stripped gravity disturbances

The consolidated crust-stripped gravity disturbances δgcs are obtained from
the corresponding gravity disturbances δg after applying the topographic
and crust density contrasts stripping gravity corrections. The computation
is realized according to the following scheme (Tenzer et al., 2012d)

δgcs = δg − gt + gb + gi + gs + gc, (A.1)
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where gt, gb, gi, gs, and gc are, respectively, the gravitational attractions
generated by the topography and density contrasts of the ocean (bathyme-
try), ice, sediments and remaining anomalous density structures within the
consolidated crystalline crust. The spectral representation of δgcs reads
(ibid.)

δgcs (r,Ω) =
GM
R2

n̄∑
n=0

n∑
m=−n

(
R
r

)n+2

(n+ 1) Tcs
n,m Yn,m (Ω), (A.2)

where Tcs
n,m are the coefficients of the consolidated crust-stripped disturbing

potential. These coefficients are computed as follows

Tcs
n,m = Tn,m − Vt

n,m + Vb
n,m + Vi

n,m + Vs
n,m + Vc

n,m, (A.3)

where Tn,m are the (fully normalized) numerical coefficients which describe
the disturbing potential T (i.e., difference between the Earth’s gravity po-
tential W and the normal gravity potential U); and Vt

n,m, Vb
n,m, Vi

n,m, Vs
n,m

and Vc
n,m are, respectively, the gravitational potential coefficients of topog-

raphy and density contrasts of the ocean, ice, sediments and consolidated
crystalline crust.

The coefficients Vn,m in Eq. (A.3) for the topography and crust density
contrasts components read

Vn,m =
3

2n+ 1
1

ρ̄Earth

I∑
i=0

(
Fl(i)n,m − Fu(i)

n,m

)
. (A.4)

The numerical coefficients {Fl(i)n,m, Fu
(i)
n,m : i = 0, 1, ..., I} are defined as

follows

Fl(i)n,m =
n+2∑
k=0

(
n+ 2
k

)
(−1)k

k + 1 + i

L
(k+1+i)
n,m

Rk+1
, (A.5)

and

Fu(i)
n,m =

n+2∑
k=0

(
n+ 2
k

)
(−1)k

k + 1 + i

U
(k+1+i)
n,m

Rk+1
. (A.6)

95



Tenzer R.: Inverse problem for the gravimetric modeling . . . (83–98)

The terms
n∑

m=−n
Ln,m Yn,m and

n∑
m=−n

Un,m Yn,m in Eqs. (A.5) and (A.6) de-

fine the spherical lower-bound and upper-bound laterally distributed radial
density variation functions Ln and Un of degree n. These spherical func-
tions and their higher-order terms {L(k+1+i)

n , U
(k+1+i)
n : k = 0, 1, ... ; i =

1, 2, ..., I} are defined as follows

L(k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π
2n+1

∫∫
Φ
ρ (DU ,Ω′) Dk+1

L (Ω′)Pn (t) dΩ′ =

=
n∑

m=−n
L

(k+1)
n,m Yn,m (Ω) i = 0

4π
2n+1

∫∫
Φ
β (Ω′) ai (Ω′) Dk+1+i

L (Ω′)Pn (t) dΩ′ =

=
n∑

m=−n
L

(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(A.7)

and

U (k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π
2n+1

∫∫
Φ
ρ (DU ,Ω′) Dk+1

U (Ω′)Pn (t) dΩ′ =

=
n∑

m=−n
U

(k+1)
n,m Yn,m (Ω) i = 0

4π
2n+1

∫∫
Φ
β (Ω′) ai (Ω′) Dk+1+i

U (Ω′)Pn (t) dΩ′ =

=
n∑

m=−n
U

(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(A.8)

For a specific volumetric layer, the mass density ρ is either constant ρ,
laterally-varying ρ(Ω′) or – in the most general case – approximated by
the laterally distributed radial density variation model using the following
polynomial function (for each lateral column)

ρ
(
r′,Ω′) = ρ

(
DU ,Ω′)+ β

(
Ω′) I∑

i=1

ai
(
Ω′) (R − r′

)i
,

for R −DU
(
Ω′) ≥ r′ > R −DL

(
Ω′) , (A.9)

where ρ (DU ,Ω′) is the nominal value of the lateral density stipulated at the
depthDU of the upper bound of the volumetric mass layer. This density dis-
tribution model describes the radial density variation within the volumetric
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mass layer at the location Ω′. Alternatively, when modeling the gravita-
tional field of the anomalous mass density structures within the Earth’s
crust, the density contrast Δρ (r′,Ω′) of the volumetric mass layer relative
to the reference crustal density ρc is defined as

Δρ
(
r′,Ω′) = ρc − ρ

(
r′,Ω′) = Δρ

(
DU ,Ω′)− β

(
Ω′) I∑

i=1

ai
(
Ω′) (R − r′

)i
,

for R −DU
(
Ω′) ≥ r′ > R −DL

(
Ω′) , (A.10)

where Δρ(DU ,Ω′) is the nominal value of the lateral density contrast.

The coefficients Ln,m and Un,m combine the information on the geome-
try and density (or density contrast) distribution of volumetric layer. The
coefficients Ln,m and Un,m are generated to a certain degree of spherical
harmonics using the discrete data of the spatial density distribution (i.e.,
typically provided by means of density, depth, and thickness data) of a par-
ticular structural component of the Earth’s interior. Since the summation
in Eq. (A.7) is finite, the validation of the expressions for computing the
gravitational field quantities is not restricted to the outer space of the Bril-
louin sphere. We note that the expressions in Eqs. (A.7) and (A.8) can
directly be used if the volumetric mass layer is distributed above and below
the sphere of radius R with only one set of the coefficients Ln,m and Un,m for
describing the geometry of the lower and upper bounds of this volumetric
layer.

Appendix B: Complete crust-stripped isostatic gravity disturban-
ces

The computation of the complete crust-stripped isostatic gravity distur-
bances δgm is based on subtracting the isostatic compensation attraction
gi(i.e., the complete-crust stripped gravity correction) from the consolidated
crust-stripped gravity disturbances δgcs. The upper bound of the homoge-
neous crust (density contrast) layer is given by the geoid surface while the
lower bound is identical with the (model) Moho density interface. Then we
have

δgm (r,Ω) = δgcs (r,Ω) − gi =
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=
GM
R

n̄∑
n=0

n∑
m=−n

(
R
r

)n+2

(n+ 1)
(

Tcs
n,m − V i

n,m

)
Yn,m (Ω). (B.1)

The potential coefficients V i
n,m are given by

V i
n,m

∼= 3
2n+ 1

Δρc/m

ρ̄Earth
FMoho

n,m , (B.2)

where FMoho
n,m read

FMoho
n,m =

n+2∑
k=0

(
n+ 2
k

)
(−1)k

k + 1
D

(k+1)
n,m

Rk+1
. (B.3)

The spherical Moho-depth function Dn of degree n reads

Dn (Ω) =
2n + 1

4π

∫∫
Φ

D
(
Ω′) Pn (cosψ) dΩ′ =

n∑
m=−n

Dn,m Yn,m (Ω), (B.4)

and

D(i)
n (Ω) =

2n+ 1
4π

∫∫
Φ

Di (Ω′) Pn (cosψ) dΩ′ =
n∑

m=−n

D(i)
n,m Yn,m (Ω), (B.5)

where D is the Moho depth, and Dn,m are the coefficients of the global
Moho model.
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