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Abstract: We present mathematical modelling of the stationary geothermal field for the

three-layered earth which includes a three-dimensional perturbing body below the first

layer (over the halfspace substratum). The unperturbed temperature field corresponds to

the uniform vertical heat flux. The perturbing body is in the form of 3D prismoid with

sloping side faces, while its upper and lower face are rectangles at the planes z = z1, z2.

The theoretical formulae are based on the generalized theory of the double-layer poten-

tial and boundary integral equation (BIE). Special attention is paid to the quadrilateral

prismoids bounded by planar skew faces. The numerical calculations were performed for

the 3D prismoids (blocks), the thermal conductivity of which was greater than that in the

ambient second layer, while the upper face of the prismoid may be in contact with the

upper layer and the lower face may touch the bottom halfspace. Numerous graphs are

shown for the disturbance of the temperature and heat flow distribution on the surface of

the Earth or inside all three layers.

Key words: geothermics, heat flux refraction, double layer potential, boundary integral
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1. Introduction

The heat flow from the Earth’s interior is of interest in geothermal prospect-
ing based on geothermal models, e.g. Ljubimova et al. (1983), Chen and
Beck (1991), Majcin (1992), Hvoždara and Majcin (2009, 2011), Majcin
et al. (2012). We present the boundary integral solution for the station-
ary geothermal field in the three layered earth which is perturbed by a 3D
body ΩT of thermal conductivity λT situated in the second layer of thermal
conductivity λ2. Below the bottom planar boundary of the second layer we
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Fig. 1. Model of a 3-D disturbing body buried in the second layer of the three layered
earth.

suppose the halfspace substratum z ≥ h2 of thermal conductivity λ3. The
cross-section with vertical plane y = 0 is depicted in Fig. 1. In the absence
of perturbing body in our model we suppose uniform vertical heat flux den-
sity q0 in all three layers. The corresponding temperatures are denoted as
Tk(z), k = 1, 2, 3. These functions obey Laplace equation

∇2Tk(z) = 0. (1)

Since considered unperturbed heat flux is independent of x, y we have a
simple ordinary differential equation for Tk(z):

d2Tk(z)/d z
2 = 0. (2)

Obviously its solution is linear function of z:

Tk(z) = z Ak +Bk. (3)

Constants Ak, Bk are determined from boundary conditions on boundaries
z = 0, h1, h2:

T1(z)|z=0 = 0 (4)
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Tk(z)|z=hk
= Tk+1(z)|z=hk

, k = 1, 2 (5)

[∂Tk(z)/∂z]z=hk
= (λk+1/λk) [∂Tk+1(z)/∂z]z=hk

, k = 1, 2. (6)

The boundary condition (4) means that we suppose the temperature of the
surface z = 0 as zero of our temperature scale. For this reason we have
B1 = 0 and then T1(z) is a linear function of z:

T1(z) = A1z. (7)

The boundary conditions (5), (6) on the planes z = h1, h2 give simple linear
equations system:

A1h1 = A2h1 +B2, A1 = (λ2/λ1)A2,

A2h2 +B2 = A3h2 +B3, λ2A2 = λ3A3 = q0. (8)

The fourth equation links the heat flux density on the bottom boundary
z = h2 to the value q0 of the heat flux in the bottom halfspace. It means
that

A3 = q0/λ3, A2 = q0/λ2 (9)

and also

A1 = q0/λ1. (10)

Then we obtain expressions for B2 and B3:

B2 = q0
λ2 − λ1

λ1λ2
h1, (11)

B3 = B2 − q0
λ2 − λ3

λ2λ3
h2. (12)

Now we have complete algorithm for calculation of the unperturbed tem-
perature field:

Tk(P ) = Tk(z) = Akz +Bk, k = 1, 2, 3, (13)
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where P ≡ (x, y, z) is arbitrary point in the layer Lk. This simple tempera-
ture field is changed because of inserted perturbing 3D body ΩT into layer
L2. Similar problems for two layered earth were in papers Hvoždara and
Valkovič (1999) and Hvoždara and Majcin (2011). The method of boundary
integral equations can be extended also for more complicated three layered
earth. We can solve interesting structures, e.g. diapire penetrating from
substratum L3 through layer L2 to the lower boundary of the layer L1.
Other interesting structure is 3D basin below the layer L1, buried into L2.

2. Boundary integral expressions of perturbed temperature
field

Using experience from our previous papers Hvoždara (2008), Hvoždara and
Majcin (2011) mentioned above, we can write temperatures Uk(P ) in the
k-th layer in the form:

Uk(P ) = Tk(P ) +
1

4π

∫
S

f(Q)
∂

∂nQ
Gk2(P,Q) dSQ, P ∈ Lk, P /∈ ΩT . (14)

In the interior of the perturbing body the temperature is:

UT (P ) =
λ2

λT

⎡
⎣T2(P )− v0 +

1

4π

∫
S

f(Q)
∂

∂nQ
G22(P,Q) dSQ

⎤
⎦+ v0. (15)

In formulae (14), (15) the integrals correspond to the effect of the double
layer distributed on the surface S of the body ΩT , their density f(Q) must
be calculated by means of BIE

f(P ) = 2β [T2(P )− v0] +
β

2π

∫
S

\ f(Q)
∂

∂nQ
G22(P,Q) dSQ, (16)

where β = (1− λT /λ2)/(1 + λT /λ2). The constant v0 in above formulae is
the mean value of the unperturbed temperature T2(P ) on the surface S:

v0 =
1

S

∫
S

T2(P ) dSP . (16a)
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In formulae (14)–(16) we have normal derivatives (∂G/∂nQ) of Green’s func-
tions of our potential problem. Similarly, as in Hvoždara and Majcin (2011)
the Green’s function Gk2(P,Q) corresponds to the thermal field due to point
source of heat situated in the point Q ∈ S and the temperature is calcu-
lated in the point P ∈ Lk. The Green’s functions G12(P,Q), G32(P,Q)
obey Laplace equations:

∇2G12(P,Q) = 0, ∇2G32(P,Q) = 0 (17)

and G22(P,Q) obeys Poisson equation

∇2G22(P,Q) = −4πδ(P,Q), (18)

where δ(P,Q) is Dirac function. These functions must satisfy boundary
conditions on z = 0, h1, h2 similar to the temperature field:

G12(P,Q) |z=0 = 0, (19)

G12(P,Q) |z=h1
= G22(P,Q) |z=h1

, (20)

λ1 [∂G12(P,Q)/∂z]z=h1
= [λ2∂G22(P,Q)/∂z]z=h1

. (21)

G22(P,Q) |z=h2
= G32(P,Q) |z=h2

, (22)

λ2 [∂G22(P,Q)/∂z]z=h2
= λ3 [∂G32(P,Q)/∂z]z=h2

. (23)

All three Green’s function must decrease to zero for PQ → ∞:

lim
PQ→∞

Gk2(P,Q) = 0. (24)

The Cartesian coordinates for points P,Q are as follows:

P ≡ (x, y, z), Q ≡ (x′, y′, z′)

The Poisson equation (18) tells us that principal term in G22(P,Q) is a well
known point source potential

R−1 =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2
, (25)

because
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∇2(R−1) = −4πδ(P,Q). (26)

Then we have for G22(P,Q) the expression:

G22(P,Q) = R−1 + G̃22(P,Q), (27)

where G̃22(P,Q) is harmonic function

∇2G̃22(P,Q) = 0. (28)

Now we introduce an auxiliary cylindrical system (r, z) with vertical polar
axis z running through the point Q, and we put

r =
[
(x− x′)2 + (y − y′)2

]1/2
. (29)

Then the solutions G12, G̃22, G32 satisfy the well known Laplace equation
in cylindrical coordinates (r, z):

∇2G(r, z) = 0, i.e.

1

r

∂

∂r

(
r
∂G

∂r

)
+

∂2G

∂z2
= 0. (30)

Its general solution for the z-layered earth is known in geophysical potential
problems:

G(r, z) =

∞∫
0

[
Cetz +De−tz

]
J0(tr) d t, (31)

where J0(tr) is Bessel function of the first kind, zero index. In this form we
know also the expression for R−1 (by means of Weber-Lipschitz integral):

R−1 =
[
r2 + (z − z′)2

]−1/2
=

∞∫
0

e−t|z−z′|J0(tr) d t. (32)

It is necessary to put |z − z′| = z − z′ for z > z′ and |z − z′| = z′ − z for
z < z′ in the layer L2. In view of the boundary condition (19) we suppose
for the Green function G12(r, z) the expression:

G12(r, z) =

∞∫
0

C1 sh(tz)J0(tr) d t, (33)
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because sh(tz) = 0 at the plane z = 0. For G22(r, z) we have the expression:

G22(r, z) =

∞∫
0

[
e−t|z−z′| + C2e

tz +D2e
−tz

]
J0(tr) d t. (34)

Because in the substratum L3 the z-ordinate can grow to infinity, the func-
tion etz cannot occur in G32(r, z) and we have

G32(r, z) =

∞∫
0

C3e
−tzJ0(tr) d t. (35)

The coefficients C1, C2,D2, C3 will be functions of the integral variable t
and we then determine the boundary conditions (20)–(23) which must hold
for all distances r. Then we obtain four linear equations:

C1 sh(th1) = e−t(z′−h1) +C2e
th1 +D2e

−th1 ,

(λ1/λ2)C1 ch(th1) = e−t(z′−h1) + C2e
th1 −D2e

−th1 ,

C3e
−th2 = e−t(h2−z′) + C2e

th2 +D2e
−th2 ,

−(λ3/λ2)C3e
−th2 = −e−t(h2−z′) + C2e

th2 −D2e
−th2 . (36a-d)

The elimination method gives at first the coefficients D2, C2:

D2 =
[
k12e

−t(z′−2h1) − e−tz′ + k12k32e
−t(2h2−2h1−z′)−

− k32e
−t(2h2−z′)

]
[W (t)]−1 , (37)

where k12 = (1− λ1/λ2)/(1 + λ1/λ2), k32 = (1− λ3/λ2)/(1 + λ3/λ2)

and the auxiliary function:

W (t) = 1− k12e
−2th1 + k32e

−2th2 − k12k32e
−2t(h2−h1), (38)

C2 = k32
[
e−t(2h2−z′) − k12e

−t(2h2+2h1−z′)+

+ k12e
−t(2h2−2h1+z′) − e−t(2h2+z′)

]
[W (t)]−1 , (39)

C3 = (1 + k32)
[
etz

′ − k12e
−t(2h1−z′) + k12e

t(2h1−z′) − e−tz′
]
[W (t)]−1 , (40)
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C1 = 2(1 + k12)
[
e−tz′ + k32e

−t(2h2−z′)
]
[W (t)]−1 . (41)

We can see that all coefficients have the same denominator, i.e. multi-
plicative function [W (t)]−1. This function can be expanded into infinite
geometrical series if the depths h1, h2 are integer multiple of some common
depth scale D, i.e. we suppose:

h1 = i1D, h2 = i2D, (42)

while i1 ≥ 1, i2 > i1 are integers. It is clear that coefficients k12 and k32
are in absolute values less than 1, and so we can express [W (t)]−1 given by
(38) in modified form:

[W (t)]−1 =
[
1− f1e

−t2i1D − f2e
−t2i2D − f3e

−t2(i2−i1)D
]−1

=

=
[
1− f1g

i1 − f2g
i2 − f3g

i3
]−1

, (43)

where we introduced notations

f1 = k12, f2 = −k32, f3 = k12k32, i3 = i2 − i1 and g = e−2Dt. (44)

By using knowledge from DC geoelectric problems e.g. Bhattacharya and
Patra (1968) we find expansion:

[
1− f1g

i1 − f2g
i2 − f3g

i2−i1
]−1

=
∞∑
n=0

sng
n, (45)

where g < 1 and also |f1| < 1, |f2| < 1, |f3| < 1. The relation (45) will be
satisfied if there holds:

1 =
[
1− f1g

i1 − f2g
i2 − f3g

i3
] ∞∑
n−0

sng
n. (46)

Now we multiply individual terms in square brackets with the infinite sum
and obtain

1 =
∞∑
n=0

sng
n − f1

∞∑
n=0

sng
n+i1 − f2

∞∑
n=0

sng
n+i2 − f3

∞∑
n=0

sng
n+i2−i1 . (47)
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If we perform suitable shift of summation coefficients in the second, third
and fourth series and compare the resulting series with value 1 on the l.h.s.
in (47) we obtain recurrence relations for coefficients sn:

s0 = 1,

sn = f1sn−i1 + f3sn−i2+n1 for n = 1, 2, . . . n1,

where n1 = max[i1, i2 − i1]

sn = f1sn−i1 + f2sn−i2 + f3sn−i2+i1 for n > n1. (48)

Note that we take sk ≡ 0 for k < 0. Using the coefficients sn we can use
expansion:

[W (t)]−1 =
∞∑
n=0

sne
−2tnD (49)

in all integrals with C1, C2,D2, C3 in Green’s functions. Numerical cal-
culations showed that |sn| < 1, for n ≥ 1, so the series (49) is rapidly
convergent. Now we can present explicit expressions for Green’s functions
G12(P,Q), G22(P,Q), G32(P,Q). In all integrals we can use the known
Weber-Lipschitz integral:

∞∫
0

e−tξJ0(tr) d t =
[
r2 + ξ2

]−1/2
, provided ξ > 0. (50)

By using expression (41) for C1 and expansion (49) we obtain from (33) for
the layer L1 : z ∈ 〈0, h1〉, z′ > h1:

G12(P,Q) = (1 + k12)
∞∑
n=0

sn

{[
r2 + (2nD + z′ − z)2

]−1/2 −

−
[
r2 + (2nD + z′ + z)2

]−1/2
}
+ (1 + k12)k32

∞∑
n=0

sn ·

·
{[

r2 + (2nD + 2h2 − z′ − z)2
]−1/2 −

−
[
r2 + (2nD + 2h2 − z′ + z)2

]−1/2
}
. (51)
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For the layer L2 : z ∈ 〈h1, h2〉, z′ ∈ 〈h1, h2〉 we have a more complicated
Green’s function G22(P,Q) using (34), (37), (39) and (49):

G22(P,Q) =R−1 + k32

∞∑
n=0

sn

{[
r2 + (2nD + 2h2 − z′ − z)2

]−1/2 −

− k12
[
r2 + (2nD + 2h2 + 2h1 − z′ − z)2

]−1/2 −

−
[
r2 + (2nD + 2h2 + z′ − z)2

]−1/2
+

+ k12
[
r2 + (2nD + 2h2 − 2h1 + z′ − z)2

]−1/2
}
+

+
∞∑
n=0

sn

{
k12

[
r2 + (2nD − 2h1 + z′ + z)2

]−1/2 −

−
[
r2 + (2nD + z′ + z)2

]−1/2
+

+ k12k32
[
r2 + (2nD + 2h2 − 2h1 − z′ + z)2

]−1/2 −

−k32
[
r2 + (2nD + 2h2 − z′ + z)2

]−1/2
}
. (52)

Similarly for the substratum halfspace L3(z > h2) we have from (35) using
(40) and (49):

G32(P,Q) = (1 + k32)
∞∑
n=0

sn

{[
r2 + (2nD + z − z′)2

]−1/2 −

− k12
[
r2 + (2nD + 2h1 − z′ + z)2

]−1/2
+

+ k12
[
r2 + (2nD − 2h1 + z′ + z)2

]−1/2 −

−
[
r2 + (2nD + z′ + z)2

]−1/2
}
. (53)

We must remember that r2 = (x− x′)2 + (y − y′)2 is a square of horizontal
distance of points PQ. One can easily check that in the summation part
there are no singular terms even for n = 0 if h1 < z′ < h2. The contact
cases, i.e. if the body ΩT touches with some upper planar part the plane
z = h1 or with bottom planar part the boundary z = h2 will be considered
similarly as in Hvoždara and Valkovič (1999), Hvoždara and Majcin (2011).
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The analysis of Green’s function G22(P,Q) given by the complex formula
(52) shows that if the perturbing body touches the upper plane z = h1we
have two singular terms, namely:

R−1 + k12
[
r2 + (2h1 − z − z′)2

]−1/2
, (54)

where we used term for n = 0 of the second infinite series, while s0 = 1. By
using limit approach as explained in Hvoždara and Majcin (2011) we can
show that in the BIE (16) for contact points P ∈ Sh1 we must instead of β
use the coefficients

β1 = β/(1 − βk12). (55)

Analogously, for the contact case with the lower planar boundary z = h2

we have also two singular terms in G22(P,Q), namely

R−1 + k32
[
r2 + (2h2 − z − z′)2

]−1/2
, (56)

where we used the term for n = 0 of the first infinite series, while s0 = 1.
By using limit approach as explained in Hvoždara and Valkovič (1999) we
can show that in the BIE (16) for contact points P ∈ Sh2 we must instead
of β use coefficient

β2 = β/(1 − βk32). (57)

In this manner we can write instead of BIE (16) a more general form which
includes also the possibility of contact cases:

f(P ) = 2γ [T2(P )− v0] +
γ

2π

∫
S

\\ f(Q)
∂

∂nQ
G22(P,Q) dSQ, (58)

where

γ =

⎧⎪⎨
⎪⎩
β, if P /∈ Sh1 , P /∈ Sh2

β/(1− βk12) if P ∈ Sh1

β/(1− βk32) if P ∈ Sh2

. (59)

The double slash in the integral sign of BIE (58) denotes that for P ∈ Sh1

there are omitted contributions from function (54) and similarly for P ∈ Sh2

there are omitted contribution from function (56), while for the rest of the
surface S there are omitted only contributions due to R−1. Concerning the
formula (59) we note that there appears normal derivative of the Green’s
function G22(P,Q). If the unit normal vector at the point Q ≡ (x′, y′, z′) is
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nQ ≡ (n′
x, n

′
y, n

′
z), (60)

then the normal derivative is

∂G22(P,Q)

∂nQ
= n′

x

∂G22

∂x′
+ n′

y

∂G22

∂y′
+ n′

z

∂G22

∂z′
. (61)

3. Numerical calculations and discussion

The numerical calculations were performed for the prismoid with the upper
face of the rectangular form at the depth z1 ∈ 〈h1, h2〉. The sides of the
rectangle were considered to be parallel to the x, y axes, while: x ∈ 〈x�1 , xr1〉,
y ∈ 〈y�1 , yr1〉. The bottom face is also rectangle at the depth z2, while
z1 < z2 ≤ h2. The sides of the bottom rectangle we consider also parallel to
the x, y axes, while: x ∈ 〈x�2 , xr2〉, y ∈ 〈y�2 , yr2〉. It is clear that x = const,
y = const sides of the lower and upper rectangle are parallel to each other.
Then the side faces of the prism are trapezoids form with upper segment at
the depth z = z1, bottom segment at the depth z = z2 and the sides of the
trapezoid are skew segments connecting the upper and bottom segment. In
such definition of the prismoid faces we have on each face constant direction
of the normal vector nQ and possibility of simple manner of subdivision
onto a set of subareas. According to experience from our previous paper
Hvoždara and Majcin (2011), we adopted subdivision of each face onto a×a
subareas ΔSj (here we applied a = 12 or a = 16) and obviously we have
total number M = 6× a× a of trapezoidal subareas ΔSj. The BIE (58) we
solve by the collocation method, i.e. we suppose on each subarea ΔSj the
unknown function f(Q) to be constant f(Qj) where Qj is the central point
of ΔSj. In this manner we introduce the piecewise constant approximation
of the unknown double layer density f(Q) on the surface S. Putting the
number M sufficiently large we can express the BIE (58) in its discretized
form:

f(Pm) = 2γ [T2(P )− v0] +
M∑
j=1

f(Qj)w2(Pm, Qj), m = 1, 2, . . . ,M. (62)
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Here γ = β if the body does not touch at the point Pm the plane boundaries
z = h1, h2 and attains slightly changed values for the contact cases as show
by formula (58a). We introduced the weighting coefficients w2(Pm, Qj) in
the following manner:

w2(Pm, Qj) =
γ

2π

∫
ΔSj

\\ ∂

∂nQ
G22(Pm, Q) dSQ. (63)

The integration in the principal value sense means that there are excluded
contributions from R−1 if Pm is normal point or contributions from function
(54) if Pm ∈ Sh1 or from function (56) if Pm ∈ Sh2 . The formula (61) can
be written as a system of M linear equations for unknowns f(Qj) in the
next manner:

M∑
j=1

[δmj − w2(Pm, Qj)] f(Qj) = 2γ [T2(Pm)− v0] , (64)

where δmj is the Kronecker’s symbol. Then the system of equations can be
solved using methods of linear algebra and standard computer subroutines.
Once the system (64) is solved, we can calculate the temperature field and
also the vertical component of the heat flux or their anomalies ΔT , Δqz. For
this purpose we employ summation approximation of formulae (14), (15).
Then for the layer Lk we have for the temperature Uk(P ):

Uk(P ) = Tk(P ) +
M∑
j=1

f(Qj)Xk(P,Qj), (65)

where

Xk(P,Qj) =
1

4π

∫
ΔSj

∂Gk2(P,Q)

∂nQ
dSQ (66)

is the weighting factor of influence the dipole seated at the subarea ΔSj.
Similar formula can be created also for calculation of the temperature UT (P )
in the interior of perturbing body:

UT (P ) = (λ2/λT )

⎡
⎣T2(P )− v0 +

M∑
j=1

f(Qj)X2(P,Qj)

⎤
⎦+ v0. (67)
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Let us note that crucial role in numerical calculation of the coefficients
w2(Pm, Qj) for solution of the BIE (61) and also coefficients Xk(P,Qj) given
by (65). The principal term in all Green’s functions is

R−1 =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2
.

The integral of this term over trapezoidal subarea ΔSj was calculated by
means of our original subroutine SLAGUP4, which is adopted by using
formulae by Guptasarma and Singh (1999). Our algorithm is sufficiently
explained in the paper Hvoždara and Majcin (2011). This subroutine is
calculating the solid angle of view based on the vector and scalar products
of four vectors connecting the point P ≡ (x, y, z) with four corners of trape-
zoidal planar subarea ΔSj with outer normal nQ. This subroutine can be
adopted also for precise calculation of contributions of the terms like

R−1
ζ =

[
(x− x′)2 + (y − y′)2 + (ζ − z′)2

]−1/2
, (68)

where ζ = 2h1,2 − z because at the contact cases this term attains also high
values. In such a manner we can calculate the temperature field Uk(x, yc, z)
for the constant yc plane. We obtain maps of isotherms in the (x, y) plane. If
we use suitable small depth internal Δz, then we can also calculate the ver-
tical heat flux density qz by the difference of temperatures at neighbouring
levels z:

qz(x, y, zj) = λk [Uk(x, y, zj +Δz)− Uk(x, y, zj)] /Δz, (69)

where Δz=̇h1/20.
We investigated a number of models, but here we present graphical

results for two models only. The first model approximates prismoidal de-
pression of the first layer into second one. In this model we put thickness
of the layer L1 as a unit depth scale, i.e. h1 = D = 1 and h2 = 2h1, so we
have i1 = 1, i2 = 2 in the expansion in the formula (45). The top face of the
prism is rectangle in contact with the layer L1, i.e. z1 = h1 and the bottom
face is also smaller rectangle at the depth z2 = 1.8h1, so the prism is quite
thick, since z2 − z1 = 0.8h1. The cross-section of the prismoid by the plane
y = 0 is trapezoid depicted in the top of Fig. 2a, together with isolines of
relative temperature (isotherms) in the x, z-variables, while y = 0. The ge-
ometrical parameters are presented in the first two rows in the table below.
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U(x,0, z)/T h1

qz(x,0, zp )/q0

= 1.00  -1.50  1.20  -1.00  1.00 m

= 1.80  -1.20  0.80  -0.50  0.50 m

= 10.00  10.00 h , h = 1.00  2.00 m

λ1 = 1.00, λ2 = 0 50. , λ3 = 2.50, λT = 1 0. 0 W/(K m)

Fig. 2a. Isolines of the relative temperature (top) and profile curves of the relative vertical
heat flux (bottom) in the plane y = 0 for the prismoidal depression of the first layer into
second one while λT = λ1, λT /λ2 = 2, λ3/λ1 = 2.5 and h2 − h1 = h1 = 1.
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Hvoždara M., Majcin D.: Geothermal heat flux anomaly due to a 3D . . . (39–58)

= 1.00  -1.50  1.20  -1.00  1.00 m

= 1.80  -1.20  0.80  -0.50  0.50 m

= 10.00  10.00 h , h = 1.00  2.00  0.80 m

λ1 = 1.00, λ2 = 0 50. , λ3 = 2.50, λT = 1 0. 0 W/(K m)

qz(x, y, z c )/q0

Δqz (x,0, zc)/q0

Fig. 2b. Isolines of the relative vertical heat flux at the plane zc/h1 = 0.8 (top) and profile
curve at y = 0 in the first layer for the the same parameters as in Fig. 2a. There is also
depicted projection of the prismoid with sloped faces, the gray rectangle is projection of
the bottom face.
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= 1.00  -0.80  0.80  -0.80  0.80 m

= 3.00  -1.40  0.80  -1.20  0.80 m

= 10.00  10.00 h , h = 1.00  3.00 m

λ1 = 1.00, λ2 = 1.25, λ3 = 2.50, λT = 2.50 W/(K m)

qz(x,0, zp )/q0

U(x,0, z)/T h1

Fig. 3a. Isolines of the relative temperature (top) and profile curves of the relative vertical
heat flux (bottom) in the plane y = 0 for the prismoidal diapire from the substratum till
the bottom boundary z = h1 of the first layer. According to the data given in the table
there is λT /λ2 = λ3/λ2 = 2, λ2/λ1 = 1.25, h2 − h1 = 2h1.
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= 1.00  -0.80  0.80  -0.80  0.80 m

= 3.00  -1.40  0.80  -1.20  0.80 m

= 10.00  10.00 h , h = 1.00  3.00  0.80 m

λ1 = 1.00, λ2 = 1.25, λ3 = 2.50, λT = 2.50 W/(K m)

qz(x, y, z c )/q0

Δqz (x,0, zc)/q0

Fig. 3b. Isolines of the relative vertical heat flux at the plane zc/h1 = 0.8 (top) and profile
curve at y = 0 in the first layer for the the same parameters of the diapire as in Fig. 3a.
There is also depicted projection of the prismoid with sloped faces, the gray square is
projection of the upper face of the diapire.
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The four profile curves present the vertical heat flux qz(x, 0, zp) normed by
q0 at the depths zp/h1 = 0.35, 0.70, 1.26, 1.54. In the table we can also
see that λT /λ1 = 1, while λ2/λ1 = 0.5 and λ3/λ1 = 2.5. We can see that
heat flux anomalies are about 10% of q0 if zp/h1 < 1, but two profiles for
zp/h1 > 1 show anomalies qz/q0 ≈ 1.4 if the calculation points lie in the
interior of the prism, since it is surrounded by the less conductive material
of L2. One can also see the effect of draining of the heat flux from L2 into
more conductive prismoid if the calculation point approaches the prismoid
from the outside. In Fig. 2b we can see isolines of the normed vertical heat
flux distribution above the prismoid at the depth zc = 0.8h1. The gray
rectangle depictes the bottom face of the prismoidal depression. We can see
that the values of qz(x, y, zc)/q0 attain cca 1.12 above the central region of
the prismoid.

The results for the second model are presented in Figs. 3a,b. The pris-
moidal perturbing body approximates the diapire connecting the substra-
tum halfspace L3 with the bottom boundary of the layer L1. In this model
we put h2 = 3h1, so i1 = 1 and i2 = 3 in the expansion (45). The thermal
conductivities we put λ1 = 1, λ2 = 1.25, λ3 = 2.5, λT = 2.5W/(Km). The
geometrical parameters are given in the first two rows in the table of Fig. 3a.
The cross-section of the prismoid by the plane y = 0 is trapezoid depicted in
the top of Fig. 3a, together with isolines of temperature in the x, z-variables,
while y = 0. The temperature values are normed by the normal temperature
T1 at the depth h1. From the profile curves of qz/q0 for depths zp/h1 = 0.35,
0.70, 1.26, 1.54 we can see that the heat flux anomaly is greater than in the
previous model, clearly due to both by greater volume of good conducting
prismoid and by its shape with prevailing vertical dimension and smaller
upper face. In Fig. 3b we can see isolines of the vertical heat flux above
the diapire at the depth zc = 0.8h1. The gray square depictes the upper
face of the diapire at the boundary z = h1. The asymmetry of isolines is
clearly due to various slope of the side faces. By using results of presented
models we can conclude that the most useful region for exploating the heat
flux anomalies is region in L1 above the anomalous good conducting body
or inside it. It is clear that the localization of the anomalous body ΩT

and its dimensions must be determined by application of geophysical explo-
ration methods: gravimetric, magnetometric, geoelectric as well as by reflex
seismic profiling.

57
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