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Abstract: The paper presents a comparison among different techniques in interpolating

high-frequency gravity field signals in mountainous areas. A gap of 1◦ × 1◦ has been arti-

ficially created within the free-air gravity anomalies data set for Austria. The remaining

data set has been used to interpolate the free-air gravity anomalies at the gap points;

then a comparison between the interpolated and the data values has been carried out

to determine the accuracy of the used interpolation technique. The following interpo-

lation techniques have been used: Kriging interpolation technique from free-air gravity

anomalies, traditional remove-restore technique and window technique (Abd-Elmotaal and

Kühtreiber, 2003). For the latter two techniques, the reduced anomalies have been used to

interpolate gravity anomalies at the data points of the gap using a least squares collocation

technique. The effect of the topographic-isostatic masses has been restored using both

techniques. A comparison between the data and interpolated values of free-air anomalies

at the gap points has been carried out. The results show that the Kriging technique

cannot be used for interpolating high-frequency gravity field signals in mountainous areas

and the window technique gives the best results with an interpolation standard deviation

of about 11 mgal. The range difference and the standard deviation of the residuals in

case of the window technique are smaller than those of the traditional remove-restore

technique by about 25%.
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1. Introduction

Interpolation of gravity anomalies is essential in many geodetic applications,
such as geoid determination using FFT and Stokes’ integral techniques. The
interpolation technique introduces some errors. These errors become even
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higher in case of interpolating high-frequency gravity field signals in moun-
tainous areas. One usually wants to determine the accuracy of the estimated
interpolated anomalies. The current investigation considers a comparison of
three interpolation techniques, namely Kriging technique using the free-air
anomalies, the traditional remove-restore technique and the window tech-
nique (Abd-Elmotaal and Kühtreiber, 2003).

The used data sets are described (data area and gap area). The tradi-
tional remove-restore technique is described. The window technique (Abd-
Elmotaal and Kühtreiber, 2003) within the remove-restore scheme is out-
lined. The harmonic analysis of the topographic-isostatic potential is then
given. The reduced gravity using both traditional remove-restore and win-
dow techniques are then computed and compared. Fitting the used empir-
ical covariance functions within the least-squares collocation technique is
then given. The restore step is carried out to obtain free-air gravity anom-
alies at the gap data points, and the residuals (difference between data
and interpolated values) at those points are computed. A wide comparison
among the used interpolation techniques is carried out. The comparison is
made on two different levels; the residual gravity anomalies after the remove
step and the interpolation residuals.

It should be noted that many scholars have studied the gravity interpo-
lation problem and the estimated accuracy. The reader may refer, e.g., to
(Al-Tahir, 1996; Sansò et al., 1999; Bajracharya and Sideris, 2002; Sideris,
1995; Heliani et al., 2004; Kamguia et al., 2007; Kay and Dimitrakopoulos,
2000; Völgyesi, 1993; 1995; Tóth and Völgyesi, 2002).

2. The data

2.1. Gravity data

The gravity data set for this investigation is a set of free-air gravity anomalies
at 5796 stations in Austria and neighbouring countries (Fig. 1). Figure 1
shows, more or less, a homogeneous data distribution within Austria. The
gravity data covers the window (45.7◦ N ≤ φ ≤ 49.7◦ N and 8.5◦ E ≤ λ ≤
18.2◦ E).

An artificial gap of 1◦ × 1◦ of the window 47.1◦ N ≤ φ ≤ 48.1◦ N and
14.2◦ E ≤ λ ≤ 15.2◦ E has been made and all gravity data points within this
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Fig. 1. Distribution of the full gravity data set.

gap (222 points) were eliminated from the full gravity data set yielding the
gravity data set used for this investigation (5574 points; cf. Fig. 2).

2.2. Digital Height Models

Two different Digital Height Models (DHM) are available. A coarse model
of 90′′×150′′ resolution in the latitude and the longitude directions, respec-

Fig. 2. Distribution of the used gravity data set after introducing the 1◦ × 1◦ artificial
gap.
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tively, and a fine model of 11.25′′ × 18.75′′ resolution. The fine DHM covers
the window 44.75◦ N ≤ φ ≤ 50.25◦ N; 7.75◦ E ≤ λ ≤ 19.25◦ E. The coarse
DHM covers the window 40◦ N ≤ φ ≤ 52◦ N; 5◦ E ≤ λ ≤ 22◦ E.

The coarse DHM has been created by integrating the Austrian fine
DHM with GTOPO30 (30′′ × 30′′) (Gesch and Larson, 1996) and global
bathymetry model provided by the Naval Oceanographic Office (1′ × 1′).
Figure 3 shows the coarse digital height model used for this investigation.
It shows the highly mountainous structure of the Alps.

3. Traditional remove-restore technique

Within the well-known remove-restore technique for the same gravitational
quantity for the sake of smoothing the field, the effect of the topographic-
isostatic masses is removed from the source gravitational data and then

Fig. 3. The coarse (90′′ × 150′′) digital height model. Units are in meters.
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restored to the resulting interpolated values of the same gravitational quan-
tity. For example, in the case of gravity data, the reduced gravity anomalies
used in the interpolation technique in the framework of the remove-restore
technique are computed by

Δgred = ΔgF −ΔgGM −ΔgTI , (1)

where ΔgF stands for the free-air anomalies, ΔgTI is the effect of topography
and its compensation on the gravity anomalies, and ΔgGM is the effect of
the reference field on the gravity anomalies. Thus the final restored free-air
anomalies within the remove-restore technique can be expressed by:

ΔgF = ΔgGM +ΔgΔg +ΔgTI , (2)

where ΔgΔg stands for the interpolated gravity anomalies at the interpolated
points using the reduced gravity anomalies Δgred computed by (1) at the
data points.

4. The window technique

The traditional way of removing the effect of the topographic-isostatic
masses faces a theoretical problem. A part of the influence of the topogra-
phic-isostatic masses is removed twice as it is already included in the global
reference field. This leads to some double consideration of that part of
the topographic-isostatic masses. Figure 4 sketches the traditional gravity
reduction for the effect of the topographic-isostatic masses. The short-
wavelength part, depending on the topographic-isostatic masses, is com-
puted for a point P for the masses inside the circle denoted by TI. Re-
moving the effect of the long-wavelength part by a global earth’s gravita-
tional potential field normally implies removing the influence of the global
topographic-isostatic masses, shown as a big rectangle in Fig. 4 denoted
by EGM (here EGM stands for Global Geopotential Model). The double
consideration of the topographic-isostatic masses inside the circle (double
hatched) is thus seen.

A possible way to overcome this difficulty is to adapt the used reference
field to the effect of the topographic-isostatic masses for a fixed data area.
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Fig. 4. The traditional remove-restore technique.

Figure 5 shows the advantage of the window remove-restore technique. Con-
sider a measurement at point P ; the short-wavelength part, depending on
the topographic-isostatic masses, is now computed by using the masses of
the whole data area (the small rectangle in Fig. 5). The adapted reference
field is created by subtracting the effect of the topographic-isostatic masses
of the data window, in terms of potential coefficients, from the reference
field coefficients. Thus, removing the long-wavelength part by using this
adapted reference field does not lead to a double consideration of a part
of the topographic-isostatic masses (as there is no double hatched area in
Fig. 5).

The remove step of the window remove-restore technique can then math-
ematically be written as

ΔgredWin = ΔgF −ΔgGM Adapt −ΔgTI Win , (3)

Fig. 5. The window remove-restore technique.
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where ΔgGM Adapt is the contribution of the adapted reference field and
ΔgTI Win is the effect of topography and its compensation for the fixed
data window on the gravity anomalies. The restore step of the window
remove-restore technique can be written as

ΔgF = ΔgGM Adapt +ΔgΔg win +ΔgTI Win . (4)

Here ΔgΔgWin stands for the interpolated gravity anomalies at the inter-
polated points using the reduced gravity anomalies ΔgredWin computed by
(3) at the data points.

5. Harmonic analysis of the topographic-isostatic potential

The harmonic coefficients of the topography and its isostatic compensation
as well as the harmonic series expansion of the topographic-isostatic poten-
tial can be expressed by (Abd-Elmotaal and Kühtreiber, 2003, pp. 78–79):

TTI(P ) =
GM

rP

∞∑
n=0

(
R

rP

)n n∑
m=−n

T̄nmR̄nm(P ) , (5)

where R̄nm(P ) is defined by (Hofmann-Wellenhof and Moritz, 2005, p. 21)

R̄nm(P ) = P̄nm(cos θP )

{
cosλP for n ≥ 0
sinλP for n < 0

(6)

and GM is the geocentric gravitational constant, P̄nm(cos θ) are the fully
normalized Legendre functions, rP is the radius vector and T̄nm is given by

T̄nm =
R3

M(2n + 1)(n + 3)

∫∫
σ

{
ρQ

[(
1 +

HQ

R

)n+3

− 1

]
+

+ΔρQ

(
1− T◦

R

)n+3
[(

1− tQ
R− T◦

)n+3

− 1

]}
R̄nm(Q) dσQ , (7)

where T◦ is the normal crustal thickness, H is the topographic height, t is
the compensating root/antiroot and M denotes the mass of the earth, given
by
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M
.
=

4πR3

3
ρ
M
, (8)

where ρ
M

denotes the mean earth’s density and ρ is given by

ρ= ρ◦ for H ≥ 0 ,

ρ= ρ◦ − ρw for H < 0 ,
(9)

where ρ◦ denotes the density of the topography and ρw is the density of
ocean’s water. The density contrast Δρ is given by

Δρ = ρ1 − ρ◦ , (10)

where ρ1 is the density of the upper mantle.
For the practical determination of the harmonic coefficients of the topo-

graphic-isostatic potential, (7) may be written as

T̄nm =
3ΔφΔλ

4πρ
M
(2n + 1)(n+ 3)

φ∑
i

λ∑
j
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R

)n+3

− 1

]
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+Δρij

(
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R

)n+3
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)n+3

− 1

]}
×

×
{
cosmλj

sinmλj

}
P̄nm(cos θi) cosφi , (11)

where
∑

denotes the summation along φ and λ, Δφ and Δλ are the grid
sizes of the used Digital Height Model in the latitude and the longitude
directions, respectively.

6. Gravity reduction

The following parameter set has been used during the gravity reduction as
they empirically proved to fit the Austrian gravity field to a good extent
(cf. Kühtreiber and Abd-Elmotaal, 2001):

T◦ = 30 km , (12)

ρ◦ = 2.67 g/cm3 , (13)

Δρ= 0.20 g/cm3 . (14)

28



Contributions to Geophysics and Geodesy Vol. 43/1, 2013 (21–38)

The EGM96 geopotential model has been used for the traditional remove-
restore technique. An adapted reference field has been created by subtract-
ing the potential coefficients of the topographic-isostatic masses of the data
window (40◦ N ≤ φ ≤ 52◦ N; 5◦ E ≤ λ ≤ 22◦ E) computed by (11) from
the EGM96 coefficients. This adapted reference field has been used for the
window remove-restore technique.

Table 1 shows the statistics of the data free-air anomalies as well as
the reduced anomalies for both the traditional and the window remove-
restore techniques. It shows that using the window technique gives the best
reduced gravity anomalies compared to the traditional remove-restore tech-
nique. The range has dropped by its one-fourth and the standard deviation
drops by about 10%. Also the reduced anomalies are perfectly centered
(un-biased). This property makes the window-technique reduced anomalies
best suited for interpolation and other geodetic purposes.

Table 1. Statistics of the reduced gravity anomalies

statistical parameters

reduced gravity min. max. average st. dev.

mgal mgal mgal mgal

ΔgF −154.11 187.21 9.76 42.24

ΔgF −ΔgGM −ΔgTI −123.46 82.16 −19.53 25.91

ΔgF −ΔgGM Adapt −ΔgTI Win −71.97 85.41 0.10 23.53

7. Least-squares collocation technique

The interpolated gravity anomalies at the interpolation points ΔgΔg using
the reduced gravity anomalies at the data points is computed in this in-
vestigation using the least-squares collocation technique. The normalized
observation equation for the least-squares collocation technique can be writ-
ten as (Moritz, 1980, p. 99)

l = t+ n , (15)

where l denotes the measurements, n denotes the measuring errors (noise)
and t denotes the signal part of the measurements, which is related to the
earth’s gravitational field. Equation (15) refers to the so-called least-squares
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collocation without parameters.
The estimated signals ŝ are given by (ibid., p. 102)

ŝ = Cst (Ctt + Cnn)
−1 l , (16)

where Cst is the cross-covariance matrix between the measurements and the
estimated signals, Ctt is the auto-covariance matrix of the measurements and
Cnn is the covariance matrix of the noise. The error covariance matrix of
the estimated signals Ess is given by (ibid., p. 105)

Ess = Css − Cst (Ctt + Cnn)
−1 CT

st (17)

where Css is the auto-covariance matrix of the estimated signals.
It should be noted that the quantities t and s are related to the earth’s

gravitational field, which are linear functionals of the anomalous potential
T . Hence the matrices Ctt, Cst and Css can be obtained from the basic
covariance function of the anomalous potential by covariance propagation
(ibid., pp. 86–87). For practical applications, the covariance function of the
gravity anomalies plays the role of the basic covariance function, from which
all other covariance matrices can be derived.

8. Covariance functions

The used covariance function model in this investigation is the well known
Tscherning-Rapp covariance function model. The global covariance function
of the gravity anomalies Cg(P,Q) is given by (Tscherning and Rapp, 1974,
p. 29)

Cg(P,Q) = A
∞∑
n=3

n− 1

(n− 2)(n +B)
sn+2Pn(cosψ) , (18)

where Pn(cosψ) denotes the Legendre polynomial of degree n, ψ is the
spherical distance between P and Q and A, B and s are the model param-
eters. Closed expression for (18) is available in (ibid., p. 45).

The Tscherning-Rapp local covariance function of gravity anomalies
C(P,Q) can be defined as

C(P,Q) = A
∞∑

NN+1

n− 1

(n− 2)(n +B)
sn+2Pn(cosψ) . (19)
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This expression may be written in the form (ibid., p. 62)

C(P,Q) =A
∞∑
n=3

n− 1

(n− 2)(n +B)
sn+2Pn(cosψ)−

−A
NN∑
3

n− 1

(n− 2)(n +B)
sn+2Pn(cosψ) =

=Cg(P,Q)−A
NN∑
n=3

n− 1

(n− 2)(n +B)
sn+2Pn(cosψ) , (20)

where Cg(P,Q) is given by (18) and its closed form.
Modelling the covariance function means in practice fitting the empiri-

cally determined covariance function (through its three essential parameters;
the variance C◦, the correlation length ξ and the variance of the horizontal
gradient G◦H) to the covariance function model. Hence the four parameters
A, B, NN and s are to be determined through this fitting procedure.

A program has been written to fit the empirically determined variance
C◦ and correlation length ξ of the gravity anomalies covariance function to
the Tscherning-Rapp covariance function model in such a way that it de-
termines the best horizontal gradient G◦H that it gives the minimum σ2

V ,
defined by

σ2
V =

1

n

n∑
i=1

V 2
i , (21)

where V stands for the covariance residual (empirically determined minus
modelled) at the empirical covariance function points n. This assures best
fitting to the empirically determined covariance function.

Table 2 shows the essential parameters of the empirical covariance func-
tion of the gravity anomalies for both cases (i.e., using traditional remove-
restore technique and using window technique). The values of the horizontal

Table 2. Essential parameters of the empirical gravity anomaly covariance functions

C◦ ξ G◦H
reduction technique

mgal2 km E2

Traditional remove-restore 671.08 59.84 52

window 553.59 46.33 52
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gradient variance G◦H have been estimated with the procedure described
above.

Table 3 shows the Tscherning-Rapp covariance function model param-
eters for both cases using traditional remove-restore technique and using
window technique. A fixed value of

B = 24 exact

has been chosen for all cases. This value matches the same value for the
global gravity anomaly covariance function.

Table 3. Tscherning-Rapp covariance function model parameters

s A NN
reduction technique

— mgal2 —

Traditional remove-restore 0.998150 626.32 50

Window 0.997950 802.87 86

Figure 6 shows the empirical and modelled covariance functions in case
of using traditional remove-restore technique. It shows a very good fitting
of the empirical covariance function. This illustrates that the used fitting
technique of the empirical covariance function works best.

Figure 7 shows the empirical and modelled covariance functions in case
of using window technique. It also shows a very good fitting of the empirical
covariance function.

9. Estimated free-air gravity anomalies

As stated before, all three interpolation techniques (namely, Kriging inter-
polation technique from free-air gravity anomalies, least-squares collocation
using both traditional remove-restore technique and window technique) have
been used to estimate the free-air gravity anomalies at the gap points. The
interpolated values are then compared to the data values at the gap points
to estimate the accuracy of the interpolation technique.

Table 4 shows the statistics of the residuals of the estimated free-air
anomalies at the gap points. It shows that the Kriging technique cannot
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Fig. 6. Empirical and modelled covariance functions in case of using traditional remove-
restore technique.

Fig. 7. Empirical and modelled covariance functions in case of using window technique.
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Table 4. Statistics of the residuals of the estimated free-air anomalies at the gap points

statistical parameters

interpolation technique min. max. average st. dev.

mgal mgal mgal mgal

Kriging (free-air) −129.77 72.60 −40.45 43.74

Collocation (remove-restore) −52.44 2.82 −19.08 15.03

Collocation (window) −38.75 4.72 −11.55 11.42

be used for interpolating free-air gravity anomalies in mountainous areas
as it gives very high values of residuals in terms of both the range and the
standard deviation. Table 4 shows also that the collocation interpolation

Fig. 8. Residuals of the estimated free-air anomalies at the gap points using collocation
interpolation with traditional remove-restore reduction technique. Units are in mgals.

34



Contributions to Geophysics and Geodesy Vol. 43/1, 2013 (21–38)

with window reduction technique gives the best results. Both the range
difference and the standard deviation of the residuals in case of colloca-
tion interpolation with window technique are smaller than those of colloca-
tion interpolation with traditional remove-restore technique by about 25%.
Moreover, the residuals are more centered (less biased) in case of collocation
with window technique.

Figure 8 shows the residuals of the estimated free-air anomalies at the
gap points using collocation interpolation with traditional remove-restore
reduction technique.

Figure 9 shows the residuals of the estimated free-air anomalies at the
gap points using collocation interpolation with window reduction technique.

Fig. 9. Residuals of the estimated free-air anomalies at the gap points using collocation
interpolation with window reduction technique. Unites are in mgals.
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Comparing Fig. 8 with Fig. 9 shows that window reduction technique gives
significantly less residuals.

Figure 10 shows the DHM for the gap area. Comparing Figs. 8, 9 and 10
shows that the remaining residuals of the estimated free-air anomalies at the
gap points using collocation interpolation are correlated with topography.

10. Conclusion

The paper shows a comparison between the traditional remove-restore tech-
nique and the window technique in interpolating high-frequency gravity

Fig. 10. Digital Hight Model for the gap area. Units are in meters.
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field signals in mountainous areas. The reduced anomalies using the win-
dow technique are unbiased and have a smaller standard deviation than
those using the traditional remove-restore technique. The empirical covari-
ance function of the reduced anomalies using the window technique goes
practically to zero at about 250 km.

The paper introduces an efficient covariance function fitting technique.
This technique gives a good fitting of the used covariance functions within
the current investigation.

The results show that the window technique gives better interpolation ac-
curacy (less residuals between the observed and interpolated gravity anoma-
lies) with a standard deviation of about 11 mgal. The range difference and
the standard deviation of the residuals in case of the window technique
are smaller than those of the traditional remove-restore technique by about
25%.

Finally, it should be noted that the interpolation accuracy has a stronger
relation with topography in case of using the traditional remove-restore tech-
nique.
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