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Abstract: The paper presents algorithm and numerical results for the boundary integral
equations (BIE) method of the forward D.C. geoelectric problem for the three-layered
earth which contains the prismoidal body with sloped faces in the second layer. This
situation occurs in the sedimentary basins. Although the numerical calculations are more
complicated in comparison with faces orthogonal to the x, y, z axes, the generalization to
the sloped faces enables treatment of the anomalous fields for the bodies of more general
shapes as rectangular prisms. The graphs with numerical results present isoline maps of
the perturbing potential as well as the resistivity profiles when the source field is due to
the pair of D.C. electrodes at the surface of the earth. Also presented apparent resistivity
curves for the Schlumberger array AMNB sounding.
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1. Introduction

The method of BIE developed in the last 30 years has been shown as a very
effective one for solving geoelectric potential fields in the layered medium
containing 3D or 2D perturbing body; see e.g. Lee (1975); Okabe (1981);
Hvoždara (1982, 1983); Schulz (1985); Eloranta (1986). In our earlier pa-
pers (Hvoždara, 1983, 1984) we have paid attention to the cases of a uniform
exciting electric field, which approximates a telluric field for long periods.
These general boundary integral formulae can be easily adopted for the cases
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Fig. 1. Model of a 3D disturbing body buried in the second layer of the 3-layered earth.

of non-uniform exciting electric field, which is e.g. due to the point source
electrode on the surface of the earth, or by the pair of such electrodes.
In Hvoždara (1995, 2007), we presented detailed extension of the BIE

method to the more complicated cases: the 3D body embedded in the super-
ficial layer of 2-layered earth, including its possible contact with the lower
or/and upper boundary of the layer, while the source electrode could be
situated even on the surface of the outcropping body. The present study
is directed into a generalization of our numerical modelling studies to the
cases of prismoid bodies bounded by the sloped faces situated in the second
layer of a 3-layered (normal) earth, while the body can touch the top or/and
bottom layer. This model can also approximate frequent situations occur-
ring in geology, e.g. a depression of the superficial layer into middle layer,
or a diapire penetrating from the substratum through the second layer.

2. Boundary integral expressions for potentials and Green’s
functions calculation

Theoretical formulae for our BIE analysis are similar as those in Hvoždara
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(1995, 2007), but for better clarity we repeat them also here with necessary
modifications. We consider the three-layered earth represented by the su-
perficial layer L1: z ∈ 〈0, h1〉 of resistivity ρ1, second layer L2: z ∈ 〈h1, h2〉
resistivity ρ2 and substratum L3: z > h2 of resistivity ρ3. In the second
layer we consider a 3D disturbing body ΩT of resistivity ρT , bounded by
the surface S with a piecewise continuous outer normal n (see Fig. 1). In
the absence of disturbing body the D.C. current source excites potentials
Vj(P ) in the layer Lj, j = 1, 2, 3 of resistivity ρj. Due to presence of the
perturbing body ΩT these potentials change and result into the total poten-
tials Uj(P ). The total potential inside ΩT is denoted by UT (P ). According
to the previous theory presented in (Hvoždara, 1995, 2007) we can write
expressions for total potentials Uj(P ), UT (P ) in the form of sum of unper-
turbed potentials Vj(P ) and generalized double layer potentials (given by
the boundary integrals), namely:

Uj(P ) = Vj(P ) +
1
4π

∫
S

f(Q)
∂

∂nQ
Gj2(P,Q) dSQ , P ∈ Lj , P /∈ ΩT , (1)

UT (P ) =
ρT

ρ2

⎡
⎣V2(P )− v0+

1
4π

∫
S

f(Q)
∂

∂nQ
G22(P,Q) dSQ

⎤
⎦+ v0, P ∈ ΩT .(2)

Here Gj2(P,Q) are Green’s functions for the three-layered earth with field
calculation point P ∈ Lj and Q ∈ S. They correspond to the potential of
the point source electrode, situated at the point Q ≡ (x′, y′, z′) ∈ S, z′ ∈
(h1, h2), calculated for the point P ≡ (x, y, z) ∈ Lj , but instead of source
factor Iρ2/(4π) we must put dimensionsless factor equal to 1. The constant
v0 is the mean value of the potential V2(P ) on the surface S. The function
G22(P,Q) obeys Poisson equation in the second layer L2 (z′, z ∈ 〈h1, h2〉):
∇2G22(P,Q) = −4πδ(P,Q) , P ∈ L2 , Q ∈ S , (3)

while Gj2(P,Q), j �= 2 are harmonic functions in the layers L1, L3, i.e.:
∇2Gj2(P,Q) = 0, j = 1, 3. (4)

On the surfaces z = 0 and z = h1, h2 there must be satisfied boundary
conditions similar to those for the D.C. electric potential due to the point
electrode situated in the Q(x′, y′, z′), z′ ∈ (h1, h2):
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[∂G12(P,Q)/∂z]z=0 = 0 , (5)

[G12(P,Q)]z=h1
= [G22(P,Q)]z=h1

, (6)

[∂G12(P,Q)/∂z]z=h1
= (ρ1/ρ2) [∂G22(P,Q)/∂z]z=h1

. (7)

[G22(P,Q)]z=h2
= [G32(P,Q)]z=h2

, (8)

[∂G22(P,Q)/∂z]z=h2
= (ρ2/ρ3) [∂G32(P,Q)/∂z]z=h2

. (9)

All functions Gj2 must have zero limit for PQ→ +∞.
The point source singularity of the function G22(P,Q) is expressed by the

Dirac function δ(P,Q) in the equation (3). According to the potential field
theory we know that G22(P,Q) must contain the basic singular function
R−1 = [(x− x′)2 + (y − y′)2 + (z − z′)2]−1/2 which obeys the equation

∇2(R−1) = −4πδ(P,Q), (10)

since R−1 is the reciprocal distance of point P from the source point Q.
Now we introduce auxiliar cylindrical system (r, ϕ, z) with polar axis z and

r =
[
(x− x′)2 + (y − y′)2

]1/2
, (11)

is the horizontal distance from the z-axis. Then the source function R−1

can be expressed as:

R−1 =
[
r2 + (z − z′)2

]−1/2
. (12)

Since the properties of medium are independent of azimuthal angle ϕ and
source function R−1 is also of this property, the Laplace equation for Green
function G(r, z) is:

1
r

∂

∂r

(
r
∂G

∂r

)
+
∂2G

∂z2
= 0, (13)

which has general solution in the form

G(r, z) =

∞∫
0

[
Ce−tz + Eetz

]
J0(tr) d t, (14)
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where J0(tr) is the well known Bessel function of the first kind, index zero.
In view of the boundary condition (5) we have for the P ∈ L1 expression
G12(r, z)

G12(r, z) =

∞∫
0

C1(e
−tz + etz)J0(tr) d t. (15)

In the layers L2, L3 we have Green’s function:

G22(r, z) =
1
R
+

∞∫
0

[
C2e

−tz +E2e
tz
]
J0(tr) d t, (16)

G32(r, z) =

∞∫
0

C3e
−tzJ0(tr) d t. (17)

One can easily find that the boundary condition (5) is satisfied by G12 given
in (15). For the application of conditions on planar boundaries z = h1, h2
we have too different expression of the source term R−1 = [r2+(z−z′)2]−1/2
for z < z′ and for z > z′ by the Weber-Lipschitz integrals:

R−1 =
∞∫
0

e−t(z′−z)J0(tr) d t, z ∈ 〈h1, z′〉, (18)

R−1 =
∞∫
0

e−t(z−z′)J0(tr) d t, z ∈ 〈z′, h2〉. (19)

Then we can use the boundary conditions (6)–(9) and since they must hold
true for all distances r, we obtain system of four linear equations for coeffi-
cients C1, C2, E2, C3:

2C1 ch(th1) = e
−t(z′−h1) + C2e

−th1 + E2e
th1 , (20a)

(ρ2/ρ1)2C1 sh(th1) = e
−t(z′−h1) − C2e

−th1 + E2e
th1 , (20b)

C3e
−th2 = e−t(h2−z′) + C2e

−th2 + E2e
−th2 , (20c)
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−(ρ2/ρ3)C3e−th2 = −e−t(h2−z′) − C2e
−th2 + E2e

th1 . (20d)

We solve this system by the elimination method eliminating first at C3 from
(20c,d) and we obtain first equation for C2 and E2:

−k23C2e−2th2 + E2 = k23e−t(2h2−z′), (21)

where k23 = (1− ρ2/ρ3)/(1 + ρ2/ρ3). Elimination of C1 from (20a,b) gives
the second equation for C2, E2

s12C2e
−2th1 + E2 = −e−tz′ , (22)

where s12 =
ch(th1) + (ρ2/ρ1) sh(th1)
ch(th1)− (ρ2/ρ1) sh(th1) . (23)

It is possible to adjust the multiplicator s12 into form:

s12 =
1− k12e

−2th1

−k12 + e−2th1 , (24)

where k12 = (1 − ρ1/ρ2)/(1 + ρ1/ρ2) is the resistivity contrast of layers L1
and L2. The solution of Eqs. (21), (22) gives aftersome algebraic operations:

C2 =
[
k23e

−t(2h2−z′) + e−tz′ − k12k23e
−t(2h2−2h1−z′)−

− k12e
−t(z′−2h1)

]
[F1(t)]

−1 , (25)

E2 = k23
[
e−t(2h2+z′) + e−t(2h2−z′) − k12e

−t(2h2−2h1+z′)−
− k12e

−t(2h1+2h2−z′)
]
[F1(t)]

−1 . (26)

Here we introduced a symbol F1(t) for the denominator in (25), (26):

F1(t) = 1− k12e
−2th1 − k23e

−2th2 + k12k23e−2t(h2−h1). (27)

By using Eqs. (20a,b) we easily find the relation:

C1(1 + ρ2/ρ1)
[
1− k12e

−th1
]
= 2e−tz′ + 2E2,

which gives after some adjustments with (26) and (27):
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C1 = (1− k12)
[
e−tz′ + k23e

−t(2h2−z′)
]
[F1(t)]

−1 . (28)

Here we have used relation 1− k12 = 2/(1 + ρ2/ρ1). Equations (20c,d) give
relation:

C3 =
2

1 + ρ2/ρ3

[
etz

′
+ C2

]
,

which after some algebra leads to expression

C3 = (1 + k23)
{
e−tz′ +

[
k23e

−t(2h2−z′) + e−tz′−
− k12k23e

−t(2h2−2h1−z′) − k12e
−t(z′−2h1)

]
[F1(t)]

−1} . (29)

Let us note that all coefficients C1, C2, E2, C3 have the same multiplicator
[F1(t)]−1. Because |k12| < 1, |k23| < 1 and all exponentials are also less than
1, we can expand this factor into infinite geometric series in the manner
many times used in D.C. geoelectric theory, see e.g. Bhattacharya and
Patra (1968). This expansion requires that the depths h1, h2 are integer
multipliers of some common depth scale D:

h1 = i1D, h2 = i2D, (30)

while integer i2 > i1. Then we obtain series expansion:

[F1(t)]
−1 =

[
1− k12e

−2th1 − k23e
−2th2 + k12k23e−2t(h2−h1)

]−1
=

=
∞∑

n=0

qne
−2nDt, (31)

where q0 = 1 and coefficients qn can be calculated by the recurrence relations
as explained in Appendix I. The coefficients qn for n > 1 are in absolute
value less than 1 also. By using expansion (31) we can calculate analytically
all integrals of Green’s functions Gj2(P,Q) given by formulae (15)–(17). All
these integrals can be expressed by the infinite sums of Weber-Lipschitz
integrals:

∞∫
0

e−t(2nD+ξ)J0(tr) d t =
[
r2 + (2nD + ξ)2

]−1/2
, (32)
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provided the terms 2nD + ξ are positive. In this manner we have obtained
following formulae:

G12(P,Q) = (1− k12)
−1

{
(R−1 +R−1

+ ) + k23
[
r2 + (2h2 + z − z′)2

]−1/2
+

+ k23
[
r2 + (2h2 − z − z′)2

]−1/2}
+ (1− k12)

∞∑
n=1

qn ·

·
{[
r2 + (2nD + z + z′)2

]−1/2
+

[
r2 + (2nDh2 − z + z′)2

]−1/2
+

+k23
[
r2 + (2nD + 2h2 + z − z′)2

]−1/2
+

+ k23
[
r2 + (2nD + 2h2 − z − z′)2

]−1/2}
. (33)

Note that in this function we have

R−1
+ =

[
r2 + (z + z′)2

]−1/2
, r2 = (x− x′)2 + (y − y′)2,

z′ ∈ (h1, h2), z ∈ 〈0, h1〉 and the term R−1 is not singular because z′ > h1.
For the Green’s function G22(P,Q) we have formula with singular term R−1,
namely:

G22(P,Q) =R
−1 +

∞∑
n=0

qn
[
r2 + (2nD + z′ + z)2

]−1/2
+

+ k23
∞∑

n=0

qn
[
r2 + (2nD + 2h2 − z′ + z)2

]−1/2 −
− k12

∞∑
n=0

qn
[
r2 + (2nD − 2h1 + z′ + z)2

]−1/2 −
− k12k23

∞∑
n=0

qn
[
r2 + (2nD + 2h2 − 2h1 − z′ + z)2

]−1/2
+

+ k23

{ ∞∑
n=0

qn

[[
r2 + (2nD + 2h2 + z

′ − z)2
]−1/2

+

+
[
r2 + (2nD + 2h2 − z′ − z)2

]−1/2]} −

− k12k23

{ ∞∑
n=0

qn

[[
r2 + (2nD + 2h2 − 2h1 − z′ − z)2

]−1/2
+
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+
[
r2 + (2nD + 2h2 − 2h1 + z′ − z)2

]−1/2]}
. (34)

In this function we have z′ ∈ (h1, h2) and also z ∈ 〈h1, h2〉. For the points
in L3 (z ≥ h2) we have:

G32(P,Q) = (1 + k23)

{
R−1 +

∞∑
n=0

qn
[
r2 + (2nD + z′ + z)2

]−1/2
+

+ k23
∞∑

n=0

qn
[
r2 + (2nD + 2h2 − z′ + z)2

]−1/2 −
− k12

∞∑
n=0

qn
[
r2 + (2nD + 2h2 − z′ + z)2

]−1/2 −
− k12k23

∞∑
n=0

qn
[
r2 + (2nD + 2h2 − h1 − z′ + z)2

]−1/2}
. (35)

Note that the term R−1 = [r2+ (z− z′)2]−1/2 is not singular since z′ < z in
L3. We can see that expressions for Green’s functions contain more terms
in comparison with 2-layered earth (Hvoždara, 1995, 2007), but can be also
easily adopted for computing.
All three Green’s functions occur in integrals of formulae (1)–(2) in the

form of their derivatives with respect to the outer normal nQ ≡ (n′x, n′y, n′z)
at the point Q ∈ S, which means:

∂Gj2(P,Q)
∂nQ

≡ nQ · gradQGj2(P,Q) =

=
(
n′x

∂

∂x′
+ n′y

∂

∂y′
+ n′z

∂

∂z′

)
Gj2(x, y, z;x

′, y′, z′) , j = 1, 2, 3 (36)

since in Green’s functions we have r2 = (x − x′)2 + (y − y′)2, we calculate
∂G(P,Q)/∂x′ = −(x − x′)[r−1∂G/∂r] and similarly ∂G(P,Q)/∂y ′. The
form of terms in G(P,Q) guaranties that expression r−1∂G/∂r is finite even
if r → 0. In formulae (1)–(2) these normal derivatives are integrated, being
multiplied by the function f(Q) which represents the density of the double
layer distributed over the surface S of the perturbing body ΩT . This double
layer density has to be determined by solving the boundary integral equation
which holds true for points P ∈ S:
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f(P ) = 2β [V2(P )− v0] +
β

2π

∫
S

\ f(Q) ∂

∂nQ
G22(P,Q) dSQ , P ∈ S , (37)

where β = (1− ρ2/ρT )/(1 + ρ2/ρT ) and the constant v0 is

v0 =
1
|S|

∫
S

V2(P ) dSP , (38)

(it is the mean value of the exciting potential on the surface S). The BIE
(37) is the Fredholm integral equation of the second kind with a weakly
singular kernel K(P,Q) = ∂G22(P,Q)/∂nQ. Its singularity is due to the

term R−1 =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2 in G2(P,Q). This term
becomes singular when P → Q. Fortunately, the surface integral in (37)
must be performed in a sense of the principal value (which is denoted by the
backslash) and means that a small surface element ΔSp around the singular
point P ∈ S is excluded from integration. The result reads:
∫
S

\ f(Q) ∂

∂nQ
G22(P,Q) dSQ =

∫
S−ΔSp

f(Q)
∂

∂nQ
(R−1) dSQ +

+
∫
S

f(Q)
∂

∂nQ
H22(P,Q) dSQ , (39)

where H22(P,Q) = G22(P,Q)−R−1 is the non-singular part of the Green’s
function. The backslash on the integral sign in (37) and (39) denotes in-
tegration in the principal value sense. The primary potentials V1(P ) and
V2(P ) for a single point electrode supplied with the current I and situated
at the surface z = 0 can be expressed by the known treatment of D.C.
potentials due to a point electrode situated near the surface z = 0 of the
3-layer earth at the point A ≡ (xA, yA, zA), zA � h. The expressions for
V1(P ) and V2(P ) are presented in the Appendix II.
The solution of BIE (37) can be performed analytically only for some

simple cases, e.g. spherical body embedded in the unbounded conducting
space (Hvoždara, 1994). In that paper we have proved the coincidence of
the BIE solution with the solution by means of spherical harmonic func-
tions. The numerical solution is possible by means of a collocation method
briefly described in Hvoždara (1995). Let us note that according toHvoždara
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(1983) the double-layer density f(P ) is in linear relation to the values of
the potential UT (P ) on the surface S:

f(P ) = (1− ρ2/ρT )[UT (P )− v0] , P ∈ S . (40)

Having solved the BIE (37) we can calculate the potential on the surface of
the earth according to the formula (1). Then the electric field is

E1(P ) = −gradU1(P ) , (41)

its components on the surface being:

(E1x)z=0 = −∂V1
∂x

− 1
4π

∫
S

f(Q)
∂

∂x

[
∂G12(P,Q)

∂nQ

]
z=0

dSQ , (42)

(E1y)z=0 = −∂V1
∂y

− 1
4π

∫
S

f(Q)
∂

∂y

[
∂G12(P,Q)

∂nQ

]
z=0

dSQ , (43)

while the third component satisfies the well-known boundary condition
(E1z)z=0 = 0.
Let us stress that the above formulae are valid when the body ΩT does

not touch with some of its upper planar part Sh1 to the boundary z = h1
or with lower boundary Sh2 (z = z2) to the bottom of the layer L2. Such
contact cases must be considered separately as shown in Hvoždara (1995).
For the first contact case the body ΩT touches with its upper planar

face Sh1 , (z = z1 = h1) the top of the layer L2. There must be considered
singularity of normal derivatives of R−1 and also k12R−1

h1
of G22(P,Q) in

the potential UT (P ) given by the (2). The singular term

R−1
h1
=

[
r2 + (2h1 − z − z′)2

]−1/2
, (44)

occurs for n = 0 in the third sum in formula (34). Since we approach to the
surface Sh1 from the interior (– side) and ∂G22/∂nQ ≡ −∂G22/∂z′ because
on Sh1 there is nq ≡ (0, 0,−1). Then we will find that the limit transition
P → Sh1− gives

lim
P→Sh1−

1
4π

∫
S

f(Q)
∂

∂nQ
(R−1 − k12R

−1
h1
) dSQ =

= −1
2
(1 + k12)f(P ) +

1
4π

∫
S

\ f(Q) ∂

∂nQ
(R−1 − k12R

−1
h1
) dSQ, P ∈ Sh1. (45)
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For the second contact case the body ΩT touches with its lower planar face
Sh2, (z = z2 = h2) the bottom of the layer L2. There must be considered
singularity of normal derivatives of R−1 and also k23R−1

h2
of G22(P,Q) in

the potential UT (P ) given by the (2). The singular term

R−1
h2
=

[
r2 + (2h2 − z − z′)2

]−1/2
, (46)

occurs for n = 0 in the fifth sum in formula (34). Since we approach to the
surface Sh2 from the interior (– side) and ∂G22/∂nQ ≡ ∂G22/∂z

′ because
on Sh2 there is nq ≡ (0, 0, 1). Then we will find that the limit transition
P → Sh2− gives

lim
P→Sh2−

1
4π

∫
S

f(Q)
∂

∂nQ
(R−1 + k23R−1

h2
) dSQ =

= −1
2
(1− k23)f(P ) +

1
4π

∫
S

\ f(Q) ∂

∂nQ
(R−1 + k23R−1

h2
) dSQ, P ∈ Sh2. (47)

In this manner we obtain a modified BIE instead of (37):

f(P ) = 2γ [V2(P )− v0] +
γ

2π

∫
S

\\ f(Q) ∂

∂nQ
G22(P,Q) dSQ, where (48)

γ =

⎧⎪⎨
⎪⎩
β if P /∈ Sh1, P /∈ Sh2 ,

β/(1 + βk12) if P ∈ Sh1,

β/(1− βk23) if P ∈ Sh2.

The doubleslash in the integral sign of BIE (48) denotes that for P ∈ Sh1 are
omitted contributions of two singular terms R−1−k12R−1

h1
and similarly for

P ∈ Sh2 contributions from R−1 + k23R−1
h2
, while for the rest of the surface

S (P /∈ Sh1, P /∈ Sh2) there are omitted only contributions due to R
−1.

3. Numerical calculations and discussion

The crucial part of numerical calculations of BIE method consists of the
calculation of integrals with the kernel of type of the double-layer potential
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n′ · (r− r′) · |r− r′|−3 over a small subarea ΔSj which is the part of surface
S of the perturbing body ΩT . For the prismoid with planar faces the basic
task is involved in the reliable calculation of such integrals for the triangle
planar subarea ΔSj with corners ABC shown in Fig. 2:

ΔAj =
∫
ΔSj

n′ · (r − r′)
|r − r′|3 dSQ = −ΔΩj, (49)

where Q(r′) is the variable point on the subarea ΔSj. By using of classical
knowledge on the Gaussian integral for the double-layer potential, we see
that ΔΩj is the solid angle of view from the point P (r) onto planar triangle
subarea ΔSj with outer normal n′ ≡ (n′x, n′y, n′z) ≡ nQ. The formula given
by Ivan (1994) is reliable for the calculation of ΔAj and we used it in our
previous paper Hvoždara (2007). In the further study we found a simpler
guide for calculation ΔAj published in the paper Guptasarma and Singh
(1999). We adopted their method with some modifications in the paper
Hvoždara and Majcin (2011) and also in the present study.
Geometrical situation of the point of view P and triangular subarea with

vertices ABC is depicted in Fig. 2. The points PABC form a tetrahedron

C

A

P

B

E2
E3

E1

p1
n1

p2
p3

n1

n2

n′

ψ3
ψ2

ψ1

Fig. 2. The parameters for calculation of solid angle of view onto triangular subarea.
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with vertice P and triangular base ABC. The position of vertices ABC
with respect to the point P is given by vectors p1,p2,p3 while circulation
around the triangle is counterclockwise. The normal n′ onto the triangular
subarea is of unit length and has constant orientation for the whole triangle
ABC. Using the basic theory of spherical trigonometry we can calculate the
solid angle of view from the point P onto triangular area ABC by means of
Girard’s formula:

ΔΩj = (ψ1 + ψ2 + ψ3 − π) · inp. (50)

Here ψ1 is the inner angle between planes PAB and PBC, ψ2 is similar angle
between PBC and PCA and finally the third angle ψ3 a is defined for planes
PCA and PAB. These angles are depicted on the dashed triangle E1, E2, E3
in Fig. 2. The points E1, E2, E3 are intersections of related vectors pi with
the surface of sphere of unit radius centered in the point P . The number
inp = ±1 is signum of the scalar product p1 · n′. If this scalar product
is zero, then inp = 0 and ΔΩj = 0 because the point P lies in the plane
which contains also the subarea ABC, so the solid angle of view must be
zero. Details of calculation of angles ψ1, ψ2, ψ3 by means of scalar and vector
products are explained in Hvoždara and Majcin (2011) where are mentioned
also necessary subroutines SLAGUP3 for triangular subarea and SLAGUP4
for quadrangle subarea.
The numerical calculations were performed in a similar way as in Hvož-

dara (2007); Hvoždara and Majcin (2011) noting that the Green’s function
G22(P,Q) is now given by the more complicated infinite series (34). Ne-
vertheless, the principal terms are again R−1 and R−1

h1
= [r2 + (2h1 − z −

z′)2]−1/2, R−1
h2
= [r2 + (2h2 − z − z′)2]−1/2. The special cases when the

perturbing body ΩT touches the bottom and/or upper plane were discussed
in Section 2. The BIE (48) can be solved by the collocation method. It
means that the surface S of the perturbing body is discretized into M
subareas ΔSj whose centres are denoted as Pm or Qj. It is also assumed
that each subarea is small enough to put f(Q) = f(Qj) = const on it. So
we introduce the constant approximation of an unknown function f(Q) on
ΔSj. Putting the numberM sufficiently large, we can express the BIE (48)
in its discretized form:

f(Pm) = 2γ[V2(Pm)− v0] +
M∑

j=1

f(Qj)W (Pm, Qj) , (51)
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where γ = β if the body does not touch at the point Pm the planar boundary
of the surrounding layer and attains modified values as given in (48). The
weighting coefficients W (Pm, Qj) are given by the formula

W (Pm, Qj) =
γ

2π

∫
ΔSj

\ ∂

∂nQ
G22(Pm, Q) dSQ . (52)

The integration in the principal value sense was explained in the previous
section, and it follows that W (Pm, Qj) cannot be infinite even if Pm ≡ Qm.
In fact, the formula (51) is the system of M linear equations for the

unknown values f(Qj). This system can be expressed as follows:

M∑
j=1

[δmj −W (Pm, Qj)] f(Qj) = 2γ [V2(Pm)− v0] , m = 1, 2, ...,M , (53)

where δmj is the Kronecker symbol. This system of equations can be solved
using known methods of linear algebra. Once the system (53) is solved, we
can calculate the potential and the intensity of the electric field and other
geoelectric characteristics, e.g. apparent resistivity.
We checked this algorithm for a 3D perturbing body of the prismoidal

block with upper rectangular face at the depth z1 ≥ h1 and x ∈ 〈x1�, x1r〉,
y ∈ 〈y1�, y1r〉. The bottom face is also rectangular at the depth z2 ≤ h2,
z2 > z1 and x ∈ 〈x2�, x2r〉, y ∈ 〈y2�, y2r〉. The block is situated in the second
layer of resistivity ρ2, its thickness being h2 − h1. The planes of the upper
and lower rectangle must be parallel to boundaries z = h1, h2 and their
x, y sides must be parallel each to other. Then the faces of the prismoid
connecting the upper and lower rectangle are four planar trapesoids and on
each side the vector of normal n′ is in fixed direction.
The subdivision of each face was performed by introducing numbers of

division (> 5) for edges of each pair of opposite sides of the trapezoid,
which is a general form of some face of the prismoid as it was performed
in Hvoždara and Majcin (2011). Let us note that for solving the system
linear equations (53) for each of the central points Pm we must calculate
weighting coefficients W (Pm, Qj) for all sets of point Qj , while in Green’s
function we must treat by using SLAGUP4 at least contributions by terms
with R−1, and also from R−1

h1
, R−1

h2
. The contributions from other terms

in G22(P,Q) given in the series (34) can be calculated by means of central
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approximation. If we choose the subdivision of each trapezoidal face into
64 quadrangle subareas, we obtain 6×64 = 384 =M surface elements ΔSj,
which contribute into summation approximation of the boundary integrals.
After solution of linear equation system (53) we obtain f(Qj) for individual
subareas and then we calculate the potential U1(P ) and also the electrical
intensity on the surface z = 0 for a network of (x, y) points.
We assume that the unperturbed potentials V1(P ) in the layer L1 and

V2(P ) in L2 are due to the configuration of the +I source electrode at the
point (xA, 0, zA) and −I electrode at the point (xB , 0, zB), xB > xA, where
zA, zB � h1. Hence, V1(P ) and V2(P ) are expressed by formulae given in
the Appendix II. Since we put the source electrodes along the x-axis we use
for the A electrode with applied current +I the source factor q = Iρ1/(4π),
with the same depths zA = zB = z0 = h/20 and for r2 we use

r2A = (x− xA)
2 + y2, (54)

the source point is QA ≡ (xA, 0, zA). Then unperturbed potentials due to
+I electrode in L1 or L2 is denoted by V1A(P,QA), V2A(P,QA), respectively.
Similarly, for the unperturbed potentials due to −I electrode situated at the
point QB ≡ (xB , 0, zB) we use for r2 the expression

r2B = (x− xB)
2 + y2, (55)

and the source factor is −Iρ1/(4π). The unperturbed potentials due to −I
electrode is denoted by V1B(P,QB), V2B(P,QB). Then in the solution of dis-
cretized BIE (53) we use for V2(Pm) the sum V2A(Pm, QA) + V2B(Pm, QB).
After solving the system of linear equations (53) we calculate potential
U1(P ) by means of summation approximation of the boundary integral in
formula (1) while for V1(P ) we use V1A(P,QA) + V1B(P,QB). It is clear
that the horizontal distance of AB electrodes is L = |xB −xA| and they are
slightly buried to the depth z0 = h1/20 in order to avoid large values if we
calculate potential V1(P ) at the surface z = 0.
The numerical calculations showed that the isoline maps of the potential

and electric field components are very similar to those obtained in our pre-
vious paper Hvoždara (2007) since the dominant field is the unperturbed
one in the case 2-layered and for present 3-layered earth. For this reason
we present more limited number of figures, whose give characteristics of the
perturbed part.
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xA, yA, zA = -4.00, .00, .05,m
xB, yB, zB = 4.00, .00, .05,m
h1, h2 = 1.00, 4.00,m CU = 7.96V.m
ρ1 = 100., ρ2 = 500., ρ3 = 20., ρT = 20. Ωm
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Fig. 3a. The isoline map of the anomalous potential U∗
1 (x, y, 0) for the prismatic body

with parameters given in the table. The profile curves present apparent resistivity ρa/ρ1
(solid curve) for the dipole profiling between source electrodes (xA < x < xB) and in
absence of the prism (dashed curve).
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Fig. 3b. The same as in Fig. 3a, but for the high resistive substratum and prism ρT /ρ2 = 8,
while ρ2/ρ1 = 5.
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Fig. 3c. The same as in Fig. 3a, but for ρ2/ρ1 = 0.5 and ρT /ρ2 = 6.
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Fig. 3d. The same as in Fig. 3a, but for ρ2/ρ1 = 0.5 and ρT /ρ2 = 0.4.
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Fig. 4a. The apparent resistivity curves for the prismatic body with parameters given
in the table. The centre of Schlumberger array AMNB is at the point x0s = −2m, i.e.
outside the left slant prism. The calculated curve ρa/ρ1 (solid curve) is clearly different
from the dashed curve in the absence of the prism.
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Fig. 4b. The same as in Fig. 4a, but the centre of array is situated at x0s = 0, i.e. above
the centre of the upper rectangle of the prism at the depth z = h1 = 1m. The difference
between the solid and dashed curves is more pronounced.
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Fig. 4c. The same as in Fig. 4a, but the centre of array is situated at x0s = 2m, i.e.
shifted to the right of the prism.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.7

0.8

0.9

1.0

(AB/2)/h1

Schlumb. arrayAMNB

x0s = 4.00

Fig. 4d. The same as in Fig. 4a, but the centre of array is situated at x0s = 4m, i.e.
shifted far to the right of the prism.
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In our model calculations we put the thickness of the upper layer h1 =
1m, the layer L2 has bottom plane at the depth h2 = 4m, so its thick-
ness is 3 times that of h1. We suppose the resistivity of the layer L1
to be ρ1 = 100Ωm and resistivity of the L2 layer either ρ2 = 50Ωm or
ρ2 = 500Ωm, the resistivity of substratum L3 we put ρ3 = 20Ωm, or
4000Ωm. The resistivity of the prism was assumed to be ρT = ρ3, i.e. when
z1 ≥ h1 and z2 = h2 the prism is a 3D dyke penetrating from the substra-
tum L3 through layer L2 to the bottom of L1.
The dimensions of upper and lower rectangle of the prism were 3m in

x-direction and 2m in y-direction but the bottom rectangle in the depth
z2 = h2 was shifted by 0.5m to the right in x-direction. In order to have a
pronounced effect due to the prism it is clear that we must put quite large
distance L between source electrodes, so we put xA = −4m, xB = 4m, then
we have penetration depth AB/2 = 4m till the depth h2 and results are
affected by the resistivity ρ3 of the substratum.
In numerous calculations we realized that most pronounced effect of the

perturbing skew prism displays anomalous potential U ∗
1 (x, y, 0) and also ap-

parent resistivity ρa measured on the between fixed source electrodes AB
using short voltage dipoleMN moved between AB electrode. These results
are presented in Figs. 3a–d. The maps of anomalous potential show that it
is similar to the potential of buried electric dipole, its polarity is positive
(in x-direction) if ρT < ρ2, while for ρT > ρ2 it is opposite. The presence of
the prism is clearly pronounced in the profile curves ρa/ρ1. The compara-
tive curves in the absence of the prism (normal 3-layered earth) are plotted
dashed. One can see that apparent resistivity curves for prismatic body
(solid curves) are less than dashed, namely in the central region if ρT < ρ2
(Figs. 3a, 3d) while for ρT > ρ2 the solid curves are greater than normal re-
sistivities (Figs. 3b, 3c). Note that in all Figs. 3a–d in the upper isoline map
there are also plotted projections of the upper and lower rectangle of the
prism (gray rectangle). One can also see that the geometrical parameters
of the model, including fixed positions of AB electrodes are in Figs. 3a–d
the same, only resistivities ρ2, ρ3, ρT are different. Also the current factor
Iρ1/(4π) has the same value CU = 7.96Vm. For the geoelectric practice
it is useful to calculate some models of Schlumberger sounding (AMNB ar-
ray) for our laterally inhomogeneous medium. It is clear that the shape of
apparent resistivity curves will change if the centre of the voltage dipole
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MN is situated in various positions with respect to the prism. Moreover,
the potential is strongly dependent on the mutual position of current elec-
trodes AB with respect to the prismoid. For this purpose we calculated
the potential U1(P ) for the case when current electrodes AB are moving
along the x-axis, y = 0. The centre of voltage electrodes MN is fixed at the
ordinate x0s, while the length of voltage dipole is MN = 0.1m. We present
in Figs. 4a–d calculated sounding curves for x0s = −2h1, 0h1, 2h1, 4h1. The
geometrical and resistivity parameters for each sounding curve are given in
tables in bottom of figures. It is obvious that the form of the sounding
curves strongly depends on both positions of the voltage dipole MN and
current electrodes AB. In this manner we consider our modelling calcula-
tions as very useful for the better understanding of anomalous geoelectrical
fields in the laterally non-uniform media.
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References

Bhattacharya P. K., Patra H. P., 1968: Direct current geoelectric sounding. Elsevier,
Amsterdam.

Eloranta E. H., 1986: The solution of a stationary electric current problem with the aid
of Fredholm’s integral equation of the second kind formulated for the potential.
Geophys. Prosp., 34, 856–871.

Guptasarma D., Singh B., 1999: New scheme for computing the magnetic field resulting
from a uniformly magnetized arbitrary polyhedron. Geophysics, 64, 1, 70–74.
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Appendix I

All formulae for coefficients C1, C2, E2, C3 calculated in Section 2 have the
same denominator F1(t) given by the formula (31). There is a possibility
to expand the function [F1(t)]

−1 into infinite series if the values h1, h2 are
integer multiplies of some depth scale D:

h1 = i1D, h2 = i2D, i1, i2 integers (I.1)

with i2 > i1 and i1 ≥ 1. Now we introduce notations:
g = e−2Dt, (I.2)

f1 = k12, f2 = k23, f3 = −k12k23, (I.3)

then we can express [F1(t)]
−1 as follows:[

1− k12 e
−2th1 − k23 e

−2th2 + k12k23e−2t(h2−h1)
]−1
=

[
1− f1g

i1 − f2g
i2 − f3g

i2−i1
]−1
=

∞∑
n=0

qng
n, (I.4)

where g < 1 and also f1, f2, f3 are with absolute value less than 1 and qn

are to be determined. The relation (I.4) will be satisfied if

337
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1 =
[
1− f1g

i1 − f2g
i2 − f3g

i2−i1
] ∞∑

n=0

qng
n. (I.5)

Let us now multiply individual terms in square brackets with the infinite
sum, so obtaining:

1 =
∞∑

n=0

qng
n − f1

∞∑
n=0

qng
n+i1 − f2

∞∑
n=0

qng
n+i2 − f3

∞∑
n=0

qng
n+i2−i1. (I.6)

If we perform a suitable shift of summation indices in second, third and
fourth series and compare the resulting series with the unit in l.h.s. in (I.6),
we obtain recurence relations for coefficients qn:

q0 = 1,

qn = f1qn−i1 + f3qn−i2+i1, for n = 1, 2, . . . , n1,

where n1 = max(i1, i2 − i1)

qn = f1qn−i1 + f2qn−i2 + f3qn−i2+i1, for n > n1, (I.7)

while we must take qk ≡ 0 if k < 0. Then we can use these coefficients as
expansion [F1(t)]

−1 into infinite series:

[F1(t)]
−1 =

∞∑
n=0

qn e
−2nDt, (I.8)

in all integrals with C1, C2, E2, C3. Numerical calculations show that |qn| <
1 for n ≥ 1 so the series in (I.8) rapidly converges, while |k12| < 1, |k23| < 1.

Appendix II

In this appendix we present calculation formulae for the potentials due to
D.C. electrode buried in the top layer L1 of the 3-layered earth. In order
to avoid confusion with similar calculations of the Green’s functions we
decided to present calculations of normal potentials V1(P ), V2(P ), V3(P )
separately. The source electrode we suppose is in the first layer in the point
A ≡ (x0, y0, z0) at the depth z0 � h1, with resistivity ρ1 i.e. in the layer
L1. The primary potential is of the well known type

V0(P ) =
Iρ1
4π

(
1
R0
+
1
R0+

)
, (II.1)
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where R0 =
[
r2 + (z − z0)2

]1/2, R0+ = [
r2 + (z + z0)2

]1/2, and r2 = (x −
x0)2 + (y − y0)2. This potential satisfies the known boundary condition on
the plane z = 0:

[∂V0/∂z]z=0 = 0. (II.2)

It is clear that the potentials due to primary potential (II.1) are axially
symmetric with respect to the polar axis z in all three layers. The method
of separation of variables in the cylindrical system (r, z) gives axially sym-
metric expressions for potentials in the individual layers L1, L2, L3:

V1(r, z) = q

⎧⎨
⎩R−1

0 +R
−1
0+ +

∞∫
0

A1(e
−tz + etz)J0(tr) d t

⎫⎬
⎭ , (II.3)

V2(r, z) = q

∞∫
0

[
A2e

−tz +B2e
tz
]
J0(tr) d t, (II.4)

V3(r, z) = q

∞∫
0

A3e
−tzJ0(tr) d t, (II.5)

where q = Iρ1/(4π) is the source multiplicator and J0(tr) is Bessel function
of the first kind, zero index. It is clear that potential V1(r, z) satisfies the
boundary condition

[∂V1/∂z]z=0 = 0, (II.6)

since this boundary separates non-conducting air and the layer L1 of finite
electrical conductivity σ1 = ρ−11 . On the boundaries z = h1, h2 there must
be satisfied continuity of potentials and vertical density of electric current
jz = −ρ−1∂V/∂z. We must express the potential V0(r, z) also as integral
with kernel e±tzJ0(tr) by using well known Weber-Lipschitz formula:

V0(P ) = q

∞∫
0

[
e−t(z−z0) + e−t(z+z0)

]
J0(tr) d t, z > z0, (II.7)
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valid for z ∈ (z0, h1). Then the boundary conditions on the planes z = h1, h2
give the system of linear equations for A1, A2, B2, A3:

e−t(h1−z0) + e−t(h1+z0) + 2A1 ch(th1) =A2e
−th1 +B2e

th1 ,

−e−t(h1−z0) − e−t(h1+z0) + 2A1 sh(th1) =−(ρ1/ρ2)
[
A2e

−th1 −B2e
th1

]
,

A2e
−th2 +B2e

th2 =A3e
−th2 ,

−A2e−th2 +B2e
th2 =−(ρ2/ρ3)A3e−th2 . (II.8)

This system can be solved by the elimination method. We multiply third
equation with ρ2/ρ3 and sum with fourth one, then we eliminate A3 and
obtain:

−(1− ρ2/ρ3)A2e
−th2 + (1 + ρ2/ρ3)B2e

th2 = 0,

so we have a relation between B2 and A2:

B2 = k23e
−2th2A2, (II.9)

where k23 = (1−ρ2/ρ3)/(1+ρ2/ρ3) is resistivity contrast factor of layers L2
and L3. Introducing relation (II.9) into the first twoequations of the system
(II.8) we obtain 2 equations for A1, A2:

2e−th1 ch(tz0) + 2A1 ch(th1) = A2(e
−th1 + k23 e

−2th2eth1), (II.10)

−2e−th1 ch(tz0) + 2A1 sh(th1) = −ρ1
ρ2
A2(e

−th1 − k23 e
−2th2eth1). (II.11)

Now we introduce the coefficient

W12 =
(ρ1/ρ2)

[
e−th1 − k23 e

−t(2h2−h1)
]

e−th1 + k23 e−t(2h2−h1)
, (II.12)

and in the system (II.8) we multiply the first equation with them and sum
with the second one giving equation for A1:

A1 =
(1−W12)e−th1 ch(tz0)
W12 ch(th1) + sh(th1)

. (II.13)

After some algebra, using W12 from (II.12) we obtain final expression for
the coefficient A1:
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A1 =

[
k12 e

−2th1 + k23 e−2th2
]
2 ch(tz0)

1− k12 e−2th1 − k23 e−2th2 + k12k23 e−2t(h2−h1)
, (II.14)

where k12 = (1 − ρ1/ρ2)/(1 + ρ1/ρ2). By using equation (II.10) we obtain
expression for A2 as follows:

A2 = [(1 + k12)2 ch(tz0)] /F1(t), (II.15)

where F1(t) denotes the denominator of A1 in (II.14) i.e.:

F1(t) = 1− k12 e
−2th1 − k23 e

−2th2 + k12k23e−2t(h2−h1). (II.16)

The coefficient B2 can be calculated from (II.9):

B2 =
[
k23(1 + k12) e

−2th22 ch(tz0)
]
/F1(t). (II.17)

Finally we determine the coefficient A3 by using third equation of the system
(II.8):

A3 = A2 +B2 e
2th2 = [(1 + k12)(1 + k23)2 ch(tz0)] /F1(t). (II.18)

The expressions for A1, A2, B2, A3 enable calculations of potentials in all
three layers.
When we know the analytical formulae for coefficients A1, A2, B2, A3 in

potentials (II.3–II.5) we can calculate numerically these integrals by using
some of algorithms for numerical Hankel transform. More effective is appli-
cation of well known treatment in D.C. geoelectricity for multilayered media.
Traditionally the source electrode on surface of the earth (i.e. z0 = 0) and
also calculation points on the surface z = 0 are considered, which simplifies
calculations. Such a treatment is given e.g. in monograph Bhattacharya and
Patra (1968). We can use similar treatment for our more general problem
with z0 ∈ 〈0, h1〉 and z ≥ 0 distinguishing z-position in three layers.
In the Appendix I we have showed that we can expand the function

[F1(t)]−1 into infinite series:

[F1(t)]
−1 =

∞∑
n=0

qne
−2nDt,

where D is a common scale for planar boundary depths h1, h2.
We can easily calculate integral parts in V1(r, z) and also V2(r, z), V3(r, z).

For the potential V1(r, z) we need a calculate two integrals
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IA−
1 =

∞∫
0

A1 e
−tzJ0(tr) d t, (II.19)

IA+1 =

∞∫
0

A1 e
tzJ0(tr) d t. (II.20)

We use formula (II.14) for A1 and expansion (I.8), then we obtain expression
for IA−

1 :

IA−
1 = k12

∞∑
n=0

qn

{[
r2 + (2h1 + 2nD + z0 + z)

2
]−1/2

+

+
[
r2 + (2h1 + 2nD − z0 + z)

2
]−1/2}

+

+ k23
∞∑

n=0

qn

{[
r2 + (2h2 + 2nD + z0 + z)

2
]−1/2

+

+
[
r2 + (2h2 + 2nD − z0 + z)

2
]−1/2}

. (II.21)

It is clear that we have used the known Weber–Lipschitz integral:

∞∫
0

e−2tξJ0(tr) d t =
[
r2 + ξ2

]−1/2
, ξ > 0. (II.22)

We can see that a necessary condition for convergence of integrals is satisfied
for all terms in (II.21) containing h1, h2, z, z0 even for n = 0. Similarly we
have:

IA+1 = k12
∞∑

n=0

qn

{[
r2 + (2h1 + 2nD + z0 − z)2

]−1/2
+

+
[
r2 + (2h1 + 2nD − z0 − z)2

]−1/2}
+

+ k23
∞∑

n=0

qn

{[
r2 + (2h2 + 2nD + z0 − z)2

]−1/2
+

+
[
r2 + (2h2 + 2nD − z0 − z)2

]−1/2}
. (II.23)
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For the potential V2(r, z) we use formulae (II.15), (II.17) for A2, B2 and we
obtain:
∞∫
0

A2e
−tzJ0(tr) d t= (1 + k12)

∞∑
n=0

qn

{[
r2 + (2nD + z0 + z)

2
]−1/2

+

+
[
r2 + (2nD − z0 + z)

2
]−1/2}

, (II.24)

∞∫
0

B2e
tzJ0(tr) d t= k23(1 + k12)

∞∑
n=0

qn

{[
r2 + (2h2 + 2nD + z0 − z)2

]−1/2
+

+
[
r2 + (2h2 + 2nD − z0 − z)2

]−1/2}
. (II.25)

These series are convergent for z ∈ 〈h1, h2〉, z0 ∈ 〈0, h1). For the potential
V3 we use formula (II.18) for A3 yielding

∞∫
0

A3e
−tzJ0(tr) d t = (1 + k12)(1 + k23) ·

·
∞∑

n=0

qn

{[
r2 + (2nD + z0 + z)

2
]−1/2

+
[
r2 + (2nD − z0 + z)

2
]−1/2}

. (II.26)

Using the series (II.21)–(II.26) we can calculate potentials in all points of
the 3-layered medium.We see that the terms in infinite series are of multiple
reflection type due to three planar boundaries.
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