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Abstract: This article presents an application of Artificial Neural Networks (ANNs) and

multiple regression models for estimating mean annual maximum discharge (index flood)

at ungauged sites. Both approaches were tested for 145 small basins in Slovakia in areas

ranging from 20 to 300 km2. Using the objective clustering method, the catchments were

divided into ten homogeneous pooling groups; for each pooling group, mutually indepen-

dent predictors (catchment characteristics) were selected for both models. The neural

network was applied as a simple multilayer perceptron with one hidden layer and with

a back propagation learning algorithm. Hyperbolic tangents were used as an activation

function in the hidden layer. Estimating index floods by the multiple regression models

were based on deriving relationships between the index floods and catchment predictors.

The efficiencies of both approaches were tested by the Nash-Sutcliffe and a correlation

coefficients. The results showed the comparative applicability of both models with slightly

better results for the index floods achieved using the ANNs methodology.
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1. Introduction

The estimation of design floods or flood peak statistics for the purposes
of flood control is obviously difficult at ungauged sites without flood peak
data (Pekárová et al., 2012). Such estimates are often provided on the ba-
sis of transferring analogous data from sites that are hydrologically similar
in terms of their catchment areas, rainfall and soil types (Dawson et al.,
2006).

The growing number of gauging stations in small basins with longer
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records made it possible to test how some of the new concepts of regional
homogeneity and regional flood frequency analysis reported in the litera-
ture (e.g. Acreman and Sinclair, 1986; Zrinji and Burn, 1994; Meigh et
al., 1997; Hosking and Wallis, 1997 and FEH, 1999) perform also in the
specific conditions of Slovakia. Summaries of the results of these efforts
were published e.g. in Kohnová and Szolgay (2002), Kohnová et al. (2006),
Soĺın (2008), or Pekár et al. (2012).

The index flood method proposed by Dalrymple (1960) was one of the
first approaches for estimating regional floods and belongs among the sim-
plest procedures which have been used for a long time in hydrological prac-
tice. The key assumption in the index flood method is that the distribution
of floods at different sites in a region is the same except for a scale or index
flood parameter, which reflects the rainfall and runoff characteristics of each
region. This method consists of identifying geographically homogeneous re-
gions and determining a regional standardised flood frequency curve. The
index flood may be the mean or median of maximum floods, although any
other location parameter of the frequency distribution may also be used
(Hosking and Wallis, 1991).

In this case, regional quantile estimates at a given site for a given return
period T,QT can be obtained as

QT = μiqT , (1)

where qT is the quantile estimate from the regional distribution for a given
return period, and μi is the mean flow at the site.

Artificial Neural Networks (ANNs) represent a mathematical model in-
spired by the structure and functions of biological neural networks. They
consist of an interconnected group of artificial neurons and provide informa-
tion using a connectionist approach to the computation. Artificial neural
networks started, like other components of artificial intelligence, with the
advancement of computers. The first mathematical model of artificial neu-
ral networks was introduced by McCulloch and Pitts (1943), and in 1957,
Rosenblatt developed a perceptron, which is a generalization of McCulloch
and Pitts’s neuron model of Volná (2002). A calibration algorithm for train-
ing artificial networks of sufficient sizes and complexities was developed by
Rumelhart and McClelland (1986). Since that time research of ANNs has
expanded, and a number of training algorithms and different network types
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have evolved. Nowadays, ANNs are used as an alternative modeling tool
in many research fields. They can model any relationships between a se-
ries of independent and dependent variables without defining the physical
relationship between them; therefore, they are often applied for modelling
highly nonlinear processes. The physical processes modeled by ANNs are
encoded in the network, and the weights are not revealed to the user (Chat-
field, 1993).

In hydrology, ANNs have been applied within the field of rainfall-runoff
modeling (Rajurkar et al., 2004; Elshorbagy and Simonovic, 2000; Tokar
and Markus, 2000; Fernando and Jayawardena, 1998), stream flow forecast-
ing (Aqil et al., 2007; Moradkhani et al., 2004; Anctil et al., 2004; Zealand
et al., 1999), and in groundwater modeling (Garcia and Shigidi, 2006).
A simple multi-layer architecture of the neural networks was tested for short-
term flow forecasting in Anctil et al. (2004). Ayalew et al. (2007) applied
a simple multi-layer network for a 6-hour forecast of flooding on the Omo
River in southern Ethiopia. In Dawson et al. (2006), an estimation of the
annual flood flows and flood index (median average maximum flow) using
regression models and ANNs was provided for 850 basins across the UK.

Those studies confirm that artificial neural networks can work just as
well as other mathematical models and, in some cases, with even better
results. Compared to physically – based mathematical models, the advan-
tage of artificial neural networks is the fact that they can simulate processes
without the incorporation of physical laws in the mathematical form. On
the other hand, neural networks are often susceptible to overtraining, which
occurs when a training data set reduces error and increases the errors of the
test data set. This happens especially when a large number of layers and
neurons in the hidden layers are used Volná (2002).

The aim of this article is to show the possibility of deriving the values
of mean annual maximum discharges (index floods) using ANNs at un-
gauged catchments. Based on selected catchment predictors, 145 small and
medium-sized basins in Slovakia were grouped in to 10 homogeneous pooling
groups. ANNs were applied in these pooling groups to estimate the values
of the index floods from a range of catchment descriptors. The artificial
neural network was constructed as a multilayer neural network with for-
ward signal propagation. For a comparison, the values of the index floods
were also estimated by multiple regressions between the index floods and
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catchment predictors. The efficiency of both approaches was tested by the
Nash-Sutcliffe and Pearson correlation coefficients.

2. Data

The input data consisted of the flood and catchment characteristics of 145
small and medium-sized basins in Slovakia with catchment areas ranging
from 20 to 300 km2 and an observation period of at least 20 years.

To derive the index flood values which in our case represent the mean
annual maximum discharges at individual gauging stations the annual max-
imum discharges from the whole observation period in all the stations were
collected and statistically analyzed. Subsequently, the following set of ge-
ographical and climatic catchment characteristics was derived in the GIS
environment and tested for the regional analysis:
A – catchment area [km2],
N – gauge datum [m a.s.l.],
O – the mean aspect [-],
SH – the catchment shape coefficient [-],
SI – the soil infiltration index [-],
P100 – maximum annual rainfall total [mm] with a return period of 100

years,
SR – the average slope of the main river [% ],
SC – the average catchment slope [% ],
HG – the hydrogeological index reflecting the permeability of the subsoil [-],
FA – forested area [% ],
T – the average annual air temperature [◦C],
R – the average specific runoff for the period 1931-1980 [l.s−1 km−2],
P – the average annual precipitation from the period 1931-1980 [mm],
qmax – the value of the index flood [m3 s−1 km−2].

The hydrogeological index was calculated using the following equation:

HG = 1n+ 2s+ 3v + 4w, (2)

where:
n, s, v, w are the categories of the permeability (transmission) of the rocks
in the catchment:
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n – is the low permeability,
s – is the medium high permeability,
v – is the high permeability,
w – is the very high permeability.

The HG values vary from 100 for the low to 400 for the high subsoil
permeability.

3. Deriving homogeneous pooling groups

In the hydrologic literature, numerous techniques have been proposed to
identify homogeneous pooling groups for regional flood frequency analy-
sis. Hosking and Wallis (1997) recommends using methods that rely only
on physiographic site characteristics. In this study we employed a cluster
analysis to pool the catchments into homogeneous groups, where the phys-
iographic attributes of the basins and climatic characteristics act as pooling
variables. In accordance with Hartigan (1975), k-means clustering with
Euclidean metrics with the same weight assigned to each characteristic was
adopted in the clustering process.

Subsequently, at-site flood characteristics were used to independently
test the homogeneity of the pooled catchments. The measure proposed by
Hosking and Wallis (1997), which is based on L-moment ratios for testing
the homogeneity of the pooling groups, was applied here. It compares the
site variations in the sample values L-Cv (coefficient of variation) with the
expected variation for a homogeneous pooling group. The method fits a
four-parameter kappa distribution to the regional average L-Cv ratios. The
estimated kappa distribution is used to generate 500 homogeneous pooling
groups with population parameters equal to the regional average sample
L-Cv ratios. The properties of the simulated homogeneous pooling group
are compared to the sample L-Cv ratios as

H =
(V − μV )

σV
, (3)

where μV is the mean of the simulated V values, and σV is the standard
deviation of the simulated V values. For the sample and simulated pooling
groups, respectively, V is calculated as
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V =

⎧⎪⎪⎪⎨
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N∑
i=1

ni(t
(i) − tR)2

N∑
i=1

ni

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1/2

, (4)

where N is the number of sites; ni is the record length at the site I; t(i)

is the sample L-Cv at site I; and tR is the regional average sample L-Cv.
Following Hosking and Wallis, the pooling groups were usually classified as
acceptably homogeneous if (H < 1), possibly heterogeneous (1 < H < 2)
and heterogeneous (2 < H).

Various combinations of the physiographic catchment characteristics were
tested to pool the catchments into homogeneous pooling groups. Only com-
binations with a small degree of correlation (a Pearson’s correlation coeffi-
cient of less than 0.3) between the selected catchment characteristics were
used. Finally, the following combination of site attributes yielded the most
acceptable results:
A – catchment area [km2],
HG – hydrogeological index reflecting the permeability of the subsoil [-],
FA – forested area [% ],
P – the long-term average annual precipitation from the period 1931–1980
[mm].

Table 1. Values of the Hosking-Wallis homogeneity measures (H) for the derived pooling
groups
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This combination of site attributes resulted in 10 pooling groups, all of
which were homogeneous according to Hosking’s H homogeneity measure.
Table 1 presents the values of the homogeneity measures and the number
of catchments belonging to each pooling group. The gauging stations in all
the catchments and selected pooling groups are illustrated in Fig. 1.

Fig. 1. Location of the analysed catchments and their distribution in 10 pooling groups.

4. Estimation of the index flood in the homogeneous pooling
groups

4.1. Selection of mutually independent catchment predictors

After the regionalization of the basins into homogeneous pooling groups, the
input data for the ANNs and the multiple regression models were selected.
The mean annual maximum specific discharge (qmax) was considered as
the index flood. The input data (predictors) for each pooling group were
chosen from the catchment’s characteristics based on their relatively high
correlation with the output (index flood) and the small degree of mutual
correlation between each other.

Table 2 shows the Pearson correlation matrix for the basin characteristics
in the 18 catchments of pooling group 1, in which the selected input data for
both models were the soil infiltration index SI, forested area FA and specific
runoff R. The predictors selected for all the pooling groups are shown in
Table 3.
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Table 2. The Pearson correlation matrix for pooling group 1

Table 3. Predictors selected for the 10 pooling groups

4.2. Estimations of index flood using ANNs

The most commonly used neural network is a type of multilayer perceptron
(MLP) network, which represents a forward type of ANN with a teacher
(known patterns). Signals are forwarded from the input neurons (termi-
nals) to the output; a network of this type has no feedback between the
layers or neurons in the same layer. Inputs are repeatedly submitted to
the neural network; they are then transformed by the network weights
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and the activation function of the neurons in the hidden layers. Any er-
ror in the output of the network is calculated as a difference between the
output in the last layer and the known patterns. Subsequently, on the
basis of that error, the network weights are re-repaired; the most com-
monly used algorithm is the back-propagation algorithm (Rumelhart et
al., 1986). Designing the topology (architecture) of ANNs does not have
any clear rules; it is mainly based on a series of calculations and experi-
ments. The number of hidden layers and the number of neurons in each
layer determine the ability of a network to approximate nonlinear processes
and to select the complexity of the modeled process (Taufer et al., 2006).

Fig. 2. Simplified scheme of the neural net-
work.

The neurosolutions 5.0 simula-
tor was applied to create a neural
network. This simulator enables
the design of any neural network
architecture; in our case it con-
tained one hidden layer with var-
ious amounts of hidden neurons.
The activation function was a hy-
perbolic tangent with a range of
values (−1, 1). The input data
to the network were normed by
linear scaling in a range of values
(−0.9, 0.9). A simplified diagram
of the neural network is shown in
Fig. 2.

Due to the fact that the different regional types contained relatively little
input data for training and testing, the network was highly susceptible to
overtraining. In the process of training the ANNs, the backward propaga-
tion of error method was applied. After a certain number of iterations, a
network error is calculated by the equation:

E(t) =
1

2

∑
i

(
dti − yti

)2
, (5)

where
dti – is the estimated value (sample of ANNs) in iteration t,
yti – is the value calculated by the neural network in iteration t,
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i – the number of catchments in a pooling group,
t – number of iterations.
The weights w1, w2 . . . wn are corrected based on this error.

Each pooling group was trained separately, using training data selected
from all the catchments in this group, except for the data from one catch-
ment, which entered into the model as test data (an unknown value for the
network). Thus all the catchments for each regional category were gradually
tested (the jack-knife method).

The number of neurons in the hidden layer and the number of epochs
used in training the ANN are shown in Table 4.

Table 4. The number of neurons and epochs in the hidden layer for each pooling group

For a comparison of the results achieved by the neural network, a multiple
regression model was derived for each homogeneous pooling group, which
was based on the following equation:

qmax = k ·Aa · Bb · Cc . . . , (6)

where
k, a, b, c – are regional parameters,
A,B,C – are predictors (selected climatic and physiographic catchment
characteristics).
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5. Results and conclusion

The results of the ANN simulations expressed by comparing the simulated
and observed values of the index floods for the different pooling groups are
shown in Fig. 3.

The performance between the observed and simulated values of the index

continued on the next page
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Fig. 3. Comparison of the observed and simulated index floods for the individual pooling
groups.

floods was evaluated by the Nash-Sutcliffe (NS) and Pearson correlation co-
efficients.

The Nash-Sutcliffe coefficient (also called the “coefficient of determina-
tion R2”) is a frequently used measure of the differences between the values
predicted by a model and the values actually observed. The better value is
one closer to unity:

NS = 1−
∑n

i=1(Mi − P )2∑n
i=1(Mi − M̄i)2

, (7)

where:
n – number of patterns,
M – observed value,
P – simulated value,
M̄ – average of the measured values.
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The correlation often measured by the correlation coefficient r indicates
the strength and direction of a linear relationship between two variables
(the model’s output and observed values). The correlation is +1 in the
case of a perfectly increasing linear relationship and −1 in the case of a
decreasing linear relationship, and the values in between indicate the degree
of the linear relationship between the simulated values and observations. A
correlation coefficient of 0 means there is no linear relationship between the
variables:

r =

∑n
i=1(Mi − M̄)(Pi − P̄ )√∑n

i=1(Mi − M̄)2
∑n

i=1(Pi − P̄ )2
, (8)

where
n – number of patterns,
M – observed value,
P – simulated value,
M̄ – average of the observed values,
P̄ – average of the simulated values.

Comparison of the efficiency of both approaches in estimating index
floods is shown in Table 5 and Figs. 4 a, b.

The neural network achieved best results in estimating the index floods
for pooling group 8, where the coefficient of r was 0.966 and the NS was

Table 5. Comparison of the r and NS coefficients for the individual pooling groups
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Fig. 4a. Comparison of the Pearson correlation coefficients r for ANNs and multiple
regression models.

Fig. 4b. Comparison of the NS coefficients for ANNs and multiple regression models.

0.935. The worst results from the ANN models were achieved in pooling
group 9, where the value of the coefficient r was only 0.786 and the value of
NS was 0.561. The multiple regression models had the best estimates for
pooling group 3, where the coefficient r reached a value of 0.968 and an NS
of 0.934. From an overall evaluation of the efficiencies of the models in the
box-plots in Fig. 4, it is evident that the higher median of the NS and r
coefficients, and the fewer differences between their minimal and maximal
values were achieved by the neural networks. This confirmed that the re-
sults achieved by the neural network were slightly better than the results
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achieved by the multiplicative regression models. The main requirement for
successfully estimating index floods using ANNs is to divide the catchments
into homogeneous pooling groups and choose suitable catchment predictors
for the network. Therefore, an appropriate architecture and training net-
work was constructed separately for each pooling group. Because there were
relatively small data sets in the different pooling groups (from 7 to 26 catch-
ments), the jack-knife method was used for estimating the index flood in
the individual catchments. Generally, the results proved that ANNs can
reproduce theory index flood with a comparable (or even better) degree of
accuracy than those obtained by multiplicative regression models and can
be used to estimate the values of index floods for ungauged catchments.
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