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Abstract: We present a simple derivation of the interior and exterior gravitational po-
tentials due to oblate spheroid and also its gravity field components by using the funda-
mental solution of the Laplace equation in oblate spheroidal coordinates. Application of
the method of separation of variables provides an expression for the potential in terms of
oblate spheroidal harmonics of degree n = 0, 2. This solution is more concise and suitable
for the numerical calculations in comparison with infinite series in spherical harmonics.
Also presented are the computations in the form of potential isolines inside and outside
the spheroid, as well as for the gravity field components. These reveal some interesting
properties of the gravity field of this fundamental geophysical body useful for the applied
gravimetry.
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1. Introduction

The problem of the gravity potential due to a uniform oblate ellipsoid has
been treated by many mathematicians in the last two centuries. It is nec-
essary to recall the classical papers by P. S. Laplace, S. D. Poisson, and
G. Green quoted in numerous monographs (e.g. Hobson, 1931; Heiskanen
and Moritz, 1967; Duboshin, 1961; Grushinskyj, 1963; Muratov, 1975; Pick
et al., 1973; Grafarend et al., 2010). As a rule the formulae quoted in
these monographs present only the potential outside the spheroid in order
to approximate our planet Earth with very small oblateness. The numerical
calculations (if some were prepared) concern also the Earth, including its
rotational acceleration potential.

307doi: 10.2478/v10126-011-0013-0
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It is well known that the oblate spheroid is axially symmetric 3D body,
which is bounded by the rotation of the generating ellipse with semiaxes a
and b (a > b). The rotation axis is assumed to coincide with the vertical
minor semi axis b. The oblate spheroid is useful as an approximation to: i)
geological anomalous bodies (e.g. laccolithies) with a, b in scales 50–500m,
ii) planetary bodies with dimensions of thousands km and iii) for protoplan-
etary dust disc with b � a, while a is about 100AU (≈ 150× 108 km). For
the two latter types of bodies the rotation of the spheroid must be consid-
ered.
There exist compact expressions for the exterior potential of the non-

rotating oblate spheroid e.g. Kellog (1929); MacMillan (1958) based on the
expression of the volume integration in the ellipsoidal coordinates, but these
need a solution of the auxiliar quadratic equation for every exterior point
coordinates x, y, z. This makes some complications, especially if there is a
need to calculate derivatives of the potential, which are used in the applied
gravimetry. The Newton’s gravitational potential of the spheroid calculated
for exterior and interior points has been discussed recently by Wang (1988;
1989), where the transformation to the oblate spheroidal harmonics is also
shown. The main motivation of our work was a unified derivation of the
exterior and interior potentials by using the method of separation of vari-
ables in the oblate spheroidal coordinates. This treatment seems to be more
concise and straightforward as compared to traditional approaches.
The absence of this general approach and numerical results was the main

motivation of our analysis. The application of the method of separation of
variables allows for the numerical calculations for a very oblate ellipsoid
with b/a = 0.4 or for a nearly flat disc with b/a = 0.1 to be performed in a
straightforward way.

2. Gravity potential due to oblate ellipsoid

The axially symmetric oblate ellipsoid is the body which is bounded by
surface of the 2nd degree described by the equation:

x2 + y2

a2
+

z2

b2
= 1, (1)
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where a(b) are the major (minor) semiaxes of the ellipsoid, centered in the
point O ≡ (0, 0, 0). The section of the ellipsoid boundary by the plane (x, z)
is depicted in Fig. 1. The density inside the spheroid is assumed uniform, ρ0.
Theory of the Newton’s gravitational potential implies that the potential
UT inside the spheroid volume obeys Poisson’s equation:

∇2UT (x, y, z) = −4πGρ0, (2)

whereG = 6.67428×10−11 m3kg−1s−2 is the gravitational constant. Outside
the body τ the potential U1 is a harmonic function satisfying:

∇2U1(x, y, z) = 0, (3)

i.e. it obeys the Laplace equation. It is clear that both potentials must keep
rotational symmetry with respect to the axis z. Hence, the pattern of the
potentials UT , U1 will be the same as that in the plane (x, z). In a view of
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Fig. 1. The (x, z) cross-section of the confocal oblate ellipsoids family α = const (dashed
and dotted lines) generated by the rotation of the basic ellipse (solid line) around the z
axis. The curvilinear unit vectors eα,eβ are also depicted at one point. The thin lines
depict the orthogonal hyperboloids β = const.
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this axial symmetry, we can easily prove that the suitable solution of (2)
has the form:

V0(x, y, z) = −πGρ0(x
2 + y2), P ∈ τ. (4)

Then the potential inside the spheroid τ is given by the sum of the two
parts:

UT (x, y, z) = V0 + U∗
T , P ∈ τ, (5)

where the additional potential U ∗
T is a harmonic function, i.e. it obeys the

Laplace equation:

∇2U∗
T (x, y, z) = 0. (6)

It is well known that across the surface S of the spheroid the potentials
and their normal derivatives must be continuous. To solve this bound-
ary potential problem, for the oblate spheroid it is suitable to transform
to the curvilinear orthogonal system (α, β, ϕ). This transformation is de-
fined in numerous monographs (e.g. Morse and Feshbach, 1953; Lebedev,
1963; Arfken, 1966). The transformation relations between the curvilinear
coordinates (α, β, ϕ) and the Cartesian coordinates (x, y, z) are as follows:

x = f chα sinβ cosϕ ,
y = f chα sinβ sinϕ ,
z = f shα cos β .

(7)

The “ellipticity coordinate” α ∈ 〈0 , +∞), the polar angle β ∈ 〈0 , π), and
the azimuthal angle ϕ ∈ 〈0 , 2π). The length parameter f is linked to the
semiaxes of the generating ellipse by the formula:

f =
(
a2 − b2

)1/2
. (8)

By elimination of parameters β and ϕ from relations (7), we find that the
surfaces α = const are rotational ellipsoids described by the equation:

x2 + y2

f2 ch2 α
+

z2

f2 sh2 α
= 1. (9)

For the surface S of our spheroid (1) we obtain the associated value of α0,
given by the formulae:

310



Contributions to Geophysics and Geodesy Vol. 41/4, 2011 (307–327)

f2 ch2 α0 = a2 , f2 sh2 α0 = b2 . (10)

Since ch2 α0 − sh2 α0 = 1, the relation (8) gives:

chα0 = a/f , shα0 = b/f , (11)

or, alternatively,

eα0 = (a+ b)/f , α0 = ln [(a+ b)/f ] . (12)

The geometric flattening can be characterized also by the parameter qs =
(a− b)/a. In this manner we link the dimensions of our ellipsoid and trans-
formation relations (7). We can also express the “source potential” V0 given
by (4) in the ellipsoidal coordinates as:

V0 (α, β) = −πGρ0f
2 ch2 α sin2 β = −2

3
πGρ0f

2 ch2 α[1− P2 (cos β)] , (13)

where P2 (cos β) = 1
2

(
3 cos2 β − 1) is the Legendre polynomial of degree

two and argument cos β. We can see that this “source potential” inside the
ellipsoid is independent of the azimuthal angle ϕ. Since the form of the el-
lipsoid is azimuthally independent too, we use the azimuthally independent
solutions of the Laplace equation:

∇2U(α, β) = 0, (14)

which has the form quoted in e.g. Morse and Feshbach (1953), Lebedev
(1963):

1
chα

∂

∂α

(
chα

∂U

∂α

)
+
1
sinβ

∂

∂β

(
sinβ

∂U

∂β

)
= 0. (15)

Its particular solution is given by the functions:

Un (α, β) =

{
Pn (i shα)
Qn (i shα)

}
Pn (cos β) , (16)

where Pn (cos β) are the well known Legendre polynomials of degree n,
argument cos β. Specifically, we know that

P0 (x) = 1 , P1 (x) = x , P2 (x) = 1
2

(
3x2 − 1

)
. (17)
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The functions Pn (i shα) , Qn (i shα) are less familiar spherical functions of
the purely imaginary argument (i t), t = shα ∈ 〈0, +∞). The Legendre
functions Pn (i t) are simply (Smythe, 1968; Morse and Feshbach, 1953):

P0 (i t) = 1 , P1 (i t) = i t , P2 (i t) = − 12
(
3t2 + 1

)
. (18)

Spherical functions of the second kind,Qn (i t) have more complicated forms:

Q0 (i t) = − i arctg (
t−1

)
, Q1 (i t) = t arctg

(
t−1

) − 1 ,
Q2 (i t) = i

[
1
2

(
3t2 + 1

)
arctg

(
t−1

) − 3
2t

]
.

(19)

A more general expression for Qn (i t), valid for t > 1, takes the form
(Smythe, 1968):

Qn (i t) = (− i)n+1 2n
∞∑

k=0

(−1)k(n+ 2k)!(n + k)!
k !(2n + 2k + 1)!tn+2k+1

. (20)

Analysis of functional properties of Qn (i shα) shows that these functions
cannot occur in the interior potential U ∗

T (α, β) since they would generate
singular value of gradU ∗

T on the equatorial region β = π/2, α = 0. This
property is discussed in more detail by Lebedev (1963). Functions Pn (i shα)
are singular as α → +∞, i.e. far from the spheroid, so they cannot occur
in the outer potential U1 (α, β). Then the potential U1 (α, β) is given by
the sum of functions Qn (i shα)Pn (cos β). The selection is straightforward,
since the formula (13) shows that only the terms involving P0 (cos β) = 1 and
P2(cos β) are non-zero. In potentials U ∗

T (α, β) , U1 (α, β) we have the terms
of degrees n = 0, 2 only. The potential inside the ellipsoid is UT = V0+U∗

T ,
so that

UT (α, β) = −w0 ch
2 α[1−P2 (cos β)]+w0E0+w0E2P2 (i shα)P2 (cos β),(21)

where w0 = 2
3πGρ0f

2. Since this potential is formed by the real functions of

(α, β), as P2 (i shα) = − 12
(
3 sh2 α+ 1

)
, we suppose that the outer potential

U1 (α, β) is a real function as well,

U1 (α, β) = w0[D0q0 (shα) +D2q2 (shα)P2 (cos β)], (22)
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where

q0(t) = iQ0(i t) = arctg(1/t), q2(t) =− iQ2(i t) =
=
1
2

[
(3t2 + 1) arctg(1/t)− 3t

]
(23)

are real functions and t = shα.
The multiplier constants E0, E2,D0,D2 can be determined from the

boundary conditions on the surface α = α0 of the ellipsoid. There must
be continuity of potential and its normal derivative, with respect to α. At
α = α0 we have:

[UT ]α=α0
= [U1 ]α=α0

, (24)[
∂UT

∂α

]
α=α0

=
[
∂U1
∂α

]
α=α0

. (25)

We will apply these continuity conditions separately for P0 (cos β) = 1 and
P2 (cos β). The terms of the order n = 0 produce the two equations:

− ch2 α0 + E0 = D0q0 (shα0) ,
−2 chα0 shα0 = D0q

′
0 (shα0) chα0 .

(26)

The second equation yields:

D0 = − 2 shα0
q′0 (shα0)

= 2
(

b

f

) (
a

f

)2
. (27)

Here we have used the relations which follow from (22) and (18), namely
q0 (t) = arctg (1/t), q′0 (t) = −1/(

1 + t2
)
, and the following properties from

(11)

t0 = shα0 =
b

f
, t20 + 1 = ch

2 α0 =
(

a

f

)2
. (28)

After simple manipulations the constant E0 in the interior potential takes
the form after simple modifications:

E0 =
(

a

f

)2 [
1 + 2

(
b

f

)
arctg

(
f

b

)]
. (29)

The continuity of terms proportional to P2 (cos β) in the boundary condi-
tions (24) and (25) yield the two equations for E2, D2:
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E2p2 (shα0)− D2q2 (shα0) = − ch2 α0 ,
E2p

′
2 (shα0)− D2q

′
2 (shα0) = −2 shα0 .

(30)

Here we have used that

P2 (i t) = − 12
(
3t2 + 1

)
≡ p2 (t) , p′2 (t) = −3t , (31)

where p2 (t) is a real function of t. The determinant of this system is

X2 =−[
p2 (shα0) q

′
2 (shα0)− p′2 (shα0) q2 (shα0)

]
=

=− 1

1 + sh2 α0
= − 1

ch2 α0
. (32)

Here we have used the relation for the Wronskian of functions Pn (i shα),
Qn (i shα) which, according to Lebedev (1963), is:

Pn (i t)Q
′
n (i t)− P ′

n (i t)Qn (i t) = − 1
t2 + 1

, (33)

including transformation relations P2 (i t) = p2 (t), Q2 (i t) = i q2 ( t) and
their derivatives with respect to t. Then we obtain:

E2 =− ch2 α0
[
ch2 α0 q′2 (shα0)− 2 shα0 q2 (shα0)

]
, (34)

D2 = ch
2 α0

[
2 shα0 p2 (shα0)− ch2 α0 p′2 (shα0)

]
=

= 2t0
(
t20 + 1

)
= 2

(
b

f

) (
a

f

)2
. (35)

Here we have again used the relations (11) for t0. Now we can write the
explicit formula for the external potential U1 (α, β):

U1 (α, β) = w0[D0q0 (shα) +D2q2 (shα)P2 (cos β)]. (36)

We can easily find the following relations using w0 = 2
3πGρ0f

2:

w0D0 =
GM

f
=

GM√
a2 − b2

, (37)

where M = 4
3πa2bρ0 is the total mass of the ellipsoid. Also,

w0D2 = GM/f. (38)
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Finally we have

U1 (α, β) =
GM

f
[arctg (1/shα) + q2 (shα)P2 (cos β)]. (39)

This formula coincides with the classical one (e.g. Grushinskyj, 1963), but
his derivations are more complicated than ours.

3. Calculation of gravity components and numerical examples

After solving the boundary value problem for potentials UT (α, β) and
U1(α, β), we can write formulae for components of the gravity acceleration:
g = gradU(α, β). These are as follows:

gα =
1
hα

∂U

∂α
, gβ =

1
hβ

∂U

∂β
, (40)

where the Lame’s metric parameters are hα = hβ = f
(
ch2 α − sin2 β

)1/2
.

Using formula (21) for UT (α, β), the gravity field inside the spheroid takes
the form:

gTα = −w0h
−1
α 3 chα shα

[
sin2 β + E2P2(cos β)

]
,

gTβ = −w0h
−1
β 3 cos β sinβ

[
ch2 α+ 12E2(3 sh

2 α+ 1)
]
, (41)

where we have used relations (31). Similar treatment can be applied to the
outer potential U1(α, β) using (39), which gives

g1α = (GM/f)h−1
α

[−1/ chα+ q′2(shα) chαP2(cos β)
]
,

g1β = −(GM/f)h−1
β q2(shα)3 sin β cos β. (42)

These curvilinear components can be transformed into Cartesian compo-
nents gx, gz in the plane (x, z) i.e. y = 0 which is sufficient for for determi-
nation of the whole gravity pattern due to oblate ellipsoid. Using modified
formulae e.g. from Madelung (1957), we obtain relations:

gx = [gα shα sinβ + gβ chα cosβ] (ch2 α − sin2 β)−1/2 · sign(x),
gz = [gα chα cosβ − gβ shα sinβ] (ch2 α − sin2 β)−1/2, (43)
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where sign(x) represents the value of cosϕ for ϕ = 0, π. For the practical
purposes we will calculate the gravity field over the regular network of points
(x, z) in the plane y = 0. We need to assign the ellipsoidal coordinates
(α, β) to each (x, z). We can calculate them by using the property that the
coordinate line α = const is an ellipse described by Eq. (9) in the x, z plane;
their foci lie on the focal circle r = f in the plane z = 0, major semiaxis
length is f chα and the minor semiaxis is of the length f shα. For every
point (x, z) of this ellipse the sum of distances from the first and second foci
is equal to the doubled value of the major semiaxis length, 2f chα. Then:

[
(r − f)2 + z2

]1/2
+

[
(r + f)2 + z2

]1/2
= 2f chα, (44)

where r = (x2+y2)1/2 = |x| and f = (a2− b2)1/2 is the focal constant given
by the dimensions of the basic ellipse α = α0. If we determine chα, we have
also shα = (ch2 α− 1)1/2 and eα = chα+shα. The angle β, reckoned from
the semiaxis z ≥ 0, can be determined from equations

cos β = z/(f shα), sinβ =
√

x2 + y2/(f chα). (45)

The formula for sinβ is valid also inside the focal circle z = 0, r < f . Now
we have all the formulae necessary for numerical calculations. We present
the results for two cases of ellipsoid, corresponding to ratios b/a = 0.4, 0.1.
In Fig. 2a–c we can see the isolines of potential and components gα, gβ

for the case b/a = 0.4. The values of potential are scaled by the value
GM/a, while the gravity components are scaled by the value GM/a2 and
multiplied by the factor 10, since the body is rather small (a = 10m) and
its density ρ = 1000 kgm−3 (like water). In Figs. 2a–c a profile curve
for the level zp/a = 0.2 is also plotted. In Fig. 2a we can see that the
equipotential surfaces are almost elliptic, but the surface of the spheroid
α = α0 is not equipotential, simply because of the presence of the terms
E2, D2 in potentials. The pattern of isolines gα is presented in Fig. 2b.
We can see that all values gα are negative, indicating that the direction
of the gravity vector is downwards to the interior of the ellipsoid. The
continuity of gα on the surface of the ellipsoid α = α0 is preserved (the
small ripples of the isoline curves there are due to an artefact of the plotting
program). We can also see that |gα| attains maximum on the boundary
α = α0, being most visible on the profile curve for zp/a = 0.2. The pattern
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Fig. 2a. Isolines of the gravity potential in the plane yc = 0 inside and outside the oblate
ellipsoid with b/a = 0.4, i.e. qs = (a− b)/a = 0.6. The bottom graph presents the profile
curve for the plane zp/a = 0.2.
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Fig. 2b. The same as in Fig. 2a, but for the normalized component gα of the gravity
acceleration.
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Fig. 2c. The same as in Fig. 2a, but for the normalized component gβ of the gravity
acceleration.
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of the component gβ is more complicated, because it is proportional to the
factor cos β sinβ, as follows from formulae (41), (42). Rather surprising
were the negative values of gβ in the halfplane z > 0, which indicates that
the vector g ≡ (gα, gβ) is inclined to the polar semiaxis z ≥ 0. From the
physical point of view, however, it confirms that the gravity vector points
nearly towards the gravity centre of the body. This is confirmed also by the
positive values of gβ in the halfplane z < 0. It is also clear that gβ values are
zero on the polar axis z (β = 0, π) and in the equatorial plane β = π/2. For
the purposes of applied geophysics it is more useful to know the Cartesian
components of the gravity of the oblate ellipsoid. For this reason we present
in Figs. 3a–b the gx, gz isoline graphs for the same ellipsoid as used in Figs.
2a–c. In Fig. 3a we can see that gx is positive for the x < 0 halfplane, while
for the x > 0 halfplane it is negative. This is in accord with qualitative
expectation that the gravity vector points into the attracting body. This
property is also clear from the profile curves for 3 levels zp/a = 0.5, 0.6, 0.7,
which are above the spheroid. The gz isoline graph on Fig. 3b shows that
this component is negative for the upper halfplane (z ≥ 0), while for the
halfplane z < 0 the values are positive. This also matches with the general
feature of the gravity vector – it points inside the attracting body. In the
equatorial plane z = 0 we have gz = 0, while the gravity vector is given by
the maximal values of gx. For the purposes of applied gravimetry we have
plotted in bottom parts of Figs. 3a–b the profile curves of gx and Δg at
three planes above the ellipsoid zp/a = 0.5, 0.6, 0.7. Note that in Fig. 3b
there is plotted Δg(x, 0, zp) = −gz(x, 0, zp) because in our model we have
the z axis oriented upward in contrast to traditional downward orientation
in the applied gravimetry.
We also calculated gravity field for the relatively thin oblate ellipsoid

(b � a) which approximates the circular disc of radius a. The thin disc
of radius a can be considered as a very thin oblate spheroid with b � a
and hence f = (a2 − b2)1/2 .= a. The gravity potential due to this disc is,
according to (39),

U1(α, β) =
GM

a
{arctg(1/shα) + q2(shα)P2(cos β)} . (46)

The transformation relations (44) and (45) are also slightly modified by
using f

.= a. For the purpose of illustration we set a = 10m, b = 1m
and the value GM/a = 0.27957× 10−5m2 s−2. The results are presented in
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Fig. 3a. Isolines of the horizontal gravity component gx for the potential presented in
Figure 2a. There are also plotted three profile curves for planes zp/a = 0.5, 0.6, 0.7.
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Fig. 3b. Isolines of the vertical gravity component gz for the potential presented in
Figure 2a. There are also plotted three profile curves of gravity anomaly: Δg = −gz at
planes zp/a = 0.5, 0.6, 0.7.
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Figs. 4a–c for the upper halfplane only, z > 0. The equipotential isolines
are similar to those given in Fig. 2a. The Cartesian components of gravity
gx,Δg are also similar to those in Figs. 3a,b, but the extremal values are
different. It is interesting that the boundary of the disc edge x/a = ±1
coincides with the maximum for the horizontal component. The vertical
component Δg grows towards the disc most rapidly along the z axis. There
is a well-known formula for Δg along the z-axis, Δg(0, z) = 2GMa−2[1 −
z(a2 + z2)−1/2], (x = 0), which is confirmed by the values of 10 × Δg for
the profiles zp/a = 0.5, 0.6, 0.7 at x = 0 in the Fig. 4c.

It is natural to ask about the applicability of formula (39) to the case
of sphere, when b → a and f → 0. For this purpose we use the transform
formulae (7) which give the expression for the distance R from the centre
of sphere:

R2 = x2 + y2 + z2 = f2(sh2 α+ sin2 β). (47)

It is clear that the potential of the sphere must be independent of β, so
we use R for β = 0:

R = f shα, shα = R/f, (48)

which means that we have to calculate the limit of (39) for f → 0. It can
be easily shown that

lim
f→0

f−1q2(R/f) = 0, lim
f→0

f−1 arctg(f/R) = R−1, (49)

so we have for the potential of the sphere the classical formula

lim
f→0

U1(α, 0) = U1(R) = GM/R. (50)

Finally, we can state that our formulae are valid for this classical limit case
of oblate spheroid.

4. Conclusion

In this paper we have applied both analytically and numerically the oblate
ellipsoidal functions (16) to calculate the gravity field due to oblate ellipsoid
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Fig. 4a. Isolines of the gravity potential due to very oblate ellipsoid with b/a = 0.1
(circular disc) for the upper halfplane z > 0, y = 0. The scaling value GM/a = 0.27957×
10−5m2 /s2. The three profile curves for planes zp/a = 0.5, 0.6, 0.7 are also plotted.

of uniform density for the general ratio b/a ∈ (0, 1), which covers also the
limit cases of disc (b/a → 0) or sphere (b/a → 1). The advantage of our
treatment is that the potentials outside or inside the body are expressed
by the two terms in variables (α, β), with a simple transformation to the
Cartesian ones (x, z). Similar treatment can also be used for the calculation
of the gravity potential for the oblate ellipsoid composed by confocal ellip-
soidal layers of different density. We note that the oblate spheroidal bodies

324



Contributions to Geophysics and Geodesy Vol. 41/4, 2011 (307–327)

including disc are of interest in the astrophysics e.g. Syer (1995); Cheng et
al. (2007).
Finally we note that our formulae can be easily extended also to the

rotating spheroid like the Earth. For this case we must include in the po-
tential UT (α, β) also the potential of the centrifugal acceleration Uc(α, β) =
1
2Ω
2(x2 + y2) = 1

2f
2Ω2 ch2 α sin2 β, where Ω is the angular frequency of the

rotation around the z axis. Since in our treatment we have considered el-
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Fig. 4b. Isolines of the horizontal gravity component gx for the potential presented
in Fig. 4a. The three profile curves for planes zp/a = 0.5, 0.6, 0.7 are also plotted.
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Fig. 4c. Isolines of the vertical gravity component gz for the potential presented in Fig. 4a.
There are also plotted three profile curves of Δg = −gz at planes zp/a = 0.5, 0.6, 0.7.

lipsoids of dimensions suitable for the exploration gravimetry, we do not
discuss this rotational case. This is interesting e.g. for the case of Earth
with low flattening b/a → 1, a = Re. It is clear that the acceleration due
to rotation will decrease both gα and gβ .
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