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Abstract: The understanding of mountain uplift, especially the intraplate ranges and
plateaus, still remains insufficient despite advancement in the last decade. Upwarped
mountains are one general category, where uplift virtually comes from the bottom by
an unspecified mechanism. Several sandbox and finite-width wedge models showed that
this upwarping is a natural consequence of horizontal compression of lithosphere. The
model of shear layers, presented here, is derived from general theory of plasticity and
represents a similar solution of the problem. But its ability to describe deformations in
deeper lithosphere can be useful in studying development and changes of mountain roots.
Comparison of these models, regarding their specific character, may help to understand
overall morphology and tectonics of the mountains.
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1. Introduction

The mechanism of mountain uplift in intracontinental space is still not suf-
ficiently understood. There are many definitions of mountains by structure
and by manner of uplift, often contradictional in their nature. This way,
for example, a concept of folded mountains was discredited by solid proofs
that folding is usually unrelated to uplift neither in time nor in character
of tectonics (Ollier and Pain, 2000). There is also a category of moun-
tains called upwarped, what means uplift comes from the bottom by gen-
erally unspecified mechanism (Fig. 1). Volcanic plumes, delamination of
lower lithosphere, mantle flows or isostatic rebound are frequently taken as
a case. On the other hand, mountains are usually seen as compressional
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structures, what is in agreement with definition of plate tectonics as a hori-
zontal compressive system. The most successful in describing upwarping as
a natural consequence of compression were numerical or analogue sandbox
models (Buiter et al., 2006) and certain finite-width wedge models (Braun
and Yamato, 2010), specifying frame for physical considerations about up-
lift of intraplate mountains.
These models, thanks to improved computational methods, had pushed

our understanding of upwarping mechanism within compressional regimes.
But not well understood remains the fact, how the wedge deformation con-
tinues farther downwards. This is not resolved by any contemporary wedge
model. The serious limitation of these models appears to be shallow depth
and discontinuity at their bases, what does not allow to estimate how moun-
tains are rooted in the lower lithosphere.
Based upon the same principals, but more universal is the model of shear

layers, developed from general theory of plasticity (Nadai, 1950). By ob-
serving the materials, suffering compressional deformation, a mathematical-
physical abstraction was developed for use in metal forming industry and
civil engineering. The model shows how layers of slip form within a com-
pressed body at the yielding point, creating complicated shear layer field.
Patterns of deformation at the field flanks strongly resemble those from real
stepped surfaces of mountains as it is also visible on sandbox or finite-width
wedge experiments. These characteristics of Nadai’s model lead to consid-
eration that it could be applicable to the mountain origin as the supplement
of sandbox and other wedge models.

Fig. 1. Schematic drawing of upwarped mountains (http://www.cliffsnotes.com/
study guide/Types-of-Mountains.topicArticleId-9605,articleId-9583.html).
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2. Model (Nadai’s theorem)

The Earth’s lower lithosphere is considered to be an elastoplastic material.
But in many cases, when deformation in the plastic part of body is much
greater than in the elastic, we can assume this elastic part as a solid (Nadai,
1950). In these cases a medium is taken as rigid/plastic, what means that it
is mostly rigid except in regions, where yielding has occurred and the limit
of plasticity has been reached. This simplification enables mathematical so-
lutions for some specific problems within general theory of plasticity, which
also can be applied to the tectonics (Tapponnier and Molnar, 1976).
Consider a prism of rigid/plastic solid under conditions of stress, when

the stress has just reached the limit of plasticity and body cannot deform
in z direction. In an incompressible material the plastic strains (and the
associated displacements ux and uy) can be expressed (Nadai, 1950) as
follows:

εx + εy =
∂ux

∂x
+
∂uy

∂y
= 0, (1)

εz =
∂uz

∂z
= 0, (2)

τxy =
∂ux

∂y
+
∂uy

∂x
= 0 (3)

In the unyielded parts of body it is assumed that components of strain
vanish (and so does unit shear τxy for axes x and y) because they are
principal directions of stress and strain. If also ux and uy are considered as
components of velocity vector of flow, ψ represents the stream function and
the first equation is satisfied if

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
. (4)

Substituting this into the third equation, we obtain the following result:

∂2ψ

∂x2
=
∂2ψ

∂y2
(5)

Here, the physical insight enabled Nadai (1950) to recognize in this equation
the second class equation of a vibrating string:
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∂2w

∂x2
=
1
c2

∂2w

∂t2
(6)

where w is the deflection of string stretched along x axis, constant c2 the
tension stress divided by mass of unit length and t is the time. It is than
useful to plot successive configurations of an infinite string at the times t
by plotting the values of w along the lines y = c t = const (Fig. 2).
Next, changing variables x, y = c t to new variables m and n by trans-

formations

x =
m− n√
2
, y =

m+ n√
2
, (7)

in Fig. 3 and by substitutions of n and m to these equations (keeping m
and n constant), we obtain

x = (m
√
2)− y, y = (n

√
2) + x, (8)

which represents two systems of parallel straight lines, inclined at angles
45◦ and 135◦ with respect of the x axis (Fig. 2).
The similarity between characteristics of the deflected shapes of an in-

finite string and characteristics of the displacements in a body under the
compression is clearly visible and these lines define lines of slip in a com-
pressed body, coinciding with directions of maximum shearing strain (Nadai,
1950). Using this analogy, for symmetrical compression, the dashed lined

Fig. 2. Deflections of an infinite string by Nadai (1950).

270



Contributions to Geophysics and Geodesy Vol. 41/3, 2011 (267–277)

Fig. 3. Transformation of variables, by Nadai (1950).

formation in Fig. 4a can be obtained, representing initial system of two in-
tersecting layers of slip in a compressed body.
During next continual compression, when material is distorted by simple

shear, the field slowly changes to a fully lined structure, with central rhom-
boid and pushed out triangles. The central rhomboid creates only envelope
for a rhomboidal net, composed of several parallel layers, in which some are
distorted and some are displaced in the x, y plane as rigid bodies (Fig. 4b).
It is usually hard to obtain such plastic zones within rigid regions without
distortion of the whole body, so these considerations are highly theoreti-
cal. For more realistic states the stress slip layers and lines are curved and
there is a complex change of hydrostatic stress along them. Variations of
hydrostatic stress described by equilibrium equations then provide a basis
to determine plastic flow solutions within the deformed plastic body.

3. Application of results to the structure development of up-
warped mountains

When we apply shear layers model to the compression of lithosphere, first
visible thing is that it does not need any special starting conditions to pro-
duce upwarping. Rigid-plastic material and enough pressure are sufficient
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Fig. 4a. Two layers of shear in compressed body, by Nadai (1950).

Fig. 4b. Multiple layers of shear in compressed body, by Nadai (1950).

to initiate this process. This is very important for origin of majority of
intraplate mountains, where no predispositions can be found in lithospheric
structure prior to initiation of uplift. Such mechanism is able to create
mountain chain in relatively homogeneous lithosphere without presence of
any former subduction related fabric. Another significant feature of the
model is widespread shear banding, where slip lines intersect themselves in
the middle part of the field, forming complicated rhomboidal net. Its tip is
pressed down in series of steps at the base of the body, remaining the style
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how orogenes are rooted in the lower lithosphere (Fig. 5).
Similarly at the top of the body, upper crust forms the stepped surfaces

as wedges are pushed up. Because deformation is symmetric along central
vertical plane, these surfaces tend to have approximately the same elevation
on both sides of the ridge. It is frequently seen in the mountains that ele-
vated surfaces form stepped plains, uplifted remnants of former plain, which
occupied given space prior to initiation of upwarping. Due to the geometry
of the field, as seen in Fig. 4b, central part of the mountain chain can be
principally plateau (Fig. 6a) or ridge toped (Fig. 6b).

Fig. 5. a) Lithospheric structure of Tibetan Plateau, by Bielik el al. (2000) with isostatic
compensation and comparison with b) the model of Nadai (1950), isostatic compensation
is not considered.
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Fig. 6a. Plateau top morphology, derived from Fig. 4b.

Fig. 6b. Ridge top morphology, derived from Fig. 4b.

The categorization of mountains describe upwarping also as the process,
causing fan shaped disintegration of orogene central part (Fig. 1). During
this doming, top of uplifted area is in the state of slight extension. The
same is visible in Nadai’s model and effect is caused by the material escape
from zone of deformation. Extension can appear around the ridge top part
(Fig. 4b), where upwarping is the most intensive.

4. Comparison with other models

Theory and modelling within this subject had improved in the last decade
with improvement of computational methods. From simple Coulomb wedge
considerations (Davis et al., 1983), used mostly to explain subduction re-
lated orogenes, contemporary sandbox and finite-width wedge models reach-
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ed realistic state in visualization of mountain building. Numerical sandbox
experiments for compression (Buiter et al., 2006) show several features, sim-
ilar to that of shear layers model. The most prominent characteristic is the
widespread shear-banding and development of stepped surfaces, typical for
the mountain growth (Fig. 7b). However deformation is principally asym-
metric and despite qualitative leap in description of upwarping, the model
reflects reality only in limited area.
Highly realistic appears to be the finite-width wedge model (Braun and

Yamato, 2010), where solution is the wedge upwarping with well developed
stepped surfaces of principally symmetric geometry (Fig. 7a).
These characteristics of surface manifestation, common to both compu-

tations, are visible also in the shear layers model. What is not present
in any contemporary upwarping modeling is an exact insight into deeper
structure of mountains. Sandbox and finite-width wedge models are shal-
low based solutions because they artificially end at the basal discontinuity,
where velocity suddenly changes to zero. It is in fact only simplification,
deformation should continue also to lower lithospheric levels (Fig. 5). Shear
layers model has no limitations in this sense, depth of bottom boundary is
controlled by the thickness of compressed block. This feature is in general
given by the fact that it does not need specific initial conditions as both

Fig. 7a. Finite width crustal wedge, by Braun and Yamato (2010).
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Fig. 7b. Numerical sandbox experiment, by Buiter et al. (2006).

compared models (compressing wall, fixed base, limited thickness). As it
was mentioned, besides material properties and compression, shear layers
model has no other starting conditions and so appears to be much simpler.

5. Conclusions

The attempts to explain mountain building as a consequence of horizontal
compression, supported by solid computational methods, started to domi-
nate tectonics during the last decade. Upwarping and horst structure evo-
lution, taken as results of some “inside” mechanisms in the past (plumes,
delamination), moved to the state of real physical modelling. Shear layers
model is one of the approaches to do by studying shearing in the complex
lithospheric wedges. It brings the possibility to visualize several specific
elements, characteristic for overall mountain buildup. It shows, as the other
wedge models, how double-vergent structure is developed, how upwarping
proceeds in steps of flat surfaces uplifted among shear bands, which form
inner, inclined lithospheric layering. The ability of presented model to de-
scribe deep structure of mountain belts comes from simple symmetry pre-
sumption that upwarping wedge in the surface direction must have its coun-
terpart in downward orientation. Other wedge solutions mostly lack insight
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into the problem of orogene rooting in the lower lithosphere. Disintegra-
tion through shearing and extensional pressure release causes melting and
may initiate delamination of bottom field tip in its extreme case. In sum-
mary, model presented in this paper offers several new aspects regarding the
development of intraplate elevations, the understanding of real processes,
creating inner structure and topography of the mountains.
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