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Abstract: Nowadays, the geocentric gravitational constant GM is determined by solving

equations of motion for trajectories of artificial satellites measured by Satellite Laser Rang-

ing (SLR). The estimated value of GM and its uncertainty 398600441.8± 0.8×106 m3s−2

are currently adopted by the International Astronomical Union. In this study, we inves-

tigate possibility of improving the accuracy of GM by integrating atomic clocks measure-

ments with SLR. The functional model defines GM in terms of geopotential differences

observed by atomic clocks at two points in space and their distance measured by SLR. Two

types of observation equations are established. The first equation defines geopotential dif-

ferences with respect to the geoidal geopotential value W0. The second equation defines

distances with respect to the geocentric position of ground-based station determined from

GNSS measurements. With the improving stability of atomic clocks to 10−18, it will be

possible to measure geopotential differences with the accuracy ±0.1 m2s−2 (equivalent to

±1 cm in terms of the geoidal heights), while SLR measurements can currently be carried

out with sub-centimetre accuracy under optimal conditions and applying advanced cor-

rections and numerical procedures. Taking into consideration both, accuracy character-

istics and their expected improvement, we conduct sensitivity analysis to assess accuracy

requirements needed to improve the accuracy GM (±0.8× 106 m3s−2). Error analysis in-

dicates that combination of relativistic measurements with SLR cannot currently improve

the accuracy of GM due to insufficient stability of atomic clocks. Nevertheless, the accu-

racy improvement by an order of magnitude might be feasible in the feature if relativistic

measurements are carried out by atomic clocks with stability 10−20 (or better), while also

achieving sub-millimetre accuracy of SLR. In this way, integration of relativistic measure-

ments with SLR could improve the current accuracy of GM, while the critical aspect is

determination of the geoidal geopotential value W0 with sub-millimetre accuracy in terms

of geoidal heights that could be achievable.
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1. Introduction

The geocentric gravitational constant GM is defined as the product of the
total mass of the Earth M (including the atmosphere) and Newton’s grav-
itational constant G. This constant is commonly used in physical geodesy
and gravimetric geophysics in computations dealing with the Earth’s grav-
ity field. The value GM = 398600441.8 ± 0.000000008 × 106 m3 s−2 (that is
compatible with the barycentric coordinate time), currently adopted by the
Integrational Astronomical Union (IAU) and published in its 2009 System
of Astronomical Constants, was estimated by Ries et al. (1992). The value
3.986004415 ± 0.000000008 × 1014 m3 s−2 can be found in the IERS 2003
conventions (McCarthy and Petit, 2004). More recently, Amin et al. (2019)
and Cherrier et al. (2022) reported the improved estimates 398600460.55±
0.03× 106 m3 s−2 and 398600441.9± 0.2× 106 m3 s−2 respectively, but both
estimates have not yet been officially adopted by IAU.

The GM value has a better relative accuracy than individual values of
Newton’s gravitational constant G and the total mass of the Earth M that
are currently defined by the values G = 6.67428 × 10−11 m3 kg−1 s−2 and
M = 5.9722 ± 0.0006 × 1024 kg, respectively; see the IAU 2009 System of
Astronomical Constants. It is worth noting that Newton’s gravitational
constant is one of the most fundamental physical constants adopted, for in-
stance, in definition of Planck units (Planck time, length, mass, change, and
temperature) that are used in the quantum theory of gravity and cosmology
(e.g., Kisak, 2015). Despite advances in experimental physics (Cavendish
experiment), the universal gravitational constant G remains one of the least
accurately estimated constants in physics. On the other hand, the geocen-
tric (or generally any planeto-centric) constant GM can be estimated more
accurately by analysing trajectories of artificial as well as natural satellites
(Lerch et al., 1978; Cherrier et al., 2022; Ries et al., 1992).

A practical determination of GM is based on solving the equations of
motion with trajectories of artificial satellites measured by Satellite Laser
Ranging (SLR). SLR is a highly precise geodetic technique used to mea-
sure the distance between a ground-based station and a satellite equipped
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with retroreflectors. The accuracy of SLR measurements has significantly
improved over the years, reaching now the mm-level precision (Pearlman
et al., 2019). This advancement is largely due to technological improve-
ments in laser systems, timing devices, and data processing strategies. One
of the key factors contributing to the high accuracy of SLR is the use of
short-pulse lasers, which allow for precise time-of-flight measurements. Ac-
cording to Pearlman et al. (2019), modern SLR systems can achieve range
accuracies better than ±1 cm, with some systems reaching sub-millimetre
precision under optimal conditions. This level of accuracy is crucial for ap-
plications such as monitoring the Earth’s gravitational field, tectonic plate
movements, and sea level rise. Furthermore, advancements in atmospheric
modelling have enhanced the accuracy of SLR observations by correcting for
atmospheric delays. The integration of improved models for tropospheric
and ionospheric refraction, as discussed by Kehm et al. (2018), has reduced
systematic errors in SLR data. SLR’s accuracy is also bolstered by inter-
national collaboration and standardization efforts, such as those led by the
International Laser Ranging Service (ILRS) of the International Association
of Geodesy (IAG). These efforts ensure consistent data quality and facilitate
the integration of SLR data with other geodetic techniques, enhancing the
overall understanding of Earth’s dynamics (Noll et al., 2019).

It is worth noting that the accuracy of atomic clocks depends on many
aspects, particularly the type of atomic clock and the specific atom used.
For more details about these aspects, we refer readers to Petit et al. (2014)
and citations therein. Another aspect that limits the use of atomic clocks
is the reproducibility (see Bagherbandi et al., 2023). It is expected that
stability of atomic clocks at the level 10−18 could be achieved by optical
atomic clocks which utilize strontium or ytterbium atoms. Even better sta-
bility (potentially by orders of magnitude) might be achieved in the future
based on quantum logic clocks that will utilize entangled ions to reduce
quantum noise (e.g., Chou et al., 2010). Alternative options have been
proposed based on facilitating nuclear transitions (e.g., thorium-229) which
could be even more stable and less susceptible to external perturbations
than electron-based transitions (e.g., Stellmer et al. 2016).

Since GM is a fundamental constant defining the Earth’s gravity field,
measurements of gravity field parameters could potentially be used together
with SLR observables to determine GM with a better accuracy than that
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currently obtained solely from SLR data. Values of the gravity potential
cannot be measured by classical methods in physics. However, its differ-
ences between two points in space can be observed by atomic clocks based
on adopting the relativistic theory of time dilatation (cf. Bjerhammar, 1985;
1986). Einstein’s general theory of relativity predicts that clocks near a
gravitating body tick slower compared to clocks at zero gravitation. Com-
paring frequencies of two clocks provides an observable that can be related
to the difference in the gravity potential between them (e.g., Denker et al.,
2018). Currently, the most stable laboratory clocks have been evaluated to
frequency uncertainties 10−18 that corresponds to the accuracy of the re-
spective geopotential differences ±0.1m2 s−2. A practical use of these mea-
surements for chronometric levelling in the context of vertical datum unifi-
cation and other applications, such as the determination of GM, has until
now been limited by current accuracy restrictions and many other technical
considerations (see, e.g., Mai, 2013; Kopeikin et al., 2018; Mehlstäubler et
al. 2018; Puetzfeld and Lämmerzahl, 2019; Shen et al., 2011; 2019). The
main problem is maintaining a highly accurate transfer between two clocks.
The noise and feedback properties of the link must be reduced to an extent
that overcomes limits imposed by the laser phase delay and noise sources
on the fiber link (Schioppo et al., 2022).

Assuming a rapid improvement of SLR’s accuracy and stability of atomic
clocks in the foreseeable future, we examine the possibility of improving the
current accuracy of GM by integrating atomic clocks measurements with
SLR. Taking into consideration status of both techniques as well as antic-
ipated accuracy and stability improvements, we establish the error prop-
agation model to find a functional relation that describes the dependence
of the accuracy of GM on errors of geopotential differences (as measured
by atomic clocks) and distances (as measured by SLR). We then conduct a
sensitivity analysis to assess the accuracy criteria necessary to improve the
GM estimates.

The study is organized into four sections. Fundamental definitions of
the Earth’s gravity potential are briefly recapitulated in Section 2. A the-
oretical model for the determination of GM from SLR and atomic clocks
measurements is postulated in Section 3. The error analysis is conducted
in Section 4. Summary of results and concluding remarks are given in Sec-
tion 5.
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2. Theory

This section provides basic definitions of the Earth’s gravity potential that
are then used to define the functional model to determine GM from SLR
and atomic clocks measurements in Section 3.

2.1. Spatial representation of the Earth’s gravity potential

The Earth’s gravitational potential V at the external computation point
(r,Ω), i.e., V (r,Ω) is defined by Newton’s volume integral in the following
form (Kellogg, 1967):

V = V (r,Ω) = G

∫∫ R+H ′

0

ρ (r ′,Ω′) `−1(r , ψ, r ′) r ′ 2 dr ′dΩ′, (1)

where r is the geocentric radius, and the pair Ω = (θ, λ) represents the
geocentric direction of the computation point with θ and λ denoting spher-
ical co-latitude and longitude, respectively. The volume integral on the
right-hand side of Eq. (1) is evaluated for the 3D mass density distribution
function ρ(r′,Ω′) within the Earth’s interior limited by the Earth’s surface
described by the geocentric radius r ′. In the Earth’s spherical approxima-
tion, the geocentric radius is defined approximately as the mean Earth’s
radius R plus the topographic height H = H(Ω′), i.e., r′ = R + H ′. The
term dΩ′ = sin θ′ dθ′ dλ′ denotes an infinitesimal surface element of a unit
sphere, {Ω′ = (θ′, λ′) : θ′ ∈ [0, π] ∧ λ′ ∈ [0, 2π)} represents the full spatial an-
gle, and

∫

dΩ′ =
∫∫

sin θ′ dθ′ dλ′. The Euclidean spatial distance ` between
the computation and integration (running) points in Eq. (1) reads:

`(r, ψ, r′) =
√

r2 + r′2 − 2rr′ cosψ , (2)

where cosψ = cos θ cos θ′ + sin θ sin θ′ cos(λ′ − λ) is cosine of the spherical
distance ψ between the two points.

Since the definition of the gravitational potential in Eq. (1) does not
explicitly involve the GM parameter, we first define the total mass of the
Earth M and then describe the gravitational potential V in terms of GM.

The total mass of the Earth M is defined as the volumetric integral of
mass density distribution within the Earth:

M =

∫∫ R+H ′

0

ρ (r ′,Ω′) r ′ 2 dr ′dΩ′ =
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=

∫ 2π

λ′=0

∫ π

θ′=0

∫ R+H ′

r=0

ρ (r ′,Ω′) r ′ 2 dr ′ sin θ′ dθ′ dλ′ . (3)

From Eq. (3), GM is given by:

GM = G

∫ 2π

λ′=0

∫ π

θ′=0

∫ R+H
′

r=0

ρ (r ′,Ω′) r ′ 2 dr ′ sin θ′ dθ′ dλ′ . (4)

It is important to note that the actual values of M and GM are practically
determined for the whole mass of the Earth including the atmosphere, while
both parameters in Eqs. (3) and (4) are defined only for the total mass of
the solid Earth. This approximation is, nevertheless, permissible because
the total mass of the Earth’s atmosphere (∼5.15×1018kg; see Lide, 2013) is
roughly one millionth of the Earth’s mass (M = 5.9722 ± 0.0006× 1024 kg).

The Earth’s centrifugal potential Φ is defined by:

Φ =
1

2
ω2 r2 sin2 θ , (5)

where ω denotes the mean Earth’s angular velocity.
The Earth’s gravity potential W (i.e., the geopotential), defined as the

sum of the Earth’s gravitational and centrifugal potentials V and Φ, is then
given by:

W = V + Φ =

=G

∫ 2π

λ′=0

∫ π

θ′=0

∫ R+H ′

r=0

ρ (r ′,Ω′) `−1(r , ψ, r ′) r ′ 2 dr ′ sin θ′ dθ′ dλ′ +

+
1

2
ω2 r2 sin2 θ . (6)

2.2. Spherical representation of the Earth’s gravity potential

Substituting from Eq. (4) to Eq. (1) and solving the Laplace equation, the
Earth’s gravitational potential V can be represented in terms of the spherical
harmonics in the following form (e.g., Heiskanen and Moritz, 1967):

V (r,Ω) =
GM

R

∑∞

n=0

(

R

r

)n+1
∑n

m=−n
Vn,mYn,m (Ω) , (7)

where Vn,m are (fully-normalized) numerical coefficients of the gravitational
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potential V of degree n and orderm, and (fully-normalized) surface spherical
functions Yn,m read:

Yn,m (Ω) = Pn,m (sinϕ)

{

cosmλ , m ≥ 0

sin |m|λ , m < 0 ,
(8)

where Pn,m are (fully-normalized) associated Legendre functions.
From Eqs. (5) and (7), the spherical harmonic representation of the

Earth’s gravity potential W is given by:

W (r,Ω) =
GM

R

∑∞

n=0

(

R

r

)n+1
∑n

m=−n
Vn,mYn,m (Ω) +

1

2
ω2 r2 sin2 θ . (9)

3. Functional model for determination of the GM value

Analysing orbital motions of artificial satellites observed by SLR, Ries et
al. (1992) determined the geocentric gravitational constant GM with the
accuracy ± 0.8× 106 m3 s−2 (in terms of the standard deviation). Cherrier
et al. (2022) reported a better accuracy ± 0.2 × 106 m3 s−2, but this value
has not yet officially been adopted by IAU. To inspect the possibility of
improving the accuracy of GM based on combining SLR and atomic clocks
measurements, the functional model was established for the geopotential
differences ∆W observed by atomic clocks at ground station and satellite
positions, and distances between them measured by SLR. To simplify the
model, we consider only vertical (radial) distances ∆r. As stated above, the
current stability of atomic clocks (10−18) allows measuring the geopotential
differences ∆W with the accuracy ± 0.1m2 s−2, while mm-level accuracy of
SLR could be achieved under optimal conditions.

The geopotential differences measured by atomic clocks at ground station
and satellite positions must be referenced to the geoidal geopotential value
W0. A ground station should preferably be located near the coast to readily
establish the relation between the geopotential value of the ground station
(such as a tide-gauge station) and the geopotential value W0 at the geoid.
Alternatively, long-term GNSS measurements of the vertical position (i.e.,
the geocentric radius) of ground stations must be conducted. Both schemes
adopted in deriving observations equations for determination of the GM
value are explained below.
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To simplify the mathematical model, we disregarded the centrifugal po-
tential. The functional relation is then formulated only for the Earth’s
gravitational potential, so that:

V (r,Ω) =
GM

R

∑∞

n=0

(

R

r

)n+1
∑n

m=−n
Vn,mYn,m(Ω) =

=
GM

R

∑∞

n=0

(

R

r

)n+1

Vn(Ω) , (10)

where Vn(Ω) are the Laplace coefficients of the gravitational potential of
degree n. Separating the zero-degree spherical harmonic from higher-degree
terms in Eq. (10), we get:

V =
GM

R
+

GM

R

∑∞

n=1

(

R

r

)n+1

Vn(Ω) . (11)

Disregarding the first- and higher-degree spherical harmonics of the gravi-
tational potential, derivations are then done only for the first term on the
right-hand side of Eq. (11), i.e.:

V ≈
GM

R
. (12)

Adopted approximations in a functional model that is used (in the next
section) to derive the error propagation based on disregarding the centrifugal
potential and higher-degree spherical harmonics of the gravitational poten-
tial are permissible. For the nominal mean angular velocity of the Earth
ω = 7.292115×10−5 rad s−1 (Groten, 2000), the largest value of the centrifu-
gal potential (Φ ≈ 108159.5 m2 s−2) at the equator is two orders of magni-
tude smaller than the geoidal geopotential value (W0 = 62636854.2m2 s−2),
e.g., Dayoub et al. (2012). Similarly, the gravitational contribution of
higher-degree spherical harmonics of potential is several orders of magni-
tude smaller than the zero-degree term V = GM/R. We, therefore, can
conduct a theoretical error analysis for a simplified functional model (in
Eq. 12) without depreciating numerical findings.

3.1. Observation equation for the geopotential differences

We first define the observation equation for the geopotential difference ∆W
measured by atomic clocks. After disregarding the centrifugal potential and
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non-zero spherical harmonics of the gravitational potential, the functional
relation between GM and the gravitational potential difference ∆V = V1−V2
measured at two positions with the geocentric radii r1 and r2 is written in
the following form:

∆W ≈ ∆V = V1 − V2 =
GM

r1
−

GM

r2
. (13)

In our numerical experiment, we assumed that the geocentric radius r1 of
a ground station is determined from GNSS measurements, while the geocen-
tric radius r2 of a satellite is obtained from SLR measurements ∆r, hence
r2 = r1 + ∆r. In this way, we can treat both measurements individually
based on specific assumptions on their accuracy. The functional relation in
Eq. (13) then becomes:

∆V =
GM

r1
−

GM

r1 +∆r
= GM

∆r

r1(r1 +∆r)
. (14)

Separating GM on the left-hand side of Eq. (14), we get:

GM = ∆V
r1(r1 +∆r)

∆r
=

(

r21
∆r

+ r1

)

∆V . (15)

3.2. Observation equation for SLR vertical distances

From Eq. (12), we can define the observation equation for the vertical dis-
tance ∆r measured by SLR. We first define the geocentric radii r1 and r2
as a function of GM. We then write:

r1 =
GM

V1
, r2 =

GM

V2
. (16)

The vertical distance ∆r is obtained from Eq. (16) in the following form:

∆r = r2 − r1 =
GM

V2
−

GM

V1
. (17)

Note that the vertical distance ∆r in Eq. (17) is defined as the difference
between r2 and r1 to get its positive value, i.e., ∆r = r2 − r1. A positive
value of ∆V in Eq. (13) is obtained for ∆V = V1 − V2 because according to
the geodetic convention V1 ≥ V2.

The expression in Eq. (17) is rewritten as:
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∆r =
GM

V2V1
(V1 − V2) =

GM

V1V2
∆V =

GM

V1(V1 +∆V )
∆V , (18)

where V2 was defined as the corresponding value V1 and the potential dif-
ference ∆V .

From Eq. (18), we write:

GM =
V1(V1 +∆V )

∆V
∆r =

(

V 2
1

∆V
+ V1

)

∆r . (19)

If we consider that V1 ≈ W0, Eq. (19) becomes:

GM ∼=

(

W2
0

∆V
+W0

)

∆r . (20)

In the observation equation given in Eq. (20), the (geo)potential difference
∆V is defined with respect to the nominal value of the gravitational poten-
tial V1. Optimally V1 = W0, or V1 is linked with W0.

4. Error analysis

The observation equations in Eqs. (15) and (20) are used to derive the cor-
responding error propagation models. GNSS uncertainties in the measured
geocentric radius r1 are considered for Eq. (15), while uncertainties in the
estimated value W0 are considered for Eq. (20).

4.1. Error analysis for Eq. (15)

From Eq. (15), the total differential of the potential difference is obtained
in the following form:

dGM =

(

r21
∆r

+ r1

)

d∆V +∆V

(

2r1
∆r

+ 1

)

dr1 −∆V

(

r1
∆r

)2

d∆r , (21)

where dGM, d∆V , dr1 , and d∆r are, respectively, differentials of GM, ∆V ,
r1, and ∆r.

We can simplify Eq. (21) by setting r1 ≈ R, without affecting the accu-
racy of results. We then write:

dGM
∼= R

(

R

∆r
+ 1

)

d∆V +∆V

(

2R

∆r
+ 1

)

dr1 −∆V

(

R

∆r

)2

d∆r , (22)
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From Eq. (22), we can derive the variance of GM in the following form:

σ2GM
∼= R2

(

R

∆r
+ 1

)2

σ2∆V +∆V 2

(

2R

∆r
+ 1

)2

σ2r +∆V 2

(

R

∆r

)4

σ2∆r , (23)

where σGM, σ∆V , σr , and σ∆r are, respectively, the standard deviations of
GM, ∆V , r1, and ∆r. Assuming that GNSS, SLR, and geopotential differ-
ence measurements are uncorrelated, unknown co-variances in Eq. (23) are
disregarded.

As seen in Eq. (23), the GM’s accuracy depends on errors in measured
values of (geo)potential differences by atomic clocks, GNSS-determined ver-
tical position of ground station, and the vertical (radial) distance mea-
sured by SLR. Using the error propagation in Eq. (23), rough estimates
of GM errors can be provided for expected errors in ∆V , r1, and ∆r mea-
surements. For the frequency stability of atomic clocks 10−18, we have
σ∆V

∼= σ∆W ≈ ± 0.1m2 s−2. We further assume mm-level accuracy of SLR
measurements, i.e., σ∆r ≈ ±0.001 m, and cm-level GNSS vertical position-
ing errors; hence σr ≈ ±0.01 m. If we consider that SLR measurements
are conducted for the low orbit satellites (300 – 1200 km), we can set ∆r ≈
1× 106 m and R ≈ 6371× 103 m. Inserting these values to Eq. (23), we get:

σGM
∼=

√

R2

(

R

∆r
+ 1

)2

σ2∆V +∆V 2

(

2R

∆r
+ 1

)2

σ2r +∆V 2

(

R

∆r

)4

σ2∆r ≈

≈
√

2.2× 1013 + 1.8× 1012 + 1.6× 1011 ≈

≈±4.9× 106 [m3 s−2] . (24)

As seen in Eq. (24), the accuracy of GM is mainly affected by uncertain-
ties in measured geopotential differences, i.e., σ∆V

∼= σ∆W ≈ ± 0.1 m2 s−2.
For the stability of atomic clocks 10−18, the error in estimated value of
GM reaches σGM ≈ ±4.9 × 106 m3 s−2. Taking into consideration the ac-
curacy of GM according to the officially adopted value by IAU: σGM ≈
±0.8 × 106 m3 s−2 (Ries et al., 1992) or ±0.2 × 106 m3 s−2 (Cherrier et al.,
2022), combination of atomic clocks measurements with SLR actually wors-
ens the GM accuracy. When taking only errors in SLR measurements into
consideration in Eq. (24), their contribution σGM ≈ ±0.4 × 106 m3 s−2 is
very similar to the current accuracy of GM. Hence, relativistic measure-
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ments of the geopotential differences by atomic clocks with the stability
10−18 cannot improve the accuracy of GM. Furthermore, the current level
of GM’s accuracy (σGM ≈ ±0.8×106m3 s−2) could only be achieved with the
improved stability of atomic clocks by an order of magnitude (i.e., 10−19)
while also considering mm-level accuracy for both, SLR as well as GNSS
measurements, i.e., σ∆r ≈ ±0.001 m and σr ≈ ±0.001 m. In this scenario,
errors in atomic clocks and SLR measurements affect the accuracy of GM
at the same level. To improve the current accuracy of GM by an order of
magnitude would require a sub-millimetre accuracy of SLR and GNSS mea-
surements, i.e., σ∆r ≈ ±0.0001 m and σr ≈ ±0.0001 m, and the stability
of atomic clocks 10−20, i.e. σ∆V

∼= σ∆W ≈ ±0.001 m2 s−2. Such improve-
ment, especially in GNSS (absolute) vertical positioning, is obviously hard
to achieve.

A simulation of this numerical experiment for the laboratory conditions
with laser and atomic clocks measurements conducted on a short vertical
baseline, e.g., 10 m, are also not convincing. Despite laser measurements
could reach nanometre accuracy and atomic clock measurements could be
carried out under optimal conditions, no improvement could be expected.

4.2. Error analysis for Eq. (20)

The total differential of Eq. (20) is obtained in the following form:

dGM
∼= W0

(

W0

∆V
+ 1

)

d∆r −

(

W0

∆V

)2

∆r d∆V +

(

1 + 2
W0

∆V

)

∆r dW0
. (25)

From Eq. (25), the variance σ2
GM of GM is obtained in the following form:

σ2GM
∼= W2

0

(

W0

∆V
+ 1

)2

σ2∆r +

(

W0

∆V

)4

∆r2σ2∆V +

(

1 + 2
W0

∆V

)2

∆r2σ2W0
, (26)

where σV ≈ σW0
is the standard deviation of W0. We again assume that

SLR and the geopotential difference measurements are uncorrelated as well
as the estimated value W0.

As seen in Eq. (26), the accuracy of GM in this case depends on errors
in measured values of (geo)potential differences by atomic clocks and the
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vertical distances measured by SLR. In addition, the accuracy of W0 must
be taken into consideration.

The estimation of the reference geopotential value W0 at the geoid has
been the subject of several studies (e.g., Burša et al., 1999; 2007; Sánchez,
2007; Dayoub et al., 2012) based on analysis of satellite altimetry data
over the (ice-free) oceans. According to these studies, the effect of Earth’s
gravitational coefficients Vn,m above degree n> 120 on W0 is negligible.
Moreover, the value W0 is invariant with respect to the tide system. Burša
et al. (2007) provided the estimate W0 = 62636856.0 ± 0.5 m2 s−2 that was
adopted by IAU. Sánchez (2007) determined W0 from different mean sea
level models and global geopotential models. They demonstrated that the
choice of the models is not essential for estimating W0, while the latitudi-
nal domain of the altimetric mean sea level data plays a major role. In a
more recent study, Dayoub et al. (2012) inspected previous estimates us-
ing various methods and datasets. They confirmed the above conclusions
but reported and recommended a new value W0 = 62636854.2± 0.5m2 s−2.
They also acquired that the dependency of W0 on the latitude domain is
merely due to the mean dynamic topography (i.e., difference between time-
averaged ocean surface and the geoid). It is worth noting that estimates
of W0 by Sánchez (2007) and Dayoub et al. (2012) based on theory pub-
lished by Sacerdote and Sansò (2004) are biased due to disregarding the
Earth’s mass transport, such as sea level rise. Moreover, these estimates
relay only on data over oceans, while ignoring land mass data coverage.
Amin et al. (2019) proposed an unbiased method to estimate W0 that uses
global data coverage over land and oceans by utilizing satellite altimetry as
well as global gravitational model. Unlike previous estimates, their results
revealed that that it is not sufficient to use only the satellite-component of
a quasi-stationary GGM to estimate W0. They confirmed a high sensitivity
of applied method to the altimetry-based geoid heights, i.e., mean sea sur-
face and mean dynamic topography models. According to their estimate,
W0 = 62636848.102 ± 0.004 m2 s−2.

We again consider the frequency stability of atomic clocks 10−18, i.e.
σ∆V

∼= σ∆W ≈ ±0.1 m2 s−2, and mm-level accuracy of SLR measurements,
i.e., σ∆r ≈ ±0.001m. Moreover, we set ∆r ≈ 1×106m. Taking into consider-
ation current uncertainties in estimated value W0, i.e., σW0

≈ ±0.5 m2 s−2,
the accuracy of GM according to Eq. (26) becomes:
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σGM
∼=

√

W2
0

(

W0

∆V
+ 1

)2

σ2∆r +

(

W0

∆V

)4

∆r2σ2∆V +

(

1 + 2
W0

∆V

)2

∆r2σ2W0
≈

≈
√

2.1× 1011 + 1.7× 1013 + 4.7× 1013 ≈

≈±8.0× 106 [m3 s−2]. (27)

As seen in Eq. (27), the accuracy of GM is mainly affected by un-
certainties in measured geopotential differences and the estimated value
W0. For the stability of atomic clocks 10−18, the error in GM reaches
σGM ≈ ±8.0× 106 m3 s−2. This uncertainty is about two times larger than
corresponding uncertainty in Eq. (24). The main reason is that uncer-
tainties (±0.5 m2 s−2) in W0 estimates (equivalent to ±5 cm in terms of
geoidal heights) are much larger than errors in GNSS measurements (σr ≈
±0.01 m), see Eq. (24). If the stability of atomic clock improves by an
order of magnitude (i.e., 10−19) and the accuracy of W0 reaches mm-level
in terms of geoidal heights, the current level of GM’s accuracy could be
achieved (with our estimated uncertainty of ∼0.6×106m3 s−2 being similar
to value ±0.8×106m3 s−2 reported by Ries et al. (1992). A better accuracy
could only be accomplished, if the accuracy of all measurements improves.
For a sub-millimetre accuracy of SLR measurements, i.e., σ∆r ≈ ±0.0001m,
the stability of atomic clocks 10−20, i.e. σ∆V

∼= σ∆W ≈ ±0.001 m2 s−2, and
σW0

≈ ±0.001 m2 s−2, the accuracy of GM could be improved by an order
magnitude, i.e., σGM ≈ ±0.06×106m3 s−2. A significant improvement of the
accuracy of W0 achieved by Amin et al. (2019), i.e. σW0

≈ ±0.004 m2 s−2,
is thus very important step towards improvement of GM. It is worth noting
that a repetition of this numerical experiment for the laboratory conditions
(i.e., 10 m vertical baseline) does not show any benefit.

5. Conclusions

We have investigated the possibility of improving the accuracy of the geo-
centric gravitational constant GM by combining relativistic measurements
of the geopotential differences by atomic clocks with SLR observations. For
this purpose, we established two types of observations equations that link
the GM value with the geopotential differences (measured by atomic clocks)
and vertical distances (measured by SLR) in terms of the gravitational
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potential, while disregarding the centrifugal force and non-zero spherical
harmonics of the gravitational potential, both having negligible effect on
numerical findings in the error analysis.

According to our results, the current stability of atomic clocks (10−18 or
lower) does not provide any meaningful use of relativistic measurements to
estimate GM. A possible benefit of integrating atomic clock with SLR mea-
surements to increase the accuracy of GM becomes with improved stability
of atomic clocks by two orders of magnitude (10−20) and SLR measurements
realized with a sub-millimetre accuracy, both likely achievable in the foresee-
able future when taking into consideration the latest technological progress.
A crucial aspect is then an accurate determination of the geoidal geopo-
tential value W0 from satellite-altimetry data with a sub-millimetre level of
accuracy in terms of geoidal heights. Amin et al. (2019) demonstrated that
mm-level accuracy (or better) could be achieved.
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