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1 Geophysical Institute of the Slovak Academy of Sciences
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Abstract: Thermo-elastic strains and stresses play a considerable role in the stress state
of the lithosphere and its dynamics, especially at pronounced positive geothermal anoma-
lies. Topography has a significant effect on ground deformation. In this paper we describe
two methods for including the topographic effects in the thermo-viscoelastic model. First
we use an approximate methodology which assumes that the main effect of the topography
is due to distance from the source to the free surface and permits to have an analytical
solution very attractive for solving the inverse problem. A numerical solution using Fi-
nite Element Method (FEM) is also computed. The numerical method allows to include
the local shape of the topography in the modelling. In the numerical model the buried
magmatic body is represented by a finite volume thermal source. The temperature distri-
bution is computed by the higher-degree FEM. For analytical as well as numerical model
solution only the forces of thermal origin are considered. The comparison of the results
obtained using both analytical and numerical techniques shows the qualitative agreement
of the vertical displacements. In the numerical values small differences were obtained.
The results show that for the volcanic areas with an important relief the perturbation
of the thermo-viscoelastic solution (deformation and total gravity anomaly) due to the
topography can be quite significant. In consequence, neglecting topography could give
erroneous results in the estimated source parameters.
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1. Introduction

Extensive studies of ground deformation on volcanoes have been developed
during the last decades. Recording the surface displacements and gravity
changes that occur before, during and after the events allows to learn about
the physics of active volcanoes. Owing to this and to the high levels of
precision attainable, geophysical and geodetic techniques are proving to be
a powerful tool in the monitoring of volcanic activity.
It is well known that thermoelastic strains and stresses play a consid-

erable role in the stress state of the lithosphere and its dynamic especially
in localities with pronounced geothermal anomalies (Combs and Hadley,
1977; Teisseyre, 1986). Hvoždara and Rosa (1979) carried out a theoretical
analysis of thermo-elastic deformations of a homogeneous half-space due to a
point or linear source of heat located at a particular depth in the half-space.
They showed that thermo-elastic stresses are expansive and that consider-
ably disturb the normal lithostatic stress, especially near the surface of the
half-space. Hvoždara and Brimich (1991) presented the basic formulae and
numerical results of two important effects due to magmatic bodies in the
Earth’s lithosphere: a) static thermoelastic deformations, b) static elastic
deformations due to upward pressure. The magmatic body was represented
by a finite volume source of heat in the first model and by a concentrated
vertical force in the second one. The formulae for gravity anomaly due to
non-uniform extension connected with thermo-elastic deformations was de-
rived by Hvoždara and Brimich (1995).
Theoretical models can be used to optimally design the volcano monitor-

ing, especially when no information exists about prior episodes of ground
deformation, since the pattern and rate of surface displacement reveal the
depth and physical phenomena that are taking place within the magma
reservoir. The models frequently used to interpret the geodetic data mea-
sured in volcanic areas, typically compute the deformation field and gravity
changes at the surface of an elastic half-space due to a buried point source
and assume that topography does not significantly affects the results, but
volcanoes are commonly associated with significant topographic relief. The
approximation of Earth’s surface as flat can lead to erroneous interpreta-
tion of the deformation data (e.g., Cayol and Cornet, 1998; Williams and
Wadge, 1998, 2000; Folch et al., 2000). Williams and Wadge (1998, 2000)
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and Cayol and Cornet (1998) pointed out that topography has a large effect
on predicted surface deformation by elastic models in regions of significant
relief. The interpretation of ground-surface displacements with flat half-
space models can lead to erroneous source parameter determination. Cayol
and Cornet (1998) found that the steeper the volcano, the flatter the vertical
displacement field. Folch et al. (2000) showed that this result is dramat-
ically emphasized in the visco-elastic case, where topography changes in a
very important way both the magnitude and the pattern of the displace-
ment field. Besides they showed that neglecting the topographic effects
may in some cases introduce an error greater than the implicit in the point
source hypothesis. In summary, several studies reach the conclusion that
the topography has a significant effect on deformation field that can lead to
erroneous estimation of source parameters.
Few works take into account the topographic effects on gravity changes

(e.g., Charco et al., 2007; Currenti et al., 2007; Trasatti and Bonafede,
2009). Charco et al. (2007) compute displacements and gravity changes
produced by volcanic loading by using an Indirect Boundary Element Me-
thod. They carried out several theoretical tests and applied the numer-
ical methodology to take into account the real topography of Teide vol-
cano (Tenerife, Canry Islands). The magnitude and pattern of the gravity
changes are significantly different from those of half-space solutions. Apply-
ing a Finite Element method Currenti et al. (2007) study the effect of both
topography and medium heterogeneities. They found that perturbations on
gravity changes are more evident in the presence of severe heterogeneities
as in the case of volcano summit.
Previously, Charco et al. (2002) study the topography effects in thermo-

viscoelastic surface deformation and gravity changes by using the approxi-
mate methodology proposed by Williams and Wadge (1998) that assumes
a different source depth at each point for which the solution is desired. This
methodology provides an approximate analytical solution for a heat source,
very attractive for solving the inverse problem. On the other hand, in
this work we carried out a numerical modelling based on the finite element
computations to compute the thermoelastic deformations due to an under-
ground heat source. Two identical models, with and without cone-shaped
topographical feature, are processed. The influence of the topography is
obtained from the comparison of both numerical and analytical solutions.
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2. Analytical model

The solution of displacements time evolution and stresses due to a sudden
action of a point source of heat buried in a visco-elastic half-space (with
the flat surface) was presented in Hvoždara (1992). Fundamental equations
for the uncoupled thermo-visco-elastic problem for a point heat source lo-
cated at depth ζ are given in Nowacki (1962). Thermo-visco-elastic gravity
anomaly on the surface is given by Brimich (2000).
Charco et al. (2002) propose a simple method for including topographic

effects in a 3D thermo-visco-elastic model that allows source depth to vary
with the relief. This methodology was introduced by Williams and Wadge
(1998) and permits to get analytical approximate solutions (quasi-analytical
solutions) even if we relaxed the restriction of a free flat surface. To study
the topographic effect, the relief of an area may be represented by a volcanic
axi-symmetrical cone with height H and average slope of the flanks α. The
main effect of topography is a reduction of vertical displacement and gravity
change magnitude in regions of higher relief, as other authors have pointed
out. Thus, neglecting the topography may lead to a misinterpretation of
the volume change and depth of the source. It also showed a change in the
pattern of total gravity changes.
Varying depth methodology gives a reasonable approximation of the to-

pographic effect if it is due primarily to the distance of the free surface to
magma chamber rather than the local shape of free surface (Williams and
Wadge, 1998; 2000). Charco (2007) develops a 3D indirect boundary ele-
ments method for the analysis of the elastic deformation field and gravity
changes. Vertical displacement computed by varying depth methodology
matched the numerical solution as Williams and Wadge (1998) showed.
Although topographic effects on radial displacements decrease with increas-
ing source depth, which is consistent with the idea that the effect is due to
differences in distance between the free surface and source location, radial
displacements are also affected by some other factors. The effects of con-
sidered ground relief obtained with the varying depth methodology are not
very important for thermo-visco-elastic radial displacements. These results
should be tested using a numerical method that permits to include local
shape of topographic relief and circumvent the approach made by Charco
et al. (2002).
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3. Numerical model

Displacement and gravitational anomalies approach their static values slowly,
i.e., thermo-visco-elastic problem and thermo-elastic problem become the
same for large characteristic. Therefore at such times the thermo-visco-
elastic quasi-analytical solution described before can be used to compare
with the static numerical solution computed by FEM. In this work, we have
used the finite element method to include the topography effect in the ther-
moelastic solutions. The principles and basics of finite-element method are
generally known and are described in numerous monographs (e.g. Irons and
Ahmad, 1986; Babuška and Szabo, 1990). All the computations are obtained
by the COMSOL Multiphysics R© software (http://www.comsol.com). Al-
though numerical methods are time consuming, their results are more pre-
cise than the analytical approximate solutions since they allow to include
structural characteristics of the medium as the topography.
The models are homogeneous, isotropic, axi-symmetric with respect to

the vertical axis. In this way, the 3D rock massif has been modelled by an
axi-symmetric section with respect to the vertical axis passing through the
heat source (see Fig. 1) with 2 versions – with and without topographical
feature modelling the volcano cone (of 2 km height). The summit of the
volcano is located over the thermal source. The domain horizontal length
is 120 km and the vertical span is from +2 to –38 km in order to minimize
the influence of the external boundaries. The heat source is modelled by
the spherical body in the 5 km depth. In the computation only the forces
of thermal origin are considered.
At the first step, the domain was divided into finite elements. The mesh

corresponding to each plane section is formed by 19568 triangular elements.
In the neighborhood of the thermal source, the mesh is refined into smaller
elements due to the large gradients of computed fields in this area. Figure 1
shows the mesh detail. We compute the temperature field by solving the
static heat transfer equation:

∇(λT · grad T ) = w, (1)

with T as the unknown temperature field and w as the thermal source power
density. Table 1 shows the physical parameters of the media and source for
the computation of temperature field. The center of the source is located at
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Fig. 1. Detail of the mesh for numerical model with topography (topography height
2000 m over the flat upper surface) close to the source area. The heat source is identified
by the arrow.

Table 1. Physical parameters of the media and source for the computation of temperature
field

5 km depth (i.e., 7 km if we consider the volcanic cone). Surface topography
would be more realistic if a thermal flux was prescribed by using a bound-
ary condition of Neumann type but for simplicity, we impose a boundary
condition of Dirichlet type at the upper model boundary (Fig. 1). The tem-
perature on the lower horizontal boundary is also constant. We solved heat
equation in static case, therefore, it is not necessary to involve the specific
heat of material.
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Table 2. Physical parameters used for the solution of the elasticity equations in a homo-
geneous media

The input physical parameters used for the subsequent solution of the
elasticity equations are given in Table 2. These parameters specified in Ta-
bles 1-2 were taken for typical volcanic rock – granite. The solution region is
a homogeneous medium, thus the parameters have been considered constant
over the domain without taking into account their temperature dependence.
Theoretical expressions for Young Modulus, E, and Poisson ratio, ν, as the
functions of temperature are given for example in Obetková et al. (1990).
The Lamé system of equations (with thermoelastic terms) for displace-

ment field for axi-symmetric case (e.g. Seremet, 2010) can be written as:
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where λ, μ are Lamé elastic paramaters, θ = ∂ur/∂r + r−1ur + ∂uϕ/r∂ϕ+
∂uz/∂z is the thermoelastic volume dilatation due to the temperature field
T , ∇2 = ∂2

/
∂r2 + r−1∂/∂r + r−2∂2

/
∂ϕ2 + ∂2

/
∂z2 is Lapalce’s differen-

tial operator. The unknown displacement field is u = (ur, uϕ, uz)T. The
term, proportional to temperature gradient, represents the forces of ther-
mal origin, no other external forces are considered. γ = (2μ+ 3λ)αT is the
thermoelastic coefficient, αT is the coefficient of the linear thermal expan-
sion of medium – shown in Table 2 for our case.
The bottom part of the boundary is considered fixed (zero displace-

ments), the vertical part of the margin is fixed only in horizontal direction.
The upper part of the boundary is set free. The fixed part of domain bound-
ary may be considered sufficiently far away since the area of main interest
is immediately over the thermal source.
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4. Results and discussion

The complete set of temperature and subsequent displacement fields were
performed by a FEMmodelling and simulation software COMSOLMultiphy-
sics R©. The postprocessing procedure gives the distributions of the strain
tensor components εrr, εzz, εφφ and εrz but the goal of this work is to esti-
mate the topographic effect on the displacement field and strain.
Figures 2–3 illustrate the horizontal and vertical components of the dis-

placements of the model with topography. Figures 4–7 display the com-
ponents of the strain tensor. The differences of the surface displacements
between models with and without topography in the neighborhood of the
topography are shown in Figures 8–9.
We have compared the results for both quasi-analytical and numerical

models in the static case at the level z = 0. The amplitude and location
of the maximum differences of the vertical displacement have been com-
puted. In both cases, maximum difference points are located near the cone
summit that represents the topographic relief. For quasi-analytical model –
Charco et al. (2002) – the maximum difference between varying depth and
flat half-space vertical displacement solution is 0.07 m at 3.25 km horizontal
distance from source. The maximum difference of 0.2 m is located at 3.5 km
horizontal distance from source for the FEM solution.
Disagreement between numerical and quasi-analytical results could be

caused by the following effects:

– While quasi-analytical solution is for 3D axi-symmetric and point heat
source model, the numerical (FEM) solution was modelled for finite vol-
ume heat source.

– As it has been shown by other authors (Williams and Wadge, 1998,
2000; Charco, 2007) the elastic vertical displacement computed by vary-
ing depth method includes the topographic effects in an approximate way
without considering the local shape of the relief.

Taking into account the heat source power (Table 1) and the elastic and
thermoelastic parameters of rock (Table 2), we can roughly estimate the
thermo-elastic force density caused by the heat source at the summit of the
volcano. It is around 7 × 103 N.m−3, which could fairly correspond to the
20 cm vertical displacements difference.
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Fig. 2. The computed horizontal component of the displacement field (m).

Fig. 3. The computed vertical component of the displacement field (m).
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Fig. 4. The computed normal εrr – component of the strain tensor.

Fig. 5. The computed normal εzz – component of the strain tensor.
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Fig. 6. The computed normal εφφ – component of the strain tensor.

Fig. 7. The computed normal εrz – component of the strain tensor.
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Fig. 8. The comparison of the horizontal displacements for both variants of the model
for the level z = 0 (m). The “foothill” marks the horizontal distance where the volcano
topography starts.

Fig. 9. The comparison of the vertical displacements for both variants of the model for
the level z = 0 (m). The meaning of foothill print is the same as in Fig. 8.
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The cone slope angle used in the model is 20◦. The corresponding value of
vertical displacement computed by analytical method (Charco et al., 2002)
for the topography of the same slope is according to Fig. 2 in Charco et al.,
(2002) approximately 7 cm (in the surface point over the heat source).
In Fig. 9 we can see that the difference in the vertical displacements for

both variants of the model (with and without topography) computed by
FEM procedure is about 1.74 cm (over heat source). This difference could
be attributed to the geometrical difference of the models and to the different
application of boundary conditions resulting from different nature of used
methods.

5. Conclusions

For the thermo-viscoelastic case the vertical and radial surface displacements
were computed for various topography patterns. In the thermoelastic case
the temperature and heat flux fields for the models with and without to-
pography were computed. Following this, the differences of displacements
and deformation tensor components were determined.
Figures 2–4 in Charco et al. (2002) show the reduction of the displace-

ment field and gravity changes magnitude in regions with higher topography
due to the greater distance from the source of heat to the free surface. In
volcanic areas of greater relief the perturbation of the thermo-viscoelastic
solution (deformation and total gravity anomaly) due to topography can be
quite significant. Vertical displacements and gravity changes are strongly
influenced by the topographic effect if we use the analytical approximation,
but this effect in radial displacements is less important. This fact should be
tested using a numerical method that permits to include the local shape of
the topography, the larger effect in the radial displacements. Therefore the
topography may significantly affect the surface displacements and gravity
changes computed for magma chamber represented by a heat point source
and neglecting the topography may produce erroneous source parameter
determination.
Thus, we can conclude that any model that neglects the topographic ef-

fect could cause same error in the estimation of surface displacements and
gravity changes or in the determination of the characteristics of the intrusion
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if we use the model to solve the inverse problem. The methods described in
this work can be very suitable to more complex models that consider sources
of different geometries and allow elastic properties of the medium to vary
with depth. While the analytical approximate methodology can be very
attractive for solving the inverse problem, the numerical method described
above may be used to include the topography when accurate solution is de-
sired since it permits the consideration of non-uniform elastic and thermal
properties of the medium and the local shape of the Earth’s surface.
The aim of our work was to estimate the influence of the surface topog-

raphy on the thermoelastic (thermoviscoelastic) deformations. Modeling
of the real volcano was out of scope of this contribution. Therefore the
mechanical forces due to initial emplacement of magmatic body were not
taken into account as well as considering the fractures and other mechanical
nonlinearities.

Acknowledgments. This research was mainly supported by Grant 2/0107/09
of VEGA, the Slovak Grant Agency. The research by M. Charco was supported by
200930I053 MICINN project. Research by J. Fernández was supported with funds from
research project AYA2010-17448 and has been done in the frame of the Moncloa Campus
of International Excellence (UCM-UPM, CSIC).

References
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