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Abstract: Lagos Island faces challenges from coastal hazards and inadequate infrastruc-

ture, making precise geoid modelling essential for urban planning, flood risk assessment,

and infrastructure development. This study addresses discrepancies in height references

and emphasizes the need for accurate geoid data to support spatial planning and disaster

management. The main objective is to create a geoid model tailored to Lagos Island’s

unique geography and infrastructure needs. The research combines the Global Naviga-

tion Satellite System (GNSS) and levelling data which created a reliable framework for

determining geoid heights with high precision across Lagos Island. The methodology uses

spirit levelling to obtain orthometric heights and GNSS technology, precisely Promak2

differential GNSS Receiver, to collect positional data. Ninety stations were surveyed

to ensure comprehensive area coverage. This data was used to develop a geoid model

through geometrical interpolation, accurately representing the local geoid surface. In the

independent test, where 10 points were excluded from interpolation, the modelled geoid

heights showed an RMSE of 0.2 metres, with the largest and smallest absolute deviations

being 0.4 metres and 0.01 metres, respectively. In the non-independent test, where all

points were used for interpolation, the comparison between the computed (observed) and

modelled geoid heights at the same points showed a mean deviation of −0.3 metres. The

RMSE and standard deviation were both 0.1 metres, confirming the model’s accuracy in

determining the local geoid. This demonstrates its suitability for precise local geoid de-

termination in Lagos Island, providing a valuable tool for spatial analysis, infrastructure

planning, and disaster mitigation. The study highlights the importance of integrating

traditional surveying techniques with modern GNSS technology to address coastal urban

challenges.
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1. Introduction

Geodesy is the “science of the measurement and mapping of the Earth’s
surface” (Helmert, 1880). This definition has to this day retained its va-
lidity; it includes the determination of the Earth’s external gravity field as
well as the surface of the ocean floor. With this definition, which has to be
extended to include temporal variations of the Earth and its gravity field,
geodesy may be included in the geosciences and also in the engineering sci-
ences (Helmert, 1880).

Geodesy aims to determine the geoid, which represents the equipotential
surface of the earth’s gravity field and coincides with the mean sea level.
The geoid is smoother than the physical surface but more irregular than the
ellipsoid. It has a clear physical meaning as it can be measured over oceans,
but it is not used for computations because it lacks a mathematical repre-
sentation. Essentially, the geoid provides an accurate figure of the earth’s
shape, but its irregularity limits its use in mathematical computations (Erol
and Çelik, 2022; Deakin, 1996).

Ellipsoidal and geodetic heights are purely geometric and lack physical
meaning, making them unsuitable for practical applications in surveying,
engineering, and geophysics (Kotsakis, 2007). Surveying equipment is typ-
ically aligned with the local gravity vector, meaning that measurements
based on ellipsoidal heights cannot meet the requirements of these fields
(Featherstone et al., 1998). Since ellipsoidal heights do not correspond to
any physical reference, they must be transformed into a height system that
can serve practical surveying and geodetic purposes. Without this transfor-
mation, ellipsoidal heights have limited use in real-world applications.

Determination of geoid has been one of the main research areas in the
Science of Geodesy for decades. According to the widespread use of GNSS
in geodetic applications, great attention is paid to the precise determina-
tion of local/regional geoid to replace the geometric levelling, which is very
onerous measurement work, with GNSS surveys.

GNSS technique provides the surveyor with three-dimensional coordi-
nates, including ellipsoidal heights (h) with respect to its reference ellipsoid,
the geocentric WGS84 (World Geodetic System, 1984). As in GNSS mea-
surements, geodesists have chosen an oblate ellipsoid of revolution, flattened
at the poles, to approximate the geoid to simplify survey data reduction and
mapping.
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However, most surveying measurements are made in relation to the geoid,
which is the equipotential surface of the earth’s gravity field, not ellipsoid
because the equipment is aligned with the local gravity vector, which is
perpendicular to the geoid surface, usually through the use of a spirit bub-
ble (Featherstone et al., 1998). Because of these facts, ellipsoidal heights
can’t satisfy the aims in practical surveying, engineering or geophysical ap-
plications as they have no physical meaning and must be transformed to
orthometric heights (H), which are referred to as geoid, to serve the geode-
tic and surveying applications. To accomplish this transformation between
ellipsoidal heights and orthometric heights, it is necessary to determine their
undulation (N). A WGS84 ellipsoidal height (h) is transformed into an or-
thometric height (H) by subtracting the geoid-WGS84-ellipsoid separation
(N), called geoid undulation. Depending on data availability and accuracy
requirements, there are two principal approaches for determining geoid mod-
els, which are utilised to transform GNSS ellipsoidal heights to orthometric
heights. These approaches include a gravimetric method and interpola-
tion between geometrically derived geoid heights using the benchmarks of
which three-dimensional coordinates and orthometric heights have been de-
termined according to GNSS and levelling measurements.

This study focuses on the geoid modelling technique based on the ge-
ometrical interpolation approach by fitting a surface that depends on the
reference points that will be chosen in the critical and characteristic loca-
tions of the field to represent the trend of the geoid surface. Empirical
geoidal undulations for all points will be computed using the orthometric
heights and the ellipsoidal heights. A multiple regression model will also
be formulated in this project work as the required geometrical model to
adjust the derived geoid adjust the derived geoid further, adjust the derived
undulations further adjust the derived geoid undulations using a surface
interpolation (kriging) approach, the coordinate and the computed geoidal
heights of some well-selected points will be utilised gridding. This will be
used as a model for generating the geoidal heights of any other arbitrary
points whose coordinates are known.

1.1. Geoid modelling

There are different methods for modelling geoid, either local or global models
derived as part of a global or regional geodetic infrastructure. Globally, the
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determination of the geoid has been carried out by various researchers. Dif-
ferent geoid modelling techniques have been detailed in Alem et al. (2016),
Nwilo et al. (2012), Atomode (2019), Featherstone and Sproule (2006), Tata
and Ono (2018), Raufu and Tata (2022), Tata and Okiemute (2021), Ki-
amehr and Sjöberg (2005), Idowu et al. (2014), Fotopoulos (2003), Denker
et al. (2009), Deakin (1996), Erol and Çelik (2022), Dayoub et al. (2012),
Jekeli and Garcia (2006), Moka et al. (2006), Hirt and Bürki (2006).

1.2. Study area

The study area (Figure 1a) is Lagos Island Local Government Area, in Lagos
State, South-Western, Nigeria which is located at 6◦ 30′ 0′′ N – 6◦ 45′ 0′′ N,
3◦ 30′ 0′′ E – 3◦ 45′ 0′′ E. It falls within an area of 9 sq. kilometres approx-
imately with a perimeter of about 11.52 Lagos Island Local Government
Area is regarded as a disparate settlement because the area serves as both a
commercial centre and a residential area. The areas that formed the Local
Government include Adeniji Adele, Obalende, CMS, Marina district, etc
(Dauda, 2007). Figure 1b shows a 2D map of the study area indicating the
spatial distribution of specific points or stations where data collection or
observations were made. The red dots on the map represent the locations
of the stations used in the study. Each station is marked with a unique
identifier (e.g., A1, A2, A3, etc.) and the stations are spread across the
entire study area.

2. Methods

The data utilized for the research were acquired from both primary and sec-
ondary sources. In this study, these include orthometric heights which were
obtained from spirit levelling as well as ellipsoidal height using the Global
Positioning System (GNSS), several common points (benchmarks) were ob-
served using both GNSS and levelling. The GNSS was used in rapid static
differential mode for five minutes per station. The coordinate of the con-
trol point was collected from the Surveyor General office in Alausa, Lagos.
Geoid heights of the observed stations were obtained from both ellipsoidal
heights from the GNSS observations and orthometric heights from the lev-
elling of each observed station.
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(a)

(b)

Fig. 1. Map of the study area (a), source: Atomode (2019); (b) showing a 2D map of the
study area.
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Therefore, 5-a parameter transformation model was used in developing
a local geoid model for the area of study. The coefficient of the trans-
formation model was computed using least square techniques. The com-
puted geoid height and modelled geoid height were compared to evaluate
the performance of the model. The developed model was used to build a
computational tool for determining local geoid over the study area. This
computational tool is developed to compute the geoid height and also the
orthometric height of observed points within the area of study.

2.1. GNSS observation procedures

This is the core of the methodology where all possible data are gathered
systematically according to the pre-arranged scheme. Here we carried out
the kinematic GNSS positioning following the rules from the succeeding
stage. The nitty-gritty of the steps taken during data acquisition is outlined
below.

2.1.1. Base station occupation

The first step of the GNSS observation was to occupy the master station.
This was done with the steps of orientation (i.e. placing the tri-bach on the
tripod, centring the tripod on the nob of the control beacon with the optical
plummet, ensuring the stability of the tripod around the beacon and finally
levelling the instrument on the tripod. This is done after fixing the master
receiver on the tri-bach, and then making sure it is horizontally levelled by
using the tri-bach skews to adjust the spirit level).

Thereafter, the necessary connection was made:

GNSS antenna GNSS receiver radio antenna

2.2. Levelling data deduction

The collimation method, also known as the height of instrument (HI)
method, was used to determine the orthometric heights of various points
relative to a known benchmark. For this operation to be performed, a two-
peg test must be carried out to determine if the quality and accuracy of the
instrument meet the standard for the operation Table 1. In this research,
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the operation was carried out in closed-loop levelling nets in order to obtain
the height differences between the points.

To begin, the levelling instrument was set up between the benchmark
and the points to be measured. A backsight reading was taken on a lev-
elling staff placed on the benchmark, and this reading was added to the
benchmark’s known elevation to calculate the height of the instrument –
Eq. (1). Subsequent, foresight readings were taken at the points where the
elevation was to be determined. The elevation of each point is then found
by subtracting the foresight reading from the height of the instrument –
Eq. (2). This process was repeated for multiple points, and if the instru-
ment needed to be moved, the last foresight reading became the backsight
reading for the new setup.

It is very important to carry out checks on the observed backsight, fore-
sight and computed reduced-level readings. These checks will assist the
observer in detecting possible gross errors as well as misclosure. For this
research, checks were carried out at each loop using Eq. (3).

This Reduced level (RL) is the height of a point relative to a specific ref-
erence plane, typically mean sea level or a benchmark. The term “reduced”
indicates that the elevation has been adjusted relative to this common da-
tum, allowing for consistent comparisons across different locations.

Table 1. Two-peg test computation.

setup back sight foresight difference
(mm) (mm) (mm)

1st setup true height difference 1.554 1.552 0.001

2nd setup apparent difference 1.560 1.558 0.002

error difference 0.001

The collimation error for the two-peg test was found to be 0.001 mm and
0.002 mm, indicating that the instrument is in good order and can be used
to carry out observations.

HC = RL + BS , (1)

RL = HC− FS/IS , (2)

Check:
∑

BS −

∑

FS = first RL− last RL , (3)
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where BS = backsight, FS = foresight, IS = intermediate sight, RL = re-
duced level and HC = height of collimation.

2.3. Geoid height (N) computation

GNSS/Leveling geoid of the observed point was computed from Eq. (1) as
stated below:

NNGNSS/Lev = h−H , (4)

where H and h are the orthometric and ellipsoidal height of points, respec-
tively.

The former was obtained from the levelling operation, while the latter
was obtained from the GNSS observation. This computation was done using
Microsoft Excel.

2.4. Local geoid modelling

In modelling the local geoid of the study area, the 5-parameter transforma-
tion model used by Fotopoulos (2003) was adopted. The expression is given
in Eq. (5).

The 5-parameter transformation model with model coefficients xi can be
expressed as:

N(X,Y ) = x1 + x2 cos Yi cosXi + x3 cosYi sinXi + x4 sinYi +

+ x5 sin2 Yi , (5)

coefficients of transformation: N = geoidal heights, (X,Y ) = easting and
northing coordinates.

In this research work, there are ninety (90) control points which were
uniformly distributed within the area of study. These points have their
precise horizontal and vertical locations with respect to easting (x) and
northing (y), the ellipsoidal heights (h) and the orthometric height (H).

The 5-parameter transformation models in Eq. (5) are defined by using
the geoidal separation ‘N ’ and the horizontal coordinates x, and y of the
control points. Considering the polynomial in Eq. (5), at least with ninety
control points whose N, x, y is known, the coefficients from x1 to x5 were
computed thus defining the exact mathematical relation. Thereafter, this
model was used to obtain the N value for any location by inserting the
horizontal coordinates x and y.
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In this study, ninety control points whose geoidal undulation, easting and
northing coordinates were used in computing the model coefficients of the
5-parameter transformation model (Eq. (5)) using least square techniques.

2.5. Least squares adjustment technique

The computation of the polynomial coefficients was done by the observation
equation method of the least square adjustment technique. The observation
equation of least square observation was presented by matrix notation as
given by Ono et al. (2018):

V = Ax− L , (6)

x = (ATA)
−1

ATL , (7)

where A = design matrix, x = vector of unknowns, L = observation matrix,
and V = residual matrix.

2.6. Formation of matrix A

Matrix A was formed by partial derivatives of the coefficients ai as regards
(X,Y ). Matrix A is the matrix of the coefficient of the unknowns. The
dimension for A matrix is mAn which is the number of observations (m)
by the number of unknowns (n). So, when forming matrix, A, one must
first determine the actual number of observations and unknown parameters.
The number of unknown parameters formed the column of matrix A, while
the number of observations forms the row of matrix A.

Matrix A was formed for the 5-parameter transformation model. It is
expressed as:

Am×93 =















1 cosϕi cos λi cosϕi sinλi sinϕi sin2ϕi
...

...
...

...
...

1 cosϕm−1 cos λm−1 cosϕm−1 sinλm−1 sinϕm−1 sin2ϕm−1

1 cosϕm cos λm cosϕm sinλm sinϕm sin2ϕm















.

2.7. Formation of matrix L

Matrix L is the matrix of observations. It has a dimension of mL1, where
m is the number of observations. For this study, we have a matrix of 90×1
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for the observation matrix, which means we will have ninety (90) rows and
one (1) column. Observation matrix L is the ∆N value for each station. N
was calculated using Eq. (4). The matrix L is expressed as follows:

Lm×1 =





















N(Xi, Yi)

N(Xi+1, Yi+1)
...

N(Xm−1, Ym−1)

N(Xm, Ym)





















. (8)

2.8. Vector of unknowns/model parameter x

Since matrices A and L have been formed, the vector of unknowns/model
parameter x was computed using Eq. (7):

x = (ATA)
−1

ATL .

The vector of unknowns/model parameter x was computed for the 5-para-
meter transformation model using this Eq. (5).

2.8.1. Vector of residuals V

Matrix V is the matrix of residual. It has a dimension of mV 1 where ‘m’ is
the number of observations. Therefore, the vector of residual is computed
for the transformation models by using Eq. (6).

MATLAB program was written to compute the vector of unknowns/model
parameter x and the vector of residual V .

Aposterior variance was computed using the formula:

Aposterior variance =

√

V TV

m− n
, (9)

where m = number of observations, n = number of parameters.

2.9. Assessment of the model performance

The performance of the developed model from the 5-parameter transfor-
mation model used in modelling the local geoid of the study area was as-
sessed by using the coordinates of some observed stations to compute the
geoidal height of the same points. Therefore, the geoid height computed
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from the model was compared with the observed computed geoid height.
Performance measures like root mean square error (RMSE) and standard
deviation were used in this study for performance assessment of the local
geoid model for the study area.

The average RMSE calculated in this way offers a more accurate picture
of the performance of the local geoid model selected as a prediction sur-
face for a new point. Root mean square error and standard deviation were
computed using Eq. (10):

RMSE =

√

√

√

√

√

n
∑

i=1

(yi − xi)

n
. (10)

3. Results and discussion

3.1. Ellipsoidal and orthometric heights

Results of the ellipsoidal and orthometric heights for the observed stations
are shown in Table 2. The table consists of results for the northing and
easting coordinates, ellipsoidal height, and computed orthometric height of
each observed station.

3.1.1. Validation of geoid model

Table 3 shows ten (10) points excluded from the total ninety (90) points
observed for the study used to independently validate the performance of
a geoid model by comparing its predictions (modelled heights) with actual
measurements (computed heights). In Table 4, the computed geoid height
represents the actual geoid height that was computed at each station. The
modelled geoid height is the predicted geoid model at each station while
the difference is between the computed geoid height and the modelled geoid
height for each station. The difference values show how closely the modelled
geoid height fits the computed geoid height at each station. Positive values
indicate that the model predicted a lower height than was computed, while
negative values indicate the opposite. MSE and RMSE provide overall mea-
sures of how well the model performs across all stations. Lower values indi-
cate a better fit. Aposterior variance reflects the variability of the model’s
errors after adjusting for the data, which was useful in understanding the
reliability of the model’s predictions.
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Table 2: Result of ellipsoidal and orthometric heights (sample data extracted from the
complete data).

station easting northing ellipsoidal orthometric
codes (mE) (mN) heights (m) heights (m)

A1 546728.547 712534.687 0.998 1.216

A2 543064.991 714592.260 0.945 1.236

A3 546584.191 712575.344 1.184 1.225

A4 546454.116 712525.569 0.936 1.303

A5 546389.977 712546.083 0.939 1.315

A6 546327.234 712377.094 1.114 0.908

A7 546328.260 712211.135 0.366 0.215

A8 546370.269 712043.095 −0.327 −0.059

A9 546366.513 711981.195 −0.356 −0.043

A10 546205.795 711967.274 −0.217 −0.002

A11 546050.028 711958.468 −0.263 −0.128

A12 545921.508 711998.202 −0.648 −0.360

A13 545801.161 712018.163 −0.649 −0.427

A14 545667.78 712084.133 −0.600 −0.452

A15 545551.059 712093.195 −0.595 −0.325

A16 545345.473 712163.113 −0.244 0.115

A17 545220.466 712207.210 −0.084 0.220

A18 545014.456 712219.580 −0.186 0.112

A19 544847.851 712167.669 −0.045 0.225

Table 3. Showing validation of the geoid model.

station computed geoid modelled geoid difference
height(m) height(m) (m)

A1 −0.22 −0.24 0.02

A2 −0.29 −0.28 −0.01

A3 −0.04 −0.28 0.24

A4 −0.37 −0.26 −0.11

A5 −0.38 −0.22 −0.15

A6 0.21 −0.23 0.43

A7 0.15 −0.27 0.42

A8 −0.27 −0.23 −0.04

A9 −0.31 −0.23 −0.08

A10 −0.22 −0.25 0.03

MSE 0.05

RMSE 0.22

Aposterior
variance 0.18
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3.1.2. Computed geoid heights result

The results of computed geoid heights for some of the observed stations are
shown in Table 4.

Table 4. Result of computed geoid heights (sample data extracted from the complete data
of 90 points).

station easting northing computed geoid height
codes (mE) (mN) (m)

A1 546728.547 712534.687 −0.218

A2 543064.991 714592.260 −0.291

A3 546584.191 712575.344 −0.041

A4 546454.116 712525.569 −0.367

A5 546389.977 712546.083 −0.376

A6 546327.234 712377.094 0.206

A7 546328.260 712211.135 0.151

A8 546370.269 712043.095 −0.268

A9 546366.513 711981.195 −0.313

A10 546205.795 711967.274 −0.215

A11 546050.028 711958.468 −0.135

A12 545921.508 711998.202 −0.288

A13 545801.161 712018.163 −0.222

A14 545667.780 712084.133 −0.148

A15 545551.059 712093.195 −0.270

A16 545345.473 712163.113 −0.359

A17 545220.466 712207.210 −0.304

A18 545014.456 712219.580 −0.298

A19 544847.851 712167.669 −0.270

3.1.3. Computed vector for unknown parameters (x)

The result of the vector for unknown parameters (x), which was the coef-
ficient of the 5-parameter transformation model as given by MATLAB is
presented in Table 5.

The 5-parameter transformation models in Eq. (5) of the local geoid
model can be expressed as:

N(ϕ, λ)N(ϕ, λ) =− 0.2633 + 0.0102 cosϕi cos λi − 0.0017 cosϕi sinλi +

+ 0.0268 sinϕi + 0.0137 sin2ϕi .
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Table 5. Result of vector of unknown parameters for 5-parameter transformation model.

5-parameter transformation model

coefficient values

a0 −0.2633

a1 0.0102

a2 −0.0017

a3 0.0268

a4 0.0137

3.1.4. Differences between computed geoid height and modelled
geoid height results

The comparison of computed geoid height and the model geoid height com-
puted from a developed model for 90 stations is summarized in Table 6.

Table 6. Differences between the computed geoid height and model geoid height computed
from the developed model.

station geoid height modelled geoid diff. in geoid
(N) height (devN) height (N−devN)

A1 −0.22 −0.27 0.06

A2 −0.29 −0.38 0.09

A3 −0.04 −0.28 0.23

A4 −0.37 −0.28 −0.09

A5 −0.38 −0.28 −0.10

A6 0.21 −0.28 0.48

A7 0.15 −0.28 0.43

A8 −0.27 −0.27 0.01

A9 −0.31 −0.27 −0.04

A10 −0.22 −0.27 0.06

A11 −0.14 −0.27 0.14

A12 −0.29 −0.27 −0.02

A13 −0.22 −0.27 0.05

A14 −0.15 −0.27 0.12

A15 −0.27 −0.27 0.00

A16 −0.36 −0.27 −0.09

A17 −0.30 −0.27 −0.04

A18 −0.30 −0.26 −0.03

A19 −0.27 −0.26 −0.01

The graphical representation of computed geoid height and modelled
geoid height of observed points are described in Fig. 2. The computed geoid
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height is shown in the blue line while the modelled geoid height is repre-
sented in orange colour. The modelled geoid height showed little variation
at some points while there is a large variation at some points which can be a
result of variation in terrain which is not accounted for in the model. How-
ever, the modelled geoid height still shows the approximate representation
of the true nature of the terrain of the study area and it can be adopted for
local geoid modelling within the study area.

Fig. 2. Graphical representation of the computed and modelled geoid heights.

Figures 3 and 4 show the contour maps of the computed geoid height
and modelled geoid height, respectively. Surfer 10 software was used to
plot the contour map, kriging gridding method was applied at 0.003 m and
0.06 contour intervals. The contour maps have the same patterns which
indicate that both (computed geoid height and modelled geoid height) are
the true representation of the terrain. The surface model for the modelled
geoid height approximately follows the same slope as the surface model for
the computed geoid height which indicates that both are natural height
systems.

3.2. Analysis of results

The statistics of the computed geoid height and modelled geoid height are
summarized in Table 7 in terms of maximum deviation (max.), minimum
deviation (min.) and mean deviation (mean).
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Fig. 3. Contour map of the computed geoid height.

Fig. 4: Contour map of the modelled geoid height.

Table 7 shows the maximum deviation for the computed geoid height
and modelled geoid height is 0.35 m and 0.22 m respectively with the mod-
elled geoid height having the least maximum deviation value. The computed
geoid height also has the least minimum deviation value of −0.28 m when
compared with that of the modelled geoid height with a value of −0.57 m.
The mean deviation for computed geoid height and modelled geoid height is
−0.25 m and −0.25 m, respectively. The modelled geoid height also has the
same mean deviation value although the difference in their value is minor
and not significant.
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Table 7. Statistics of the computed geoid height and modelled geoid height.

statistics computed geoid height modelled geoid height
(N) m (devN) m

max. 0.35 0.22

min. −0.57 −0.28

mean −0.25 −0.25

4. Conclusion

In this research, a local geoid model was developed for local geoid determi-
nation in the study area using GNSS and levelling data from 90 stations.
GNSS and levelling data were processed to get the northing, easting, ellip-
soidal height and orthometric height of observed stations. Therefore, the
geoid height of observed stations was obtained from the difference between
ellipsoidal height and orthometric height of each observed station.

The 5-parameter transformation model was used in developing a local
geoid model for the study. The coefficient of the transformation model
was computed using least square techniques. The aposterior variance was
0.1899 m. Geoid heights were computed from this model and the values
were compared with the computed geoid height.

The study compared the computed and modelled geoid heights in a study
area. The computed geoid height had the least maximum deviation of 0.35 m
and minimum deviation of −0.57 m, while the modelled geoid height had
the least maximum deviation of 0.22 m and minimum deviation of −0.28 m.
The modelled geoid height showed some variation, possibly due to terrain
variations. However, it accurately represents the true terrain of the study
area and can be used for local geoid modelling within the study area. The
model’s standard deviation and root mean square error were calculated,
and it can be used to compute geoid heights at any point in the area. The
local geoid model developed in this research is hereby recommended for ac-
curate local geoid determination in the study. Furthermore, the developed
computational tool is recommended for computing geoid height and also
orthometric height of points within the area of study.
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