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Abstract: We present mathematical modelling of the stationary geothermal field for the
two-layered Earth which includes a three-dimensional perturbing body below the first
layer (in the substratum). The body is in the form of 3D prismoid with sloping side faces,
while its upper and lower face are rectangles at the planes z = z1, z2. The theoretical
formulae are based on the generalized theory of the double-layer potential and boundary
integral equation (BIE). Special attention is paid to the quadrilateral prismoids bounded
by planar skew faces. The numerical calculations were performed for the 3D prismoids
(blocks) with thermal conductivity different to the ambient substratum, while the upper
face of the prismoid may be in contact with the upper layer. Numerous graphs are shown
for the disturbance of the heat flow on the surface of the Earth or inside the first layer.
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1. Introduction

The heat flow from the Earth’s interior is of interest in geothermal prospect-
ing based on geothermal models (e.g., Ljubimova et al., 1983; Chen and
Beck, 1991). The refraction effect in geothermics occurs also due to the
presence of a 3D or 2D perturbing body of different thermal conductivity
λT with respect to the “normal” surrounding horizontally layered medium of
thermal conductivity λ1 if the body is embedded in the 1st layer, 0 < z < h,
or if the body is embedded in the substratum z > h of thermal conductivity
λ2 (Fig. 1). The paper of Hvoždara and Valkovič (1999) solved this problem
for the rectangular prism and Hvoždara (2008) for the prismoid in the first
layer. The similar solution for the prismoid situated below the first layer,
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Fig. 1. The x, z cross-section of the 3D perturbing prismoid situated in the substratum
of the two layered Earth.

i.e. in the substratum halfspace signed as “2”, is a purpose of this paper.
This situation occurs in the geological media when the depression of the
first layer penetrates into substratum (graben structure in the sedimentary
basin).
A physical qualitative analysis clearly indicates that a well-conducting

body (λT > λi, i = 1, 2) attracts heat flux lines to its interior, while a poorly
conducting body (λT < λi) deflects heat flow lines away. It means that we
can expect a positive heat flow anomaly on the surface above the well-
conducting body, whereas in the second case a negative heat flow anomaly
is expected. Note that the perturbance of the heat flow due to some ad-
ditional heat sources in the anomalous body is not a subject of this paper
although in nature such combined effects have been studied, e.g., in Ljubi-
mova et al. (1983).
Some analytical mathematical models of this effect exist, e.g., Carslaw

and Jaeger (1959). The 2D finite difference method has also been applied,
e.g., Majcin (1988). For 2D disturbing bodies, embedded in the halfspace,
the boundary element method (BEM) has proved to be an effective tool
for numerical modeling, e.g., Chen and Beck (1991) and also in Hvoždara
and Majcin (2009). In this paper we present the BEM theory applied on
model situations with prismoid in two layered medium and numerical cal-
culations for this perturbing body, quadrilateral prismoid with upper and
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bottom faces parallel with planes z = 0, h. The upper face of the prism is
rectangle in the plane z = z1 ≥ h and the bottom face is rectangle in the
plane z = z2, (> z1) as shown in Fig. 1 for the cross-section of the prismoid
in the x, z plane.

2. Theoretical background

The theoretical formulation is similar to that in our previous papersHvoždara
(1982; 2007), which solved mathematically similar potential problems of
geoelectricity, and to the geothermal problem in Hvoždara and Valkovič
(1999) and Hvoždara (2008).
The unperturbed stationary temperature field linearly dependent on

depth z only, is denoted as T1(z) for z ∈ 〈0, h〉 and T2(z) for z > h. A
simple check shows that the formulae for T1(z) and T2(z) are:

T1(z) = q0z/λ1, z ∈ 〈0, h〉, (1)

T2(z) = q0(z − h)/λ2 + q0h/λ1, z > h, (2)

where q0 is the unperturbed heat flow density. These functions obey the
Laplace equation and continuity of the temperature and heat flow λ∂T/∂z
at the boundary z = h.
Due to the presence of perturbing body τ the temperature fields are

changed both in layer “1” and substratum “2” by anomalous temperatures
U∗
1 (x, y, z) and U

∗
2 (x, y, z). The total temperature fields are:

U1(P ) = T1(P ) + U
∗
1 (P ), (3)

U2(P ) = T2(P ) + U
∗
2 (P ), (4)

where P ≡ (x, y, z) is the calculation point. The perturbation parts of
U1(P ) and U2(P ) obey the Laplace equations

∇2U∗
1,2(P ) = 0, (5)

with zero limit for P → ∞ in all directions from the perturbing body. The
theoretical analysis of the problem shows that we have to find the regular
solution of the boundary value problem for the Laplace equation in media
“1”, “2” and in perturbing body τ , where the temperature field is denoted
as UT (P ):
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∇2U∗
1 (P ) = 0, ∇2U∗

2 (P ) = 0, ∇2U∗
T (P ) = 0, (6a,b,c)

lim
P→∞

U∗
1 = 0, lim

P→∞
U∗
2 = 0, |UT (P )| < +∞, P ∈ τ (7a,b,c)

U1(P )|z=0 = 0, (8)

U1(P )|z=h = U2(P )|z=h , λ1
∂U1(P )
∂z

∣∣∣∣
z=h
= λ2

∂U2(P )
∂z

∣∣∣∣
z=h

, (9,10)

U2(P )|S = UT (P )|S , λ2
∂U2(P )
∂n

∣∣∣∣
S
= λT

∂UT (P )
∂n

∣∣∣∣
S
. (11,12)

Here ∂.../∂n denotes the derivative with respect to the outer normal n to
the surface S of the 3D body τ . This potential problem is mathematically
similar to the geoelectrical problems solved earlier by Hvoždara (1982; 1995;
2007). The only principal difference is in the boundary condition (8) which
says that the temperature on the surface of the Earth is isothermal, this
constant temperature can be taken as zero on our (auxiliary) temperature
scale. This is expressed by the formulae (1) and (8).
Using an apparatus very similar to the geoelectrical problem mentioned

(by means of Green’s boundary integral equations in complex media) it
can be proved that the solutions of our potential problem is the sum of
the unperturbed temperatures and boundary integrals which express the
perturbation part of the temperature field. Namely

U1(P ) = T1(P ) +
1
4π

∫
S

f(Q)
∂

∂nQ
G1(P,Q) dSQ, (13)

U2(P ) = T2(P ) +
1
4π

∫
S

f(Q)
∂

∂nQ
G2(P,Q) dSQ, (14)

UT (P ) =
λ2
λT

⎡
⎣T2(P )− v0 +

1
4π

∫
S

f(Q)
∂

∂nQ
G2(P,Q) dSQ

⎤
⎦+ v0, (15)

whereG1(P,Q) andG2(P,Q) are the Green’s functions and ∂G1,2(P,Q)/∂nQ

denote their derivatives with respect to the outer normal nQ on the surface
of the perturbing body. The surface S of the perturbing body is assumed
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to be piecewise smooth in Lyapunov’s sense. The function f(Q) expresses
the distribution of the double-layer density distributed on surface S, it must
be determined by solving the boundary integral equation as will be shown
next. Point Q ≡ (x′, y′, z′) is the moving point shifted along S. A constant
v0 is the mean value of the unperturbed temperature T2(P ) on the surface
S:

v0 =
1
S

∫
s

T2(P ) dSP . (16)

3. The Green’s functions and the boundary integral equation

Boundary conditions (7a,b,c) and (8)–(10) can be fulfilled by the proper
determination of Green’s functions. These Green’s functions G1, G2 must
obey 3D partial Poisson’s or Laplace’s equation:

∇2G1(P,Q) = 0, z ∈ 〈0, h〉 (17)

and

∇2G2(P,Q) = −4πδ(P,Q), z > h, (18)

where δ(P,Q) is a 3D Dirac function whose pole is at point Q ≡ (x′, y′, z′) ∈
τ . These Green’s functions satisfy similar boundary conditions on z = 0,
and z = h as the temperature field:

G1(P,Q)|z=0 = 0, (19)

[G1(P,Q)−G2(P,Q)|z=h = 0, (20a)

[λ1∂G1(P,Q)/∂z]z=h = [λ2∂G2(P,Q)/∂z|z=h , (20b)

lim
P→∞

G1,2(P,Q)
∣∣∣∣ = 0. (21)

Physically G1(P,Q) or G2(P,Q) represents the temperature of the point
heat source located at point Q ∈ “2” and calculated for point P in the
upper layer (G1(P,Q)) or in substratum G2(P,Q). But the common source
multiplicator q0/(4πλ2) is replaced by 1 in order to satisfy the Poisson’s
equation (18), which has the non-trivial solution:
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g2(P,Q) = 1/R =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2
, (22)

since∇2(1/R) = −4πδ(P,Q). The remaining part ofG2(P,Q), i.e. G̃2(P,Q)
satisfies the Laplace equation.
Let us choose an auxiliary cylindrical system (r, ϕ, z) whose polar axis

runs through point Q perpendicularly to boundaries z = 0 and z = h.
Green’s functions will then be independent of azimuthal angle ϕ and the
Laplace equation for harmonic functions G̃1(P,Q) and G̃2(P,Q) takes the
form:

∂2G̃

∂r2
+
1
r

∂G̃

∂r
+
∂2G̃

∂z
= 0. (23)

The particular solution can be found by applying the method of separation
of variables:

G̃(r, z) = J0(tr)

{
etz

e−tz , (24)

where J0(tr) is the Bessel function of the 1st kind and zero order. G1(r, z)
and G2(r, z) can be expressed as:

G1(r, z) =

∞∫
0

A1 sh(tz)J0(tr) d t, (25)

G2(r, z) =
[
r2 + (z − z′)2

]−1/2
+

∞∫
0

A2e
−tzJ0(tr) d t. (26)

It is clear that the radial coordinate r is expressed in the original Cartesian
co-ordinate system as:

r =
[
(x− x′)2 + (y − y′)2

]1/2
. (27)

It can be easily verified that the Green’s function G1(P,Q) obeys the bound-
ary equation (19) at surface z = 0. In order to find functions A1 and A2,
we express 1/R in terms of the Weber-Lipschitz integral:

216



Contributions to Geophysics and Geodesy Vol. 41/3, 2011 (211–233)

1
R
=

∞∫
0

e−t|z−z′|J0(tr) d t, (28)

accounting that at z → h we must put |z − z ′| = z′ − z, since z′ > z. In
order to satisfy the boundary conditions at z = h we obtain the system of
linear equations for A1, A2:

A1 sh(th)−A2e
−th = e−t(z′−h),

A1 ch(th) + (λ2/λ1)A2e
−th = (λ2/λ1)e

−t(z′−h). (29)

We can easily solve this system:

A1 = 2(1 + k)e
−tz′

[
1− ke−2th

]−1
, (30)

A2 = (k − e−2th)e−t(z′−2h) [1− ke−2th
]−1

, (31)

where

k = (1− λ1/λ2)/(1 + λ1/λ2). (32)

Now we can use the well-known expansion of factor [1− ke−2th]−1 into the
infinite geometrical series:

[
1− ke−2th

]−1
=

∞∑
n=0

kne−t2nh, (33)

since |ke−2th| < 1. Using the Weber-Lipschitz integral in (25) and (26) we
obtain convenient expressions of G1(P,Q) and G2(P,Q):

G1(P,Q) = (1 + k)
[
R−1 −R−1

+

]
+ (1 + k)

∞∑
n=1

kn
[
R−1
1n −R−1

2n

]
, (34)

G2(P,Q) = R
−1 − (1− k2)R−1

+ + kR
−1
h − (1− k2)

∞∑
n=1

knR−1
2n , (35)

where

R−1
+ =

[
r2 + (z + z′)2

]−1/2
, R−1

h =
[
r2 + (2h− z − z′)2

]−1/2
,

R−1
1n =

[
r2 + (z′ − z + 2nh)2

]−1/2
, R−1

2n =
[
r2 + (z′ + z + 2nh)2

]−1/2
.
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Note that if λ2 = λ1, i.e. k = 0 we obtain a simple two-term Green’s
function: R−1 − R−1

+ for the whole halfspace z > 0. Now we can derive
the boundary integral equation (B.I.E) for determining the function f(P ),
which is necessary to calculate the temperatures (13)–(15). Assume that
perturbing body τ is not in contact with any of its faces (parts of boundary
S) having planar boundaries z = 0 or z = h. If point P approaches the
surface (S) from inside (P → S−) or from outside (P → S+), singularity
in G2(P,Q) occurs due to the well-known term R−1. This singularity can
be treated using the classical theory of the potential double layer (e.g.,
Hvoždara (1995)). After applying the limit transition (13) yields

lim
P→S+

U2(P ) = T2(P ) +
1
2
f(P )+

1
4π

∫
S

\ f(Q) ∂

∂nQ
G2(P,Q) dSQ, P ∈ S, (36)

where the backward slash on the integral sign denotes an integration in the
principal sense, i.e. the integration of the part with ∂R−1/∂nQ is performed
over the whole surface S with the exception of the infinitesimally small area
ΔSp around point P ∈ S, where ∂R−1/∂nQ has a integrable singularity.
The integration of this singular term on ΔSp resulted in the contribution
1
2f(P ) in Eq. (36).
A similar limit transition in (15) from the interior of S reads (P → S−):

lim
P→S−

UT (P ) =

=
λ2
λT

⎡
⎣T2(P )− v0 − 12f(P ) +

1
4π

∫
S

\ f(Q) ∂

∂nQ
G2(P,Q) dSQ

⎤
⎦+ v0. (37)

The negative sign of term 1
2f(P ) is well-known in the theory of the clas-

sical double-layer potential as a discontinuity of the double-layer potential
on the supporting surface S. According to the boundary condition (11) the
r.h.s. of Eqs. (36) and (37) must be equal, after some algebra we obtain the
BIE for calculation of the double-layer density f(P ):

f(P ) = 2β [T2(P )− v0] +
β

2π

∫
S

\ f(Q) ∂

∂nQ
G2(P,Q) dSQ, P ∈ S (38)

where β = (1 − λT /λ2)/(1 + λT /λ2). Since the normal derivative of the
kernel ∂2R−1/∂nQ∂np is continuous on the supporting surface S we can
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easily check the validity of the boundary condition (12).
The boundary integral solution of our problem is now completed. The

BIE (38) can only be analytically solved in some simple cases, but for the
block body it must be treated numerically, in analogy (e.g., Brebbia et al.,
1984; Hvoždara, 2007) with the approach using the boundary element meth-
ods (BEM).
For the practical purpose it is important to study also the case when the

body τ touches to its upper face Sh: (z = z1) the planar boundary z = h,
which approximates the depression of the sedimentary basin. In this case
there are two singular terms in G2(P,Q) for points P ∈ Sh; those are R−1

and kR−1
h . The analysis like that in the paper by Hvoždara and Valkovič

(1999) will give modified BIE instead of (38):

f(P ) = 2α [T2(P )− v0] +
α

2π

∫
S

\\ f(Q) ∂

∂nQ
G2(P,Q) dSQ, (39)

where α =

{
β if P /∈ Sh,

β/(1 − kβ) if P ∈ Sh.

The double slash on the integral sign of BIE (39) indicates that there are
omitted contributions due to two singular terms (R−1 and kR−1

h ) for P ∈ Sh,
while for P /∈ Sh there are omitted only contributions due to R−1.

4. Calculation of the solid angle of view for the triangle and
quadrangle subarea with general orientation of its normal

The crucial part of numerical calculations of BIE consists of the calculation
of integrals with the kernel of type of the double-layer potential: n′ · (r −
r′)|r − r′|−3 over a small subsurface ΔFj which is the part of surface S of
the perturbing body τ . Then the basic task is in the reliable calculation
of such integrals for the triangle planar subarea ΔFj with corners ABC as
shown in Fig. 2:

ΔAj =
∫
ΔFj

n′ · (r − r′)
|r − r′|3 dSQ = −ΔΩj, (40)
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Fig. 2. The parameters for calculation of solid angle of view onto triangular subarea.

where Q(r′) is the variable point on the subarea ΔFj . By using the classical
knowledge on the Gaussian integral for the double-layer potential, we see
that ΔΩj is the solid angle of view from the point P (r) onto planar triangle
subarea ΔFj with outer normal n′ ≡ (n′x, n′y, n′z) ≡ nQ. The formula given
by Ivan (1994) is reliable for the calculation of ΔAj and we used it in
previous papers Hvoždara (2007; 2008). Later, we found simpler guide for
calculation ΔAj published in the paper Guptasarma and Singh (1999). We
adopted their method in the present paper.
Geometrical situation of the point of view P and triangular subarea with

vertices ABC is depicted in Fig. 2. The points PABC form a tetrahedron
with vertice P and triangular base ABC. The position of vertices ABC with
respect to the point P is given by vectors p1,p2,p3 while circulation around
the triangle is counterclockwise. The normal n′ onto triangular subarea is
of unit length and has fixed orientation for the whole triangle ABC. Using
the basic theory of spherical trigonometry we can calculate the solid angle
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of view from the point P onto triangular area ABC by means of Girard’s
formula:

ΔΩj = (ψ1 + ψ2 + ψ3 − π) · inp. (41)

Here ψ1 is the inner angle between planes PAB and PBC, ψ2 is similar
angle between PBC and PCA and finally the third angle ψ3 is defined for
planes PCA and PAB. These angles are depicted on the dashed triangle
E1, E2, E3 in Fig. 2. The number inp = ±1 is signum of the scalar product
p1 ·n′. If this scalar product is zero, then inp = 0 and ΔΩj = 0 because the
point P lies in the plane which contains also subarea ABC, so the solid angle
of view must be zero. Let us define outer normals n1,n2,n3 on the faces
PAB, PBC and PCA of the tetrahedron. These vectors are of unit length
and can be calculated by the vector products and their absolute values:

n1 = (p2 × p1)/|p2 × p1|,
n2 = (p3 × p2)/|p3 × p2|,
n3 = (p1 × p3)/|p1 × p3|. (42)

Now consider the situation at the edge p2 where the planes PAB and
PBC intersect, forming the angle ψ1. According to the scheme in the Fig. 3
it is clear that cosψ1 can be calculated as:

cosψ1 = n1 · (−n2) = −n1 · n2. (43)

Similar scalar products give also:

cosψ2 = n2 · (−n3) = −n2 · n3, cosψ3 = n3 · (−n1) = −n3 · n1. (44)

E1

E2

E3
ψ1ψ1 n2

−n2
−n2

n1
Fig. 3. Scheme of calculation of angle ψ1 by means of scalar product n1 and −n2.
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From the definition of the tetrahedron it is clear that each angle ψi is less
than π, so their values can be calculated by the standard subroutine arcos
(ACOS) in Fortran. By substitution into formula (41) we have ΔΩj. Note
that the value ψ1 + ψ2 +ψ3 − π is known as an excess of spherical triangle.
Using this algorithm we can calculate integrals of the type:

vij =
∫
ΔSj

(ri − r′) · n′
j

|ri − r′|3 dSQ = −ΔΩij, (45)

where ri is positional vector for the point of view P (ri) and ΔSj is triangular
subarea with outer normal n′

j and point Q(r
′) is moving on the subarea.

It must be stressed that this algorithm, when applied to the whole closed
boundary S (with piecewise continuous normal nQ), must give with high
precision, better than 10−3, the well known fundamental values of the Gauss
integral:

∫
S

∂

∂nQ

1
|r − r′| dSQ =

∫
S

n′ · (r − r′)
|r − r′|3 dSQ =

��

��

0, P (r) ∈ Ext(S)
−2π, P (r) ∈ S

−4π, P (r) ∈ Int(S)
. (46)

It is clear that if the closed surface is divided into large number M of
subareas ΔSj then formula (46) gives the check values:

M∑
j=1

ΔΩij =
��

��

0, P (ri) ∈ Ext(S)
2π, P (ri) ∈ S

4π, P (ri) ∈ Int(S)
. (47)

These check values must be verified at numerical solution of the BIE, as
well as at calculation of U1(P ), U2(P ). For the calculation of integral (40)
by means of (41) we successfully realized our original subroutine SLAGUP3
and tested it for the prismoids, like that we show in Fig. 1. We have found
that the subdivision of the sloped planar faces of the prismoid into a set
of triangle subareas is rather awkward and leads to a large number of sub-
areas. So we decided to improve the algorithm into quadrilateral subareas
ΔSj, with four vertices T1, T2, T3, T4, while normal nQ is constant for the
whole face of the prismoid. In this manner we decrease the number of sub-
areas onto one half in comparison with triangle case ΔFj. The calculation
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of the solid angle of view for the quadrangle is performed by application
of SLAGUP3 for triangle ΔT1T2T3 and then for ΔT3T4T1. The scheme of
subdivision for some of six quadrilateral faces of the prismoid is shown in
Fig. 4. The subroutine SLAGUP4 gives values of the Gauss integral (46)
i.e. (−4π,−2π, 0) with accuracy of at least 4 decimal digits. Let us note

T2

T3T4

T1

V1 V2

V3 V4

Q

nQ

Fig. 4. Scheme of the quadrilateral face of the prismoid and its subdivision into quadri-
lateral subareas like T1T2T3T4. Note that opposite sides are divided into equal number of
intervals, e.g. sides V1, V2 and V3, V4 have 8 segments.

that the demands on the computing time and memory were greater than
for the similar problem with rectangular faces, because of the more com-
plicated algorithm of calculations of the solid angle ΔΩj. In the numerical
calculations it is necessary to store x, y, z coordinates of vertices for each
subarea, as well as coordinates of its centre, which increases demands on
computer time and memory. Also, we note that components of nQ are the
same for every subarea ΔFj of the quadrangle face of the prismoid.

5. Numerical calculations and discussion

The numerical calculations were performed in a similar way as in Hvoždara
(1995; 2007; 2008), noting that the Green’s function G1(P,Q), G2(P,Q)
are given by the infinite series (34) and (35). Nevertheless, the principal
terms are again R−1, R−1

+ and R
−1
h = [r2 + (2h− z − z′)2]−1/2. The special

cases when the perturbing body touches the planar boundary z = h of the
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layer “1” must be treated by the BIE (39). The BIE (38) can be solved by
the collocation method. It means that the surface S of the perturbing body
is discretized into M quadrilateral subareas ΔSj whose centres we denote
as Pm or Qj . It is also assumed that each subarea is small enough to put
f(Q) = f(Qj) = const on it. So we introduce the constant approximation
of an unknown function f(Q) on ΔSj. Putting the number M sufficiently
large, we can express the BIE (38) in its discretized form:

f(Pm) = 2γ[V1(Pm)− v0] +
M∑

j=1

f(Qj)W (Pm, Qj), m = 1, 2, . . . ,M. (48)

Here γ = β if the body does not touch at the point Pm the planar boundary
of the upper layer and attains slightly changed values α as given in (39)
if the prismoid is in contact with planar boundary z = h. The weighting
coefficients W (Pm, Qj) are given by the formula:

W (Pm, Qj) =
γ

2π

∫
ΔSj

\ ∂

∂nQ
G2(Pm, Q) dSQ . (49)

The integration in the principal value sense was explained in comment to
the formulae (38) and (39). It follows that W (Pm, Qj) cannot be infinite
even if Pm ≡ Qm.
In fact, the formula (48) is the system of M linear equations for the

unknown values f(Qj). This system can be expressed as follows:

M∑
j=1

[δmj −W (Pm, Qj)] f(Qj) = 2γ [V1(Pm)− v0] , m = 1, 2, ...,M , (50)

where δmj is the Kronecker symbol. Then the system of equations can be
solved using known methods of linear algebra. Once the system (50) is
solved, we can calculate the temperature field and other geothermal char-
acteristics, namely the vertical component of the heat flow density qz or its
anomaly Δqz.
We checked this algorithm for a prismoid with rectangular bottom and

top face while side faces are quadrilaterals. The upper face of the prismoid
is a rectangle and it lies at the depth z1 ≥ h, the bottom rectangle is at the
depth z2 > z1, so the prismoid is situated in the substratum. The central
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depth plane of the prismoid is hT = (z1+z2)/2. This block is situated in the
substratum with thermal conductivity λ2, the thickness surface layer being
h. The thermal conductivity of the prismoid is set to λT = λ1, as some
model of penetration (depression) of the upper medium into substratum
and we suppose λ2 = 0.4λ1, i.e. substratum is less conductive in compari-
son to prismoid.
The subdivision of each face was performed by introducing the numbers

of division (> 5) for edges of each pair of opposite sides of the trapezoid,
which is a general form of some face of the prismoid as shown Fig. 4. The
x, y, z coordinates of vertices for each subarea in the form of quadrangle
are stored, since they are used as vertices T1, T2, T3, T4 for repeated call of
calculations of the solid angle of view by means of subroutine SLAGUP4.
The direction cosines of the unit normal nQ remain constant for each trape-
zoidal planar face of the prismoid. Let us note that for solving the system
(50) for each of the central points Pm there must be calculated weighting
coefficients W (Pm, Qj) for all sets of point Qj, while in the Green’s func-
tion we must treat by using SLAGUP4 at least contributions from R−1,
and also from R−1

h . If we choose the subdivision of each trapezoidal face
into 64 quadrangle subareas, we obtain 6× 64 = 384 =M surface elements
ΔSj, which contribute into the summation approximation of the boundary
integrals. After solution of linear equation system (50) we obtain f(Qj)
for individual subareas and then we calculate the temperature field in the
plane y = 0 for equidistant levels z ∈ 〈0, 1.2z2〉 using formula (13) with
the summation approximation of the boundary integral. For those selected
z-levels we also calculated the vertical heat flow density qz by the difference
of temperatures at neighbouring levels z:

qz(x, y, zj) = λ1 [U1(x, y, zj +Δz)− U1(x, y, zj)] /Δz, (51)

where Δz = h/20. For the surface z = 0 there is

qz(x, y, 0) = λ1U1(x, y,Δz)/Δz, (52)

in view of the boundary condition (8). We calculated a number of models,
but here we present graphs for three models only. The first model is for
the prismoid in contact with the layer (z1 = h) and in the second model
prismoid is slightly separated z1 = 1.2h. In both cases the thickness of the
prismoid is quite large z2 − z1 = h and ratio λT /λ2 = 2.5 while λ1 = λT .
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Hvoždara M., Majcin D.: Refraction effect in geothermal heat flow. . . (211–233)

-1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

x/h

z/h
U (x, 0, z)/Th

zp/h

0.34
0.64
1.50
1.81

-1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6
0.00

0.26

0.52

0.78

1.04

1.30

1.56

1.82

z1, xl, xr, yl, yr = 1.00, -1.50, 1.00, -1.00, 1.00m
z2, xl, xr, yl, yr = 2.00, -1.20, 0.80, -0.50, 0.50m
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λ1 = 1.0, λ2 = 0.4, λT = 1.0W/(Km)
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Fig. 5a. Isolines of temperature (top) and profile curves of the vertical heat flow (bottom)
in the plane y = 0 for the prismoid in the substratum, which is in contact with the
boundary z = h and parameters given in the bottom box table (λT /λ2 = 2.5).
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Fig. 5b. Isolines and profile curve of qz/q0 at the surface z = 0 for prismoid with
λT /λ2 = 2.5. There is also depicted projection of the prismoid with sloped faces. The
gray rectangle is projection of the bottom face.
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Fig. 6a. Isolines of temperature (top) and profile curves of the vertical heat flow (bottom)
in the plane y = 0 for the prismoid in the substratum, which is below the upper layer,
z1 = 1.2h and parameters given in bottom box table (λT /λ2 = 2.5).
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Fig. 6b. Isolines and profile curve of qz/q0 at the surface z = 0 for prismoid with
λT /λ2 = 2.5 and buried below the first layer z1 = 1.2h. There is also depicted projection
of the prismoid with sloped faces. The gray rectangle is projection of the bottom face.
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Fig. 7a. Isolines of temperature (top) and profile curves of the vertical heat flow (bottom)
in the plane y = 0 for the prismoid in the substratum, which is below the upper layer,
z1 = 1.2h and parameters given in bottom box table (λT /λ2 = 0.4).
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Fig. 7b. Isolines and profile curve of qz/q0 at the surface z = 0 for prismoid with
λT /λ2 = 0.4 and buried below the first layer z1 = 1.2h. There is also depicted projection
of the prismoid with sloped faces. The gray rectangle is projection of the bottom face.
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The third model is geometrically identical with the second one, but the ratio
λT /λ2 = 0.4.
The results for the first model are presented in Figs. 5a,b. In Fig. 5a we

present the temperature field U(x, 0, z) normalized to the normal tempera-
ture on the bottom of the layer Th = q0h/λ1. The isolines of U(x, 0, z)/Th

can be considered as isotherms in the layer “1”, part of substratum “2” and
also in the prismoid for the plane y = 0. We can see that till the depth
z/h = 0.8 the course is almost parallel with the lines z = const, but in the
neighbourhood of the prismoid faces these are considerably deformed. In
the bottom part of Fig. 5a we also present the profile curves of qz(x, 0, zp)/q0
calculated for 4 values of zp/h. The first two smooth profile curves belong to
depths zp/h < 1, i.e. inside the layer “1”. The graphs for zp/h = 1.5, 1.81
are marked with discontinuities at the sloped faces of the prism. In Fig. 5b,
we plotted the map of the surface heat flow anomaly, with the qz calculated
by the formula (52). We see that the heat flow anomaly attains almost 22%
of q0. In this figure we depicted also the projection of the bottom rectangle
z = z2 (gray) and larger upper rectangle. The parameters of the model
prismoid are given in the box tables in each figure, namely: for the larger
upper rectangle face of the prismoid at the depth z1, xl, xr, yl, yr are x, y
coordinates (left, right) of the corners; similar values z2, xl, xr, yl, yr con-
cern the bottom (smaller) rectangle of the prismoid at the depth z2. In
each table there are also given values used for normalization: Th = 10K,
q0 = 10W/m2, h = 1m and also used values of thermal conductivities
(λ1, λ2, λT ). In Figs. 6a–b there are presented characteristics of the tem-
perature field similar to Figs. 5a–b. We can see that even a small separation
of the prismoid from the layer causes considerable differences in calculated
fields. Figs. 7a,b present resulting graphs for the model of high conductive
substratum “2” with low conductive prismoidal inclusion (λT /λ2 = 0.4 and
also layer “1” is of low conductivity λ1/λ2 = 0.4. In Fig. 7a we can see
different course of isotherms and also of profile curves of qz/q0. The map
of surface heat flow in Fig. 7b shows a negative anomaly. Finally we can
state that we have proved applicability of BIE method also for deeply buried
prismoids of more general shape then the rectangular prism.
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