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Abstract: We introduce the generic expressions for computing the gravitational field
(potential and its radial derivative) generated by an arbitrary density (contrast) layer
with a variable depth and thickness having a laterally-distributed radial density variation.
The information on the geometry and density distribution of a volumetric mass layer is
described by means of spherical harmonics. These generic expressions can uniformly be
applied to model all major known density structures within the Earth’s interior using
methods for a spherical harmonic analysis and synthesis of the gravitational field. This
is demonstrated on specific examples given for various density models commonly adopted
for the approximation of crust density structures.
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1. Introduction

The methods for a spherical harmonic analysis and synthesis of gravity field
have been utilised in the gravimetric forward modelling by a number of au-
thors. For the literature overview of these methods we refer readers to Ten-
zer et al. (2010b). Assuming a constant density distribution, Sünkel (1968)
derived the expressions for computing the topographic and topographic-
isostatic potentials by means of spherical height functions. Pavlis and Rapp
(1990) developed the global isostatic gravitational model complete to degree
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360 (based on the Airy-Heiskanen isostatic hypothesis) by combining low-
degree satellite-derived geopotential models with the harmonic coefficients
of the topographic-isostatic potential (taking into consideration also the
gravitational effect of the continental ice). More complex density distribu-
tion models were taken into consideration in order to improve the accuracy
of the gravimetric forward modeling of the Earth’s density structures in-
cluding the atmosphere. A more refined form of spectral expressions which
takes into account the lateral density distribution was presented by Sjöberg
(1998) and others. A change of atmospheric density with elevation was as-
sumed in computing the atmospheric gravitational effects, for instance, by
Sjöberg and Nahavandchi (2000). Tenzer et al. (2011a) facilitated a depth-
depended seawater density model in computing the bathymetric stripping
gravity corrections. Tenzer et al. (2010a) derived and applied expressions
for computing the ice density contrast stripping corrections to gravity field.
Tenzer et al. (2011b) introduced expressions for computing the gravitational
field generated by the laterally varying and homogeneous mass density con-
trast layer with a variable depth and thickness in terms of spherical har-
monics. These expressions allow the fast and effective gravimetric forward
modelling of density structures within the Earth’s crust based on currently
available global crustal models. For a more realistic approximation of geo-
logical and other density structures and an improvement of the numerical
efficiency more complex density models can be used which take into con-
sideration both, the lateral and depth-dependent density variations. One
example can be given by sedimentary basins where the density increases
with depth due to compaction (cf. Artemjev et al., 1994). In this study
we formulate the expressions for computing the gravitational field quanti-
ties generated by an arbitrary mass density (contrast) layer with a variable
depth and thickness having a laterally distributed radial density variation.
We demonstrate that these generic expressions can uniformly be applied
in the gravimetric forward modelling of all major Earth’s inner density
structures. Theoretical principles are reviewed in Section 2. The generic
expressions are introduced in Section 3. In Sections 4–6, we apply these ex-
pressions for computing the gravitational field of density structures which
are approximated by volumetric layers with specifically defined density dis-
tribution models. Examples of applying these generic expressions in the
forward modelling of the topographic and (bathymetric, ice, sediments and
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consolidated crust components) stripping gravity corrections are given and
discussed in Section 7. The summary and concluding remarks are given in
Section 8. We note that the application of isostatic models (see e.g., Pavlis
and Rapp, 1990) is out of the scope of this study.

2. Gravitational field of volumetric layer, density model

In the context of the gravimetric forward modelling of the Earth’s inner
density structures, we formally distinguish two cases representing the grav-
itational contributions of density masses distributed above and below the
geoid surface. In spherical approximation, the gravitational potential V
generated by an arbitrary volumetric mass density layer beneath the geoid
surface with a variable depth and thickness computed at a position (r,Ω) is
defined by the following spatial representation of Newton’s volume integral

V (r,Ω) = G
∫∫
Φ

∫ R−DU (Ω′)

R−DL(Ω′)
ρ

(
r′,Ω′) �−1 (

r, ψ, r′
)
r′2dr′ dΩ′. (1)

For the volumetric layer above the geoid surface, the potential V reads

V (r,Ω) = G
∫∫
Φ

∫ R+HU (Ω′)

R+HL(Ω′)
ρ

(
r′,Ω′) �−1 (

r, ψ, r′
)
r′2dr′ dΩ′, (2)

where G = 6.674 × 10−11m3kg−1s−2 is Newton’s gravitational constant;
R = 6371 × 103m is the Earth’s mean radius (which approximates the
geocentric radius of the geoid surface); DU and DL are the depths (reck-
oned relative to the sphere of radius R) of the upper and lower bounds
of the volumetric layer (beneath the geoid surface), respectively; HU and
HL are the corresponding heights for the volumetric layer above the geoid
surface; � is the Euclidean spatial distance between positions of the com-
putation point (r,Ω) and the integration (running) point (r ′,Ω′), and ψ
is the respective spherical distance; dΩ′ = sinφ′ dφ′ dλ′ is the infinitesi-
mal surface element of the unit sphere; the full spatial angle is denoted
as Φ = {Ω′ = (φ′, λ′) : φ′ ∈ [−π/2, π/2] ∧ λ′ ∈ [0, 2π]}; and ρ(r′,Ω′) is the
mass density function. The 3D position is defined in geocentric spherical
coordinates (r, φ, λ), where r is the geocentric radius and Ω = (φ, λ) denotes
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the geocentric direction with the geocentric spherical latitude φ and longi-
tude λ. The density function ρ(r′,Ω′) within the volumetric mass layer in
Eqs. (1) and (2) is approximated by the laterally distributed radial density
variation model using the following polynomial function (for each lateral
column)

ρ
(
r′,Ω′)= ρ (

DU ,Ω
′)+ β (

Ω′) I∑
i=1

ai
(
Ω′) (

R− r′
)i

[
R−DU

(
Ω′) ≥ r′ ≥ R−DL

(
Ω′) : Ω′ ∈ Φ ]

, (3)

and

ρ
(
r′,Ω′)= ρ (

HU ,Ω
′)+ β (

Ω′) I∑
i=1

ai
(
Ω′) (

R− r′
)i

[
R+HU

(
Ω′) ≥ r′ ≥ R+HL

(
Ω′) : Ω′ ∈ Φ ]

, (4)

where ρ(DU ,Ω′) and ρ(HU ,Ω′) are the nominal values of the lateral density
stipulated at the depth DU (Ω′) and at the height HU(Ω′) of the upper

bound of volumetric layer, respectively. The term β(Ω′)
I∑

i=1
ai(Ω′) (R− r′)i

describes the radial density variation within the volumetric mass layer at
a location Ω′. Alternatively, when modelling the gravitational field of the
anomalous density structures of the Earth’s interior, the density contrast
Δρ(r′,Ω′) of the volumetric mass layer relative to the (constant) reference
background density ρ is defined as follows

Δρ
(
r′,Ω′)= ρ− ρ

(
r′,Ω′) = Δρ (

DU ,Ω
′) − β

(
Ω′) I∑

i=1

ai
(
Ω′) (

R− r′
)i

[
R−DU

(
Ω′) ≥ r′ ≥ R−DL

(
Ω′) : Ω′ ∈ Φ ]

, (5)

where Δρ(DU ,Ω′) is the nominal value of the lateral density contrast. Ten-
zer et al. (2009) adopted, for instance, the reference crust density of
ρcrust = 2670 kgm−3 in computing the stripping gravity corrections due
to the anomalous density structures within the Earth’s crust.
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3. Gravitational field of laterally distributed and radially
varying mass density layer

For the mass density model in Eq. (3), the expression for computing the
gravitational potential V generated by the volumetric layer with a variable
depth and thickness having a laterally distributed radial density variation
is found to be (see Appendix I, Eq. I.10)

V (r,Ω) =
GM
R

n̄∑
n=0

n∑
m=−n

(
R
r

)n+1

Vn,m Yn,m (Ω). (6)

The corresponding gravitational attraction g (defined approximately as a
negative radial derivative of the respective potential V reads

g (r,Ω)∼=−∂ V (r,Ω)
∂ r

=

=
GM
R2

n̄∑
n=0

n∑
m=−n

(
R
r

)n+2

(n+ 1)Vn,m Yn,m (Ω), (7)

where GM = 3986005 × 108m3s−2 is the geocentric gravitational constant
(defined as GM = (4π/3)GR3 ρ̄Earth, where ρ̄Earth = 5500 kgm−3 is the
adopted value of the Earth’s mean mass density), Yn,m are the (fully nor-
malised) surface spherical harmonic functions, and n̄ is the upper summa-
tion index of spherical harmonics. The coefficients Vn,m in Eqs. (6) and (7)
read

Vn,m =
3

2n+ 1
1

ρ̄Earth

I∑
i=0

(
Fl(i)n,m − Fu(i)n,m

)
. (8)

The numerical coefficients {Fl(i)n,m, Fu(i)n,m : i = 0, 1, ..., I} are defined as
follows

Fl(i)n,m =
n+2∑
k=0

(
n+ 2
k

)
(−1)k

k + 1 + i
L
(k+1+i)
n,m

Rk+1
, (9)

and

Fu(i)n,m =
n+2∑
k=0

(
n+ 2
k

)
(−1)k

k + 1 + i
U
(k+1+i)
n,m

Rk+1
. (10)
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The convergence and optimal truncation of binomial series in Eqs. (9) and
(10) were studied in detail by Rummel et al. (1988) and Sun and Sjöberg

(2001). The terms
n∑

m=−n
Ln,mYn,m and

n∑
m=−n

Un,mYn,m define the spherical

lower-bound and upper-bound laterally distributed radial density variation
functions Ln and Un of degree n. These spherical functions and their higher-
order terms {L(k+1+in , U

(k+1+i)
n : k = 0, 1, ... ; i = 1, 2, ..., I} are defined

as follows

L(k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π
2n+1

∫∫
Φ
ρ (DU ,Ω′) Dk+1

L (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
L
(k+1)
n,m Yn,m (Ω) i = 0

4π
2n+1

∫∫
Φ
β (Ω′) ai (Ω′) Dk+1+i

L (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
L
(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(11)

and

U (k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4π
2n+1

∫∫
Φ
ρ (DU ,Ω′) Dk+1

U (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
U
(k+1)
n,m Yn,m (Ω) i = 0

4π
2n+1

∫∫
Φ
β (Ω′) ai (Ω′) Dk+1+i

U (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
U
(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(12)

where Pn are the Legendre polynomials of degree n for the argument of
cosine of the spherical distance ψ. The coefficients Ln,m and Un,m combine
information on the geometry and density distribution of volumetric layer.
The coefficients Ln,m and Un,m are generated to a certain degree of spher-
ical harmonics using the discrete data of the spatial density distribution
(i.e., typically provided by means of density, depth and thickness data) of
a particular structural component of the Earth’s interior. Since depths and
heights in Eqs. (1) and (2) are defined positive with respect to the geoid
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surface, the coefficients Vn,m in Eq. (8) are multiplied by -1 when the volu-
metric layer is situated above the geoid surface. Consequently, the spherical
functions Ln and Un of degree n in Eqs. (11) and (12) are defined for the
heights HL and HU of the lower and upper bounds of the volumetric mass
layer situated above the geoid surface. Since the summation in Eqs. (6) and
(7) is finite the validation of the expressions for computing the gravitational
field quantities is not restricted to the outer space of the Brillouin sphere
(cf. Vańıček et al., 1995). We note that the expressions in Eqs. (6–12) can
directly be used if the volumetric mass layer is distributed above and below
the geoid surface using only one set of the coefficients Ln,m and Un,m for
describing the geometry of the lower and upper bound of this volumetric
layer.
The generic expressions in Eqs. (6–12) are further specified for the radial,

lateral and homogeneous density distribution models commonly adopted for
a representation of particular subsurface density structures.

4. Gravitational field of radially varying mass density layer

When assuming the radially varying density model (without lateral changes)
within the volumetric layer, the density function in Eq. (3) takes the fol-
lowing form

ρ
(
r′

)
= ρ (DU ) + β

I∑
i=1

ai
(
R− r′

)i

[
R−DU

(
Ω′) ≥ r′ ≥ R−DL

(
Ω′) : Ω′ ∈ Φ ]

, (13)

where ρ(DU ) is the nominal (constant) value of the mass density at the
depth DU (Ω′) of the upper bound of volumetric layer, and the constant
values of the parameters ρ(DU ), β, and {ai : i = 1, 2, ..., I} describe the
radial density variation within the whole volumetric layer. The spherical
lower-bound and upper-bound radially varying mass density functions Ln
and Un of degree n and their higher-order terms {L(k+1+i)n , U

(k+1+i)
n : k =

0, 1, ... ; i = 1, 2, ..., I} are defined as
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L(k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ (DU ) 4π2n+1
∫∫
Φ
Dk+1

L (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
L
(k+1)
n,m Yn,m (Ω) i = 0

β ai
4π
2n+1

∫∫
Φ
Dk+1+i

L (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
L
(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(14)

and

U (k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ (DU ) 4π2n+1
∫∫
Φ
Dk+1

U (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
U
(k+1)
n,m Yn,m (Ω) i = 0

β ai
4π
2n+1

∫∫
Φ
Dk+1+i

U (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
U
(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(15)

5. Gravitational field of laterally varying mass density layer

When assuming only the lateral density variations within the volumetric
layer, the numerical coefficients Vn,m in Eq. (8) become

Vn,m =
3

2n+ 1
1

ρ̄Earth
(Fln,m − Fun,m) , (16)

where Fln,m and Fun,m are given by

Fln,m =
n+2∑
k=0

(
n+ 2
k

)
(−1)k
k + 1

L
(k+1)
n,m

Rk+1
, (17)

and
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Fun,m =
n+2∑
k=0

(
n+ 2
k

)
(−1)k
k + 1

U
(k+1)
n,m

Rk+1
. (18)

The spherical lower-bound and upper-bound lateral density variation func-
tions Ln and Un of degree n and their higher-order terms {L(k+1)n , U

(k+1)
n :

k = 1, 2, ...} are given by

L(k+1)n (Ω) =
4π
2n+ 1

∫∫
Φ

ρ
(
Ω′) Dk+1

L

(
Ω′)Pn (cosψ) dΩ

′ =

=
n∑

m=−n
L(k+1)n,m Yn,m (Ω) , (19)

and

U (k+1)n (Ω) =
4π
2n+ 1

∫∫
Φ

ρ
(
Ω′) Dk+1

U

(
Ω′)Pn (cosψ) dΩ

′ =

=
n∑

m=−n
U (k+1)n,m Yn,m (Ω) . (20)

6. Gravitational field of homogeneous mass density layer

Assuming the constant density ρ within the volumetric layer, the numerical
coefficients Vn,m in Eq. (8) read

Vn,m =
3

2n+ 1
ρ

ρ̄Earth
(Fln,m − Fun,m) . (21)

Consequently, the functions Ln and Un of degree n and their higher-order
terms {L(k+1)n , U

(k+1)
n : k = 0, 1, ...} are defined as

L(k+1+i)
n (Ω) =

4π
2n + 1

∫∫
Φ

Dk+1
L

(
Ω′)Pn (cosψ) dΩ

′ =

=
n∑

m=−n
L(k+1)n,m Yn,m (Ω) , (22)
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and

U (k+1+i)
n (Ω) =

4π
2n+ 1

∫∫
Φ

Dk+1
U

(
Ω′)Pn (cosψ) dΩ

′ =

=
n∑

m=−n
U (k+1)n,m Yn,m (Ω) . (23)

The terms
n∑

m=−n
Ln,mYn,m and

n∑
m=−n

Un,mYn,m in this case define the spher-

ical lower-bound and upper-bound functions Ln and Un of degree n, and the
associated coefficients Ln,m and Un,m describe the geometry of the homoge-
neous density mass layer.

7. Examples of modelling the crust density structures

The expressions from Section 4, which define the gravitational field gener-
ated by the volumetric layer with a radially varying mass density distribu-
tion model, can be utilised in computing the bathymetric (ocean density
contrast) stripping gravity corrections. Since the geoid surface represents
the oceanic upper bound, the numerical coefficients Vn,m in Eq. (8) are
computed using the following expression

Vn,m =
3

2n+ 1
1

ρ̄Earth

I∑
i=0

n∑
m=−n

Fl(i)n,m. (24)

The coefficients {Fl(i)n,m : i = 0, 1, ..., I} are defined in Eq. (9), and the
function Ln of degree n and their higher-order terms {L(k+1+i)n : k =
0, 1, ... ; i = 1, 2, ..., I} are given by

L(k+1+i)
n (Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δρ 4π
2n+1

∫∫
Φ
Dk+1

L (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
L
(k+1)
n,m Yn,m (Ω) i = 0

β ai
4π
2n+1

∫∫
Φ
Dk+1+i

L (Ω′)Pn (cosψ) dΩ′

=
n∑

m=−n
L
(k+1+i)
n,m Yn,m (Ω) i = 1, 2, ..., I

(25)
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where Δρ is a nominal value of the density contrast. The coefficients Ln,m
in Eq. (25) describe the geometry of the ocean bottom relief. The approxi-
mation of the actual seawater density distribution by its mean value yields
relative errors up to about 2% in computed quantities of the gravitational
field. To reduce these errors, Tenzer et al. (2011a) facilitated a depth-
dependent seawater density model in deriving expressions for computing the
bathymetric stripping gravity corrections. They demonstrated that the ap-
proximation of the seawater density by the depth-dependent density model
reduces the maximum errors to less than 0.6%. The corresponding depth-
averaged errors are below 0.1%. They defined the nominal value of the ocean
density contrast Δρw0 as the difference between the reference values of the
crustal density ρcrust and the seawater density ρw0 ; i.e., Δρ

w
0 = ρcrust − ρw0 .

The value of surface seawater density ρw0 = 1027.91kg/m
3 (cf. Gladkikh

and Tenzer, 2011) was adopted as the reference seawater density. For
the adopted value of the reference crustal density ρcrust of 2670 kg/m3 (cf.
Hinze, 2003), the reference ocean density contrast (at zero depth) equals
Δρw0 = 1642.09 kg/m

3. The parameters of the depth-dependent density
term in Eq. (25) up to the second degree (I = 2) are given by the following
values (Tenzer et al., 2011a): β = 0.00637 kg/m3, a1 = 0.7595m−1, and
a2 = −4.3984 × 10−6m−2. These values were estimated from the oceano-
graphic data of the World Ocean Atlas 2009 (provided by NOAA’s National
Oceanographic Data Center; Johnson et al., 2009) and the World Ocean
Circulation Experiment 2004 (provided by the German Federal Maritime
and Hydrographic Agency; Gouretski and Koltermann, 2004).
The global bathymetric model coefficients Ln,m in Eq. (25) with a spec-

tral resolution complete to degree 2160 of spherical harmonics can be gen-
erated using the coefficients of the global topographic/bathymetric model
DTM2006.0 (Pavlis et al., 2007) and the global geopotential model EGM
2008 (Pavlis et al., 2008). The EGM2008 geoid coefficients are calcu-
lated according to the Bruns formula (see e.g., Heiskanen and Moritz,
1967). The DTM2006.0 coefficients describe the global geometry of the to-
pographic heights above mean sea level (MSL) which are reckoned positive,
and the bathymetric depths below MSL which are reckoned negative. The
global topographic/bathymetric model DTM2006.0 was released together
with EGM2008 by the U.S. National Geospatial-Intelligence Agency EGM
development team.
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Tenzer et al. (2011b) used the expressions from Section 5 formulated for
the laterally varying mass density contrast layer with varying depth and
thickness in the gravimetric forward modelling of the anomalous density
structures within the Earth’s solid crust (i.e., excluding the ocean density
contrast). They used the 2 × 2 arc-deg global discrete data of density,
depth, and thickness of the (soft and hard) sediments and consolidated (up-
per, middle, and lower) crust components from the global crustal model
CRUST2.0 (Bassin et al., 2000) to generate the coefficients Ln,m and Un,m
according to Eqs. (19) and (20). These coefficients were then used for com-
puting the corresponding gravitational field quantities with a low spectral
resolution complete to degree 90 of spherical harmonics. The density con-
trasts were defined relative to the reference crustal density of 2670 kgm−3.
The expressions derived in Section 3 can be utilised to model globally the
sediments density contrast with the laterally distributed depth-dependent
density variations once the global crustal models which incorporate these
density data become available.
When the homogeneous mass density contrast layer with a variable height

and thickness is situated above the geoid surface the numerical coefficients
Vn,m in Eq. (21) are computed as follows

Vn,m =
3

2n+ 1
Δρ
ρ̄Earth

(Fun,m − Fln,m) , (26)

where Δρ is the (constant) density contrast of the homogeneous volumetric
mass layer. The spherical lower-bound and upper-bound functions Ln and
Un of degree n and their higher-order terms {L(k+1)n , U

(k+1)
n : k = 1, 2, ...}

are defined for the heights HL and HU in the following form

U
(k+1)
n (Ω)

L
(k+1)
n (Ω)

}
=
4π
2n + 1

∫∫
Φ

Pn (cosψ)

{
Hk+1

L (Ω′)
Hk+1

U (Ω′)

}
dΩ′ =

=

⎧⎪⎪⎨
⎪⎪⎩

n∑
m=−n

U
(k+1)
n,m Yn,m (Ω)

n∑
m=−n

L
(k+1)
n,m Yn,m (Ω)

. (27)

Tenzer et al. (2010a) used the 10 × 10 arc-min mean topographic heights
computed by spatial averaging of the 30 × 30 arc-sec global elevation data
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from GTOPO30 (provided by the US Geological Survey’s EROS Data Cen-
ter) and the 10 × 10 arc-min continental ice-thickness data from ICE-5G
(VM2 L90) made available by Peltier (2004) to generate the coefficients
Ln,m and Un,m complete to degree 180 of spherical harmonics according
to Eq. (27). These coefficients were then used to compute the ice density
contrast stripping gravity corrections. The ice density contrast Δρice was
defined as the difference between the reference density values of the crust
ρcrust and glacial ice ρice i.e., Δρice = ρcrust − ρice. For the adopted values
of the reference crustal density 2670 kgm−3 and the density of glacial ice
917 kg m−3 (cf. Cutnell and Kenneth, 1995) the ice density contrast equals
1753 kgm−3.
When the geoid surface represents the lower bound of the homogeneous

mass density layer, the numerical coefficients Vn,m in Eq. (26) become

Vn,m =
3

2n+ 1
ρ

ρ̄Earth
Fun,m, (28)

where the coefficients Un,m are computed according to Eq. (27). These
expressions were used, for instance, by Novák (2010) to compute the to-
pographic gravity correction adopting the constant value of the reference
crustal density of 2670 kgm−3. The coefficients Un,m in Eqs. (27) which
describe the geometry of the global topography can be generated from the
coefficients of the global topographic/bathymetric model DTM2006.0 and
the coefficients of the EGM2008 global geoid model complete to degree 2160
of spherical harmonics.

8. Summary and concluding remarks

We have derived the generic expressions for the gravitational potential and
attraction generated by an arbitrary volumetric layer with a variable depth
and thickness having a laterally distributed radial density variation. These
expressions utilise the functions Ln and Un which combine information on
the geometry and density distribution of a volumetric mass layer. The
generic expressions were further specified for the radial, lateral, and homo-
geneous density distribution models commonly adopted for a representation
of particular subsurface density structures.
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We have demonstrated that the generic expressions can uniformly be
applied in the gravimetric forward modelling of all major known density
structures within the Earth’s crust. The homogeneous density mass layer
was used to represent the ice density contrast and the topography of ho-
mogeneous density (with the geoid surface representing the lower-bound of
volumetric mass layer). The radially varying density mass layer was used
to model the ocean density contrast (with the geoid surface representing
the upper-bound of volumetric mass layer). The currently available global
elevation and bathymetry data (from the global topographic/bathymetric
model DTM2006.0) allow modelling the topography and ocean density con-
trast to a very high spectral resolution up to the spherical harmonic degree
2160. A spatial resolution of modelling the ice density contrast of 10×10
arc-min is possible based on the currently available global data of con-
tinental ice thickness. The best currently available global crustal model
CRUST2.0 provides information on density distribution within sediments
and remaining crust with a 2× 2 arc-deg spatial resolution. The sediments
and consolidated crust components density contrast structures were repre-
sented by the laterally varying density mass layers. The CRUST2.0 soft
sediments vary in density from 1700 to 2300 kg/m3 and reach a maximum
thickness of about 2 km, while the CRUST2.0 hard sediments vary between
2300 and 2600 kg/m3 and become up to 18 km thick at places. The ap-
proximation of the soft and hard sediment components and their density
variability by two individual laterally varying density mass layers thus re-
flect to a certain degree the increasing density of sediments with depth due
to compaction. However, the approximation of the sediment spatial density
distribution can further be improved adopting the laterally distributed and
depth-dependent density variation model once more accurate global sedi-
ment data with a higher resolution become available. Depending on data
availability (typically seismic reflection data), a more accurate representa-
tion of the mantle lithosphere and sub-lithospheric mantle can be achieved
utilising the depth and lateral density distribution models. Current models
typically use only simple models based on the assumption of a spherically
symmetric density distribution.
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Appendix I: Spectral representation of potential

To derive the expression for the gravitational potential V in the spectral
representation, Eq. (1) is first rewritten as

V (r,Ω) =G
∫∫
Φ

∫ R

R−DL(Ω′)
ρ

(
r′,Ω′) �−1 (

r, ψ, r′
)
r′2dr′ dΩ′ −

−G
∫∫
Φ

∫ R

R−DU (Ω′)
ρ

(
r′,Ω′) �−1 (

r, ψ, r′
)
r′2dr′ dΩ′. (I.1)

The first constituent on the right-hand side of Eq. (I.1) is the gravita-
tional contribution generated by the volumetric density mass enclosed be-
tween the lower bound {DL(Ω′) : Ω′ ∈ Φ} and the reference sphere of radius
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R. The second constituent represents the gravitational contribution gener-
ated by the volumetric density mass enclosed between the upper bound
{DU (Ω′) : Ω′ ∈ Φ} and the reference sphere of radius R. Inserting the later-
ally distributed radial density variation model ρ(DU ,Ω′) Eq. (3) to Eq. (I.1),
we get

V (r,Ω) =G
∫∫
Φ

ρ
(
DU ,Ω

′) ∫ R

R−DL(Ω′)
�−1

(
r, ψ, r′

)
r′2dr′ dΩ′ −

−G
∫∫
Φ

ρ
(
DU ,Ω

′) ∫ R

R−DU (Ω′)
�−1

(
r, ψ, r′

)
r′2dr′ dΩ′ +

+G
∫∫
Φ

β
(
Ω′) I∑

i=1

ai

(
Ω′) ×

×
∫ R

R−DL(Ω′)
�−1

(
r, ψ, r′

) (
R− r′

)i
r′2dr′ dΩ′ −

−G
∫∫
Φ

β
(
Ω′) I∑

i=1

ai
(
Ω′) ×

×
∫ R

R−DU (Ω′)
�−1

(
r, ψ, r′

) (
R− r′

)i
r′2dr′ dΩ′. (I.2)

The spectral representation of the reciprocal spatial distance �−1 for the ex-
ternal convergence domain r ≥ r′ (r ≥ R ∧ r′ ≤ R) is given by (e.g., Hobson,
1931)

�−1
(
r, ψ, r′

)
=
1
r

∞∑
n=0

(
r′

r

)n

Pn (cosψ). (I.3)

The series in Eq. (I.3) is uniformly convergent for r ≥ r ′. Substituting the
fundamental harmonic function in Eq. (I.3) to Eq. (I.2), we arrive at

V (r,Ω) =G
∞∑

n=0

(
1
r

)n+1∫∫
Φ

ρ
(
DU ,Ω

′)Pn (cosψ)
∫ R

R−DL(Ω′)
r′n+2dr′ dΩ′ −

−G
∞∑

n=0

(
1
r

)n+1∫∫
Φ

ρ
(
DU ,Ω

′)Pn (cosψ)
∫ R

R−DU (Ω′)
r′n+2dr′ dΩ′ +
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+G
∞∑

n=0

(
1
r

)n+1∫∫
Φ

β
(
Ω′) I∑

i=1

ai

(
Ω′)Pn (cosψ)×

×
∫ R

R−DL(Ω′)

(
R− r′

)i
r′n+2dr′ dΩ′ −

−G
∞∑

n=0

(
1
r

)n+1∫∫
Φ

β
(
Ω′) I∑

i=1

ai
(
Ω′)Pn (cosψ)×

×
∫ R

R−DU (Ω′)

(
R− r′

)i
r′n+2dr′ dΩ′. (I.4)

Since the expansion of Newton’s integral kernel converges uniformly when
computed at locations outside the gravitating masses, the interchange of
summation and integration in Eq. (I.4) is permissible (cf. Moritz, 1980).
The application of the binomial theorem to the term r ′n+2 in Eq. (I.4) yields

r′n+2 =Rn+2
(
1− R− r′

R

)n+2
∼=

∼=Rn+2
n+2∑
k=0

(
n+ 2
k

) (
R− r′

R

)k

(−1)k . (I.5)

From Eq. (I.5), the solutions of the radial integrals in the first and second
constituents on the right-hand side of Eq. (I.4) are found to be

∫ R

R−DL(Ω′)
r′n+2dr′ ∼=Rn+2

∫ R

R−DL(Ω′)

n+2∑
k=0

(
n+ 2
k

) (
R− r′

R

)k

(−1)k dr′ =

=Rn+3
n+2∑
k=0

(
n+ 2
k

) [
DL (Ω′)
R

]k+1 (−1)k
k + 1

, (I.6)

and∫ R

R−DU (Ω′)
r′n+2dr′ ∼= Rn+3

n+2∑
k=0

(
n+ 2
k

) [
DU (Ω′)
R

]k+1 (−1)k
k + 1

. (I.7)

Similarly, we have∫ R

R−DL(Ω′)

(
R− r′

)i
r′n+2dr′ ∼=
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∼=Rn+3+i
n+2∑
k=0

(
n+ 2
k

) [
DL (Ω′)
R

]k+1+i (−1)k
k + 1 + i

, (I.8)

and∫ R

R−DU (Ω′)

(
R− r′

)i
r′n+2dr′ ∼=

∼=Rn+3+i
n+2∑
k=0

(
n+ 2
k

) [
DU (Ω′)
R

]k+1+i (−1)k
k + 1 + i

. (I.9)

The substitution from Eqs. (I.6-9) to Eq. (I.4) yields

V (r,Ω) =GR2
∞∑

n=0

(
R
r

)n+1 n+2∑
k=0

(
n+ 2
k

) (
1
R

)k+1 (−1)k
k + 1

×

×
∫∫
Φ

ρ
(
DU ,Ω

′) Dk+1
L

(
Ω′) Pn (cosψ) dΩ

′ −

−GR2
∞∑

n=0

(
R
r

)n+1 n+2∑
k=0

(
n+ 2
k

) (
1
R

)k+1 (−1)k
k + 1

×

×
∫∫
Φ

ρ
(
DU ,Ω

′) Dk+1
U

(
Ω′) Pn (cosψ) dΩ

′ +

+GR2
∞∑

n=0

(
R
r

)n+1 I∑
i=1

n+2∑
k=0

(
n+ 2
k

) (
1
R

)k+1 (−1)k
k + 1 + i

×

×
∫∫
Φ

β
(
Ω′) ai

(
Ω′) Dk+1+i

L

(
Ω′) Pn (cosψ) dΩ

′ −

−GR2
∞∑

n=0

(
R
r

)n+1 I∑
i=1

n+2∑
k=0

(
n+ 2
k

) (
1
R

)k+1 (−1)k
k + 1 + i

×

×
∫∫
Φ

β
(
Ω′) ai

(
Ω′) Dk+1+i

U

(
Ω′) Pn (cosψ) dΩ

′. (I.10)
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