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Abstract: We present analytical solution of the forward magnetometric problem for the
oblate spheroid (rotational ellipsoid) as a causative body. The shorter semiaxis of the
ellipsoid is supposed to be vertical to the surface of the earth. There is proved that the
uniform inducing magnetic field B0 induces inside the spheroid also uniform magnetic
field but its modulus and direction are different as compared to B0. The isolines and
profile curves of ΔZ and ΔT are calculated on the plane z = const above the ellipsoid,
as well as on the surface of the hill in the shape of cutted cone.
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1. Introduction

The solution of the forward magnetometric problem for the oblate rota-
tional ellipsoid is interesting for the theoretical and also applied geophysical
magnetometry. This causative body can be used also in some volcanic and
post volcanic areas, e.g. as a model of laccolite. The magnetic problem
for the triaxial ellipsoid is solved in numerous monographs, e.g. Stratton
(1941), Muratov (1976) by using rather complicated elliptic integrals. We
present here the solution by means of the method of separation of variables,
which is more suitable for calculation of potential and namely of compo-
nents of the anomalous field in comparison to the classical treatment. We
solve our problem as similar problems of steady electric induction, e.g. in
Smythe (1968) by using the method of separation of variables in the oblate
spheroidal coordinates.
The axially symmetric oblate ellipsoid is the body which is bounded by

surface of the second order degree, described by the equation
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(x2 + y2)/a2 + z2/b2 = 1, (1)

where a(b) are major (minor) semiaxes of the ellipsoid, centered in the point
O ≡ (0, 0, 0). The cross-section of the ellipsoid by the plane y = 0 is depicted
in Fig. 1, together with other parameters for our problem. We will calculate
the magnetic induction anomaly considering magnetic permeability of the
body to be uniform:

μT = μ0(1 + κ), (2)

where μ0 is the magnetic permeability of vacuum = 4π×10−7 Henry/m and
κ is magnetic susceptibility of the ore filling the spheroid. It is known that
for the hot magma in the magnetic chamber we have to put κ→ 0, but for
cooled solidified one we put κ value for basalts or andesites κ = 0.001− 0.1
(in SI system). Moreover, the solidified rock preserves thermoremanent
magnetization which is as a rule 10 times greater than the magnetization J
obtained due to induction. Let us note that similar magnetometry problem
for prolate ellipsoid was solved in our previous paper Hvoždara and Vozár
(2010).
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Fig. 1. The (x, z) section of the spheroid (gray) and parameters of the problem.
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2. Formulation of the problem

Let us consider the prolate rotational spheroid embedded in the uniform
magnetic field B0 with inclination angle I:

B0 ≡ (X0, Y0, Z0), (3)

where X0, Y0, Z0 are components in the local coordinate systems. Due to
rotational symmetry we can put the axis x in the direction of magnetic
meridian, so Y0 = 0 and the potential of the magnetic field B0 expressed
as:

U0 = −B0(x cos I + z sin I). (4)

Here B0 is the modulus (total field) of the magnetic induction B0:

B0 =
(
X20 + Z

2
0

)1/2
, X0 = B0cI , Z0 = B0sI , (5)

where cI = cos I, sI = sin I. The magnetic field B in our model is steady
in time so it obeys the Maxwell equations:

rotB = 0, divB = 0, (6)

hence it can be derived from the magnetic potential U(x, y, z):

B = − gradU. (7)

Note that we introduce the potential for the magnetic induction B, while
traditional treatment use the potential for the magnetic intensityH = B/μ.
It is clear that potential obeys the Laplace equation

div gradU = 0, (∇2U = 0). (8)

We denote the potential inside the spheroid by UT and outside as U1 =
U0 + U∗

1 , where U
∗
1 is the perturbing potential outside the body.

The potential of the unperturbed magnetic field B0 ≡ (X0, 0, Z0) far
from the spheroid is:

U0(x, y, z) = −B0(cI x+ sI z). (9)

The presence of the spheroid causes outside spheroid the perturbation po-
tential U∗

1 (x, y, z) which also obeys Laplace equation:
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∇2U∗
1 (x, y, z) = 0. (10)

The magnetic potential in the interior of the spheroid is UT (x, y, z), which
is also harmonic function. On the surface S of the spheroid we must have
continuity of the tangential component of the intensity H = μ−1B and
normal component of the magnetic induction B. For potentials this gives
conditions:

[U0 + U
∗
1 ]S = μ

−1
r [UT ]S , ∂ [U0 + U

∗
1 ] /∂n|S = [∂UT /∂n]S , (11)

where μr = μT /μ0 = 1 + κ is relative permeability of the spheroid. The
methods of mathematical physics (Morse and Feschbach, 1953; Arfken,
1966) give very effective tools for solutions of the above potential problem
by using the methods of separation of variables for the oblate spheroidal
coordinate system (α, β, ϕ). These are linked to our Carthesian system
(x, y, z):

x = f chα sinβ cosϕ, y = f chα sinβ sinϕ, z = f shα cos β, (12)

(Madelung, 1957; Lebedev, 1963). The coordinates α, β, ϕ are from intervals
α ∈ 〈0,+∞), β ∈ 〈0, π〉, ϕ ∈ 〈0, 2π〉 and f is the oblatness parameter

f =
√
a2 − b2, (13)

i.e. f is the linear eccentricity of the generating ellipse. Note that we
already used this method in Hvoždara (2008) for the mathematically similar
groundwater flow problem.
From transformation equations (12) it can be derived that the coordinate

surfaces α = const are oblate rotational ellipsoids

x2 + y2

f2 ch2 α
+

z2

f2 sh2 α
= 1, or

r2

f2 ch2 α
+

z2

f2 sh2 α
= 1, (14)

where r =
√
x2 + y2 is distance from z axis. The equation of generating

ellipse in the (x, z) plane for our spheroid is:

x2/a2 + z2/b2 = 1. (15)

This is matched to the spheroid α = α0 of the sets of spheroids (14) if we
put:
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a2 = f2 ch2α0, b2 = f2 sh2α0. (16)

We know that there holds property

ch2α0 − sh2α0 = 1, (17)

so we easily find:

f2 = a2 − b2, f =
√
a2 − b2, (18)

which confirms that f is linear excentricity of generating ellipse, it is the
distance of foci from the ellipse centre as shown in Fig. 1. The polar axis for
the angle β is z ∈ 〈0,+∞); it corresponds to β = 0. The coordinate surfaces
β = const can be obtained from (12) by excluding chα and shα by using
property ch2 α− sh2 α = 1. These are confocal rotational hyperboloids (see
Fig. 2):

Fig. 2. The (x, z) section of coordinate surfaces α = const (ellipses), and β = const
(hyperboles).
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r2

f2 sin2 β
− z2

f2 cos2 β
= 1. (19)

It is necessary to note that the plane z = 0 corresponds to the surface α = 0
and the circle x2 + y2 = f2 is the focal circle. From relations (16) we also
obtain:

eα0 = (a+ b)/f, α0 = ln[(a+ b)/f ]. (20)

In this manner we can link spheroidal coordinate system (α, β, ϕ) to the
generating ellipse. We add that Lame’s metrical parameters are as follows:

hα = f
√
ch2α− sin2 β, hβ = hα, hϕ = f chα sinβ, (21)

(see e.g. Madelung, 1957). The particular solution of Laplace equation in
the system (α, β, ϕ) can be found in e.g. Lebedev (1963) in the form:

Umn(α, β, ϕ) = [Mmn cosmϕ+Nmn sinmϕ]

{
Pmn (i shα)
Qmn (i shα)

}
Pmn (cos β), (22)

where i =
√−1 is imaginary unit and Pm

n (i shα), Q
m
n (i shα) are associ-

ated Legendre functions of degree n, order m purely imaginary argument
i shα. The Pmn (cos β) is known as the associated Legendre function of real
argument cos β. The transformation of the unperturbed potential (9) into
spheroidal system is:

U0(α, β, ϕ) = −B0f [cI chα sinβ cosϕ+ sI shα cos β]. (23)

The dependence on β is given by sinβ in the first term and by cos β in
the second one so we must take in (22) the degree number n = 1 and the
dependence on ϕ will be represented by the order numbers m = 0, 1 also
in potentials U ∗

1 and UT (α, β, ϕ). This is guaranted by the orthogonality
of goniometric functions cosmϕ and sinmϕ on the interval ϕ ∈ 〈0, 2π).
Similarly, the dependence on β in (23) is via sinβ ≡ P 11 (cos β) and by
P1(cos β) = cos β. The orthogonality of Legendre functions Pm

n (cos β) im-
plicates this dependence on β in both potential U ∗

1 and UT , so we will have
degree number n = 1. In the theory of the associated spherical functions of
purely imaginary argument (Smythe, 1968) it is proved that we can calcu-
late the dependence on α by the following functions
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P 01 (i ξ) = i ξ, P 11 (i ξ) =
√
1 + ξ2, (24)

Q01(i ξ) = ξ arctg(1/ξ) − 1, Q11(i ξ) =
−ξ√
1 + ξ2

+
√
1 + ξ2 arctg(1/ξ), (25)

where we substituted ξ = shα. It can be found that P 01 (i shα) = i shα and
P 11 (i shα) = (1 + sh

2α)1/2 = chα. These functions are bounded for α → 0,
but tend to infinity for α → ∞, so they cannot occur in the perturbing
potential U ∗

1 . The functions of the second kind Q
0
1(i ξ) and Q

1
1(i ξ) are not

acceptable for the interior potential UT (α, β, ϕ) because they would produce
singular gradUT (α, β, ϕ) for α → 0 as was pointed out by Lebedev (1963).
In the book (Smythe, 1968) we can also find the more suitable expressions
for Q01(i ξ) and Q

1
1(i ξ), namely for ξ > 1:

Q01(i ξ) = −
∞∑
k=0

(−1)k
(2k + 3)

1
ξ2k+2

, (26)

Q11(i ξ) = 2
√
1 + ξ2

∞∑
k=0

(−1)k(k + 1)
(2k + 3)

1
ξ2k+3

. (27)

It is clear that both these functions have zero limit for α → ∞. In view of
discussion above it is clear that α dependence of the interior potential UT
must be given via functions shα and chα, so this potential will be simple
multiple of the exciting potential terms:

UT (α, β, ϕ) = −B0f [cIC2 chα sinβ cosϕ+ sID2 shα cos β]. (28)

The perturbing potential U ∗
1 outside the spheroid must be dependent on α

via functions Q01(i shα) and Q
1
1(i shα) and β,ϕ dependence will be the same

as in (28), so it is of the form:

U∗
1 (α, β, ϕ) = −B0f [cIC1q11(shα) sin β cosϕ+ sID1q1(shα) cos β]. (29)

Here we use real form of the functions Q01(i shα) ≡ q1(shα) and Q11(i shα) ≡
q11(shα) according to their expressions, because the r.h.s of (25) are real
expressions and UT (α, β, ϕ) is also expressed by the real functions. The
total potential outside of spheroid is:

U1(α, β, ϕ) = U0 + U
∗
1 =−B0f

{
cI

[
chα+ C1q

1
1(shα)

]
sinβ cosϕ+

+ sI [shα+D1q1(shα)] cos β} (30)
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The coefficients C2,D2 and C1,D1 which determine change of the potentials
of the magnetic field from boundary conditions on the surface S of the
spheroid where α = α0 whose normal n direction is in the unit vector eα.
According to (11) there must be:

[UT ]α0 = μr [U1]α0 , (31)

[∂UT /∂α]α0 = [∂U1/∂α]α0 . (32)

These boundary conditions must be satisfied for all β and ϕ and if we
use orthogonality of the spherical function cosβ (for m = 0, n = 1) and
sinβ cosϕ (for m = 1, n = 1) we will obtain four linear equations to deter-
mine coefficients C2,D2and C1,D1. For the mode m = 0, n = 1 we have
equations:

D2 shα0 = μr shα0 + μrD1q1(shα0),

D2 chα0 = chα0 +D1 chα0 q
′
1(shα0),

which gives the solution:

D1 = (μr − 1)t0
[
t0 q

′
1(t0)− μrq1(t0)

]−1
, (33)

D2 = 1 +D1q
′
1(t0), (34)

where t0 = shα0. The orthogonality of the mode m = 1, n = 1 gives
equations:

C2 chα0 = μr chα0 + μrC1 q
1
1(shα0),

C2 shα0 = shα0 + C1 chα0 q
1′
1 (shα0).

Putting t0 = shα0 we have chα0 =
√
1 + t20 and we obtain solution:

C1 = (μr − 1)t0
√
1 + t20

[
(t20 + 1)q

1′
1 (t0)− μrt0q

1
1(t0)

]−1
, (35)

C2 = 1 + t
−1
0

√
1 + t20C1 q

1′
1 (t0). (36)

166



Contributions to Geophysics and Geodesy Vol. 41/2, 2011 (159–177)

In this manner we can calculate the necessary potentials and also their gra-
dients, to obtain B = − gradU . The formulae (33) and (35) for coefficients
D1 and C1 have zero values for the non magnetic spheroid (μr = 1), which
gives zero perturbing potential. In this case we have coefficients D2 and C2
equal to 1, which means that UT = U0.

3. Calculations of the magnetic field components

Now we pay our attention to the calculations of the potential and mag-
netic field in Carthesian coordinates. The expression (28) of the inte-
rior potential can be easily transformed since according to (12) we have
x = f chα sinβ cosϕ, so that:

UT (x, y, z) = −B0[cI C2 x+ sI D2 z]. (37)

It corresponds to the uniform magnetic field BT ≡ (B0 cIC2, 0, B0 sI D2), in
the Carthesian system. The inclination I∗ of this magnetic field is different
from the angle I, its tangent is clearly

tg I∗ = (D2/C2) tg I. (38)

The modulus of BT is changed compared to B0 via factor

FT = |BT | ·B−1
0 =

[
(cI C2)

2 + (sI D2)
2
]1/2

. (39)

The potential U1(α, β, ϕ) outside the spheroid is the sum of the unperturbed
potential U0(α, β, ϕ) and perturbing potential U ∗

1 (α, β, ϕ). This perturbing
potential and its gradient is calculated in a network of (x, y, z) variables,
so we must calculate proper spheroidal coordinates (α, β, ϕ). The values of
chα, shα can be calculated by using the transformation relations (12) and
properties of confocal ellipses. We know that the coordinate line α = const
is ellipse with equation (14) in (r, z) plane their foci are in points r = ±f in
the plane z = 0, major semiaxis is f chα and minor semiaxis is f shα. For
every (r, z) point of this ellipse is the sum of distances from the first and
second focus equal to the doubled value of major semiaxis which is 2f chα.
There must hold:
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[
(r − f)2 + z2

]1/2
+

[
(r + f)2 + z2

]1/2
= 2f chα, (40)

where r =
√
x2 + y2. From this equation we can determine chα since

f =
√
a2 − b2 is constant given by the contour ellipse of the spheroid and

creates whole family of confocal ellipses α = const. From known value of
chα we can determine shα by the relation

shα =
[
ch2α− 1

]1/2
(41)

and eα = chα+ shα. (42)

Then we can easily determine also the value of coordinate β, using (12),
which gives:

cos β = z/(f shα), (43)

for z = 0 and r > f these relation holds also true (there we have chα = r/f
and β = π/2). Inside the focal circle z = 0, r < f we must be more careful.
The value of α is zero and from (34) we have:

2f chα = |r − f |+ |r + f | = f − r + r + f = 2f, (44)

so we obtain chα = 1, shα = 0. But inside this circle the value of coordinate
β is changing as follows from the equation of confocal hyperboloids (19)
where we put z = 0 and then:

sinβ = r/f. (45)

For the azimuthal angle ϕ there is a simple relation:

tgϕ = y/x. (46)

Using these formulae we can assign to each x, y, z point its spheroidal coor-
dinates (α, β, ϕ) and calculate perturbing potential:

U∗
1 (α, β, ϕ) = −B0f [cIC1q11(shα) sin β cosϕ+ sID1q1(shα) cos β] (47)

and also components of the anomalous magnetic field outside the spheroid:

B∗(α, β, ϕ) = − gradU ∗
1 (α, β, ϕ),
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B∗
α = − 1

hα

∂U∗
1

∂α
, B∗

β = − 1
hβ

∂U∗
1

∂β
, B∗

ϕ = − 1
hϕ

∂U∗
1

∂ϕ
, (48)

where Lame’s metrical parameters are given by (21). These derivatives can
be easily calculated, but we need to transform these spheroidal vector com-
ponents into Carthesian ones. We can use the relations given in Madelung
(1957) (with proper changes of the spheroidal coordinates notation):

B∗
x =B

∗
r cosϕ−B∗

ϕ sinϕ,

B∗
y =B

∗
r sinϕ−B∗

ϕ cosϕ,

B∗
z =

[
−B∗

β sinβ shα+B
∗
α chα cos β

]
·
[
ch2α− sin2 β

]−1/2
, (49)

where

B∗
r =

[
−B∗

α sinβ shα+B
∗
β chα cos β

]
·
[
ch2α− sin2 β

]−1/2
,

is the radial magnetic component in x, y plane.
For practical purpose we will calculate the anomalous magnetic field B∗

components outside the ellipsoid given by (49). We put the vertical field
anomaly ΔZ and total field anomaly ΔT :

ΔZ = B∗
z(x, y, z), ΔT = B

∗
x cos I cosA+B

∗
y cos I sinA+B

∗
z sin I, (50)

while we consider azimuth A of the primary field B0 to be zero value,
because our x lies in the plane of local magnetic meridian.

4. Numerical calculations and discussion

For the numerical calculations we choose the oblate spheroid with semiaxes
a = 500m, b = 100m and susceptibility quite high κ = 0.1. The inclination
of the field B0 we put I = 75◦. For practical needs it is suitable to perform
model calculations of ΔZ and ΔT at some plane z = zp above the spheroid
and also for some model of the hill surface above the magmatic body. The
calculated values of ΔZ(x, y, zp) and ΔZ(x, y, zp) are normalized by the
value B0 and these values multiplied by the factor 1000. Then it is clear
that if we put B0 = 50000 nT and the value (ΔZ/B0) × 1000 = 12 then
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the real value ΔZ = 600 nT. In Fig. 3a we have plotted also the isolines of
perturbing potential U ∗

1 (x, y, zp) divided by B0. For better clarity the curve
of U∗

1 along the x profile for y = 0 is also presented. One can see that the
field U∗

1 (x, y, z) is very similar to the field of magnetic dipole inclined in the
direction I0. Fig. 3b presents the isolines of ΔZ(x, y, zp) together with the
profile curve along the x axis, Fig. 3c concerns ΔT (x, y, zp). We can see
that the maximum of ΔT is shifted to the left of the point (x = 0, y = 0)
clearly due to inclination value I = 75◦. There exists also a region of nega-
tive values at x/a ≈ 1. If the inclination would be 90◦, the pattern of ΔT
will be like concentric circles above the centrum of spheroid. In the table of
each figure there are given values of the spheroid parameters, together with
value of the changed inclination I∗ of BT inside the spheroid and also the
parameter FT defined by (39). We can see that I∗ = 75.84◦, it differs by
small angle 0.84◦ from I = 75◦. Also the modulus of BT is greater by the
factor FT = 1.0823 in comparison to B0.
The next set of calculations was performed for the points (x, y, z) dis-

tributed on the surface of the hill having the form of the cutted cone above
the spheroid. The profile curve of the cone is given in the bottom part of
Fig. 4a. The function H(x, y) is calculated by the formula

H(x, y) =
��

��

hb if r ≥ rb
hb + q(rb − r) if r ∈ (ru, rb)
hu if r ∈ 〈0, ru)

, (51)

where r =
√
x2 + y2, hb, hu are the bottom, upper high of the hill, respec-

tively (hb < hu) and rb, ru are the radii of bottom and upper circle of the
hill, while rb > ru. The slope factor q is clearly q = (hu−hb)/(rb−ru). The
vertical coordinate is set to z = −H(x, y). The height isolines of the hill
are drawn in the upper part of Fig. 4a, these are circles. In Figs 4b,c are
presented isolines of δZ and ΔT on the hill points. We can see that their
values rapidly decrease with the distance from the spheroid, because the
upper circle of the hill is in the height hu = 750m. The pattern of isolines
of ΔZ and ΔT is more deformed in comparison to the pattern presented in
Figs 3b,c for the plane zp = −0.5a.
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Fig. 3a. Isolines of the anomalous potential above the oblated spheroidal body at the
plane zp = −0.5a. The bottom curve presents values along the profile y = 0 for the level
zp/a = −0.5.
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Fig. 3b. The isolines of the relative ΔZ anomaly above the oblated spheroidal body at
the level zp = −0.5a. The bottom curve shows the profile values at y = 0 for the level
zp/a = −0.5.
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Fig. 3c. The isolines of the relative ΔT anomaly above the oblated spheroidal body at
the level zp = −0.5a. The bottom curve shows the profile values at y = 0 for the level
zp/a = −0.5.
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Fig. 4a. Isolines of the surface of the cutted cone H(x, y) defined by equation (51) which
represents hill above the oblate spheroidal magmatic body. The bottom curve shows
hights profile at y = 0.
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Fig. 4b. The isolines of the relative ΔZ anomaly above the oblate spheroidal body on the
surface depicted in Fig. 4a. The bottom curve shows the profile values at y = 0 along the
hill.
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Fig. 4c. The isolines of the relative ΔT anomaly above the oblate spheroidal body on the
surface depicted in Fig. 4a. The bottom curve shows the profile values at y = 0 along the
hill.

176



Contributions to Geophysics and Geodesy Vol. 41/2, 2011 (159–177)

Acknowledgments. The author (M.H.) is grateful to the Slovak Grant Agency
VEGA for partial support of the work by means of project No. 2/0169/09 and to the
APVV Grant Agency, project No. 51-008505. The author (J.V.) is grateful to Science
Foundation of Ireland (SFI) for the financial support of grant 08/RFP/GEO1693 ”IN-
DEPTH4”.

References

Arfken G., 1966: Mathematical methods for physicists, Academic Press, London.
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Hvoždara M., Vozár J., 2010: Anomalies of geomagnetic field due to a vertical prolate

rotational ellipsoid. Contrib. Geophys. Geod., 40, 3, 185–205.
Lebedev N. N., 1963: Special functions and their applications. Fizmatgiz, Moscow (in

Russian).
Madelung E., 1957: Die Mathematischen Hilfsmittel des Physikers. Spriger-Verlag, Berlin.
Morse P. M., Feshbach H., 1973: Methods of theoretical physics. McGraw-Hill, New

York.
Muratov R. Z., 1976: Potentials of ellipsoid. Atomizdat, Moscow, 144 p. (in Russian).
Smythe W. R., 1968: Static and dynamic electricity. McGraw-Hill, New York.
Stratton J. A., 1941: Theory of electromagnetic field. McGraw-Hill, New York.

177




