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Abstract: We propose a numerical scheme which efficiently combines various existing
methods of solving the Newton’s volume integral. It utilises the analytical solution of
Newton’s integral for tesseroid in computing the near-zone contribution to gravitational
field quantities (potential and its first radial derivative). The far-zone gravitational con-
tribution is computed using the expressions derived based on applying Molodensky’s trun-
cation coefficients to a spectral representation of Newton’s integral. The weak singularity
of Newton’s integral is treated analytically using formulas for the gravitational contribu-
tion of the cylindrical mass volume centered with respect to the observation point. All
three solutions are defined and evaluated in the system of polar spherical coordinates. A
conversion of the geographical to polar spherical coordinates of input data sets (digital
terrain and density models) is based on the Möbius transformation with an enhanced
integration grid resolution at vicinity of the observation point.
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1. Introduction

Various forward modelling techniques for computing the gravitational field
quantities of a given density/mass distribution have been developed in the
literature. These techniques utilise the numerical, semi-analytical, or ana-
lytical integration approaches. Anderson (1976) and others used a spherical
prism (tesseroid) for an evaluation of the potential and its radial deriva-
tive. Martinec et al. (1993, 1994) and Martinec (1998) applied the semi-
analytical integration approach, where the analytical solution for the radial
component of the integration domain was found from Bronstein and Se-
mendjajew (1977), and an effective numerical integration scheme was em-
ployed for the surface integration in the system of spherical coordinates.
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Mikuška et al. (2006) applied a similar semi-analytical approach in the sys-
tem of polar spherical coordinates. The analytical solutions for the potential
and attraction of a spherical cap can be found in Kühtreiber et al. (1989).
Tenzer et al. (2007) derived the analytical expressions for the potential
and its first derivatives of the tesseroid of a homogeneous density defined in
the system of polar spherical coordinates. Studying the local gravity field, a
simple form of the integration element can be used, such as the right rectan-
gular parallelepiped (prism) with a constant density within each individual
integration volume. Bessel (1813) derived the closed analytical expression
for the potential of a prism. The potential-related formulae for a prism were
studied also by Zach (1811), Mollweide (1813), Everest (1830), and Mader
(1951). Nagy et al. (2000) reviewed the closed analytical expressions for
the potential and its first and second derivatives of the rectangular prism
of a homogenous density.
For the gravitational field modelling of inhomogeneous density forma-

tions, the approximation of geological structures by more general geomet-
rical forms are often implemented. Pick (1984) summarized the expres-
sions for computing the gravitation of various geometrical bodies. Hurbbert
(1948) introduced a methodology called the line-integral approach. This
approach facilitates the expressions derived based on converting the sur-
face or volume integrals into line integrals after applying the Gauss diver-
gence theorem. Following this principle, Talwani et al. (1959) applied the
line-integral approach to the polygon in 2-D. Talwani and Ewing (1960),
Collette (1965), and Takin and Talwani (1966) decomposed the 3-D body
into parallel, typically horizontal laminae. Paul (1974) and Barnett (1976)
generalised this concept for a polyhedron in 3-D. Pohánka (1988) developed
a simple algorithm for the gravitation of a homogeneous polyhedral body
using the line-integral approach (see also Ivan, 1990; Pohánka, 1990). The
expressions for polyhedral bodies with a homogeneous density were studied
also by Okabe (1979), Götze and Lahmeyer (1988), Kwok (1991), Holstein
and Ketteridge (1996), Werner and Scheeres (1997), Holstein et al. (1999),
and Holstein (2002a,b). Petrovič (1996) presented in a more complete form
the formulae for the potential and its derivatives using the line-integral ap-
proach for the arbitrary polyhedral bodies of a homogenous density (see
also Tsoulis and Petrovič, 2001).
For the forward modelling of the gravitational field of geological struc-
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tures with a variable density distribution, the analytical expressions for vol-
ume elements with linearly or otherwise varying density distribution models
can further improve the numerical efficiency. One example can be given by
sedimentary basins where the density increases with depth due to com-
paction (e.g., Artemjev et al., 1994). Several authors derived and applied
the analytical expressions of volume elements for various density distribu-
tion models. Chai and Hinze (1988) computed the gravitation using a rect-
angular prism with density changing linearly with depth. Gallardo-Delgado
et al. (2003) derived the analytical solution for the gravitation utilising
a right rectangular prism with density varying according to a polynomial
quadratic law.
Garćıa-Abdeslem (1992, 2005) introduced the analytical expression for

the right rectangular prism with a depth-dependent density distribution
having the form of a cubic polynomial. Karcol (2011) derived the expres-
sions for computing the potential and its radial derivative of the spherical
shell with a radially varying density. Combining benefits of using more
generalized geometrical bodies and taking into account density variation
models, Pohánka (1998) introduced the expression by means of the line
integrals for computing the gravitation of an arbitrary polyhedral body
having a linearly varying density. The alternative expression was derived
by Hansen (1999). Holstein (2003) generalised their work deriving the for-
mulae also for the potential and its second derivatives. To avoid singular
terms and obtain a maximal numerical efficiency, Pohánka (1998) derived
the optimum expression and proposed an efficient algorithm for computing
the gravitation. Following his methodology, Hamayun et al. (2009) derived
the corresponding optimum expression for the potential.
A number of authors have used the spectral representation of Newton’s

kernel in deriving the expressions for computing the gravitational effects
of topography. Sünkel (1968) introduced the expressions for the potential
in terms of the spherical height functions. Vańıček et al. (1995) formu-
lated alternative expressions for the topographic potential and its radial
derivative. Martinec et al. (1993), Martinec and Vańıček (1994), Sjöberg
(1998), Sjöberg and Nahavandchi (1999), Sjöberg (2000), Tsoulis (1999),
Novák (2000), Tsoulis (2001), Sjöberg (2001), Heck (2003), Tenzer (2005),
Sjöberg (2007), Novák (2009), and others derived various spectral expres-
sions for computing the topography-generated gravitational field quantities.
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Wild and Heck (2004) introduced the expressions for evaluating the topo-
graphic effect on satellite gradiometry data. Novák and Grafarend (2005)
studied the topographic potential and its vertical gradient using the el-
lipsoidal representation of Newton’s integral. Makhloof (2007) formulated
the expressions for computing the topographic-isostatic effect on airborne
gravimetry, satellite gravimetry, and gradiometry data. The alternative ex-
pressions for computing the topographic effects in satellite gravimetry and
gradiometry were formulated by Novák and Grafarend (2006) and Eshagh
and Sjöberg (2008, 2009). Studying the gravitational contribution of the
far-zone topography, Novák et al. (2001) utilised various truncation coef-
ficients to a spectral representation of Newton’s integral. The alternative
expressions for computing the far-zone contributions to gravity field quanti-
ties by means of Molodensky’s truncation coefficients can be found in Tenzer
et al. (2011).
In this study, we combine benefits of using the analytical integration

approach for an accurate computation of the near-zone gravitational con-
tribution, while the numerically efficient methods for a spherical harmonic
analysis and synthesis of gravity field are employed in computing the grav-
itational contribution of the far-zone topography. Both, the analytical in-
tegration approach (for the near zone) and the spectral approach (for the
far zone) are formulated uniformly in the system of polar spherical coordi-
nates. The formulation of the problem is given in Section 2. A conversion
of the geographical to polar spherical coordinates of the input data is based
on the Möbius transformation. It takes into consideration a more refined
integration grid in close proximity of the observation point. The coordi-
nate transformation is described in Section 3. The analytical integration
approach for computing the near-zone contribution utilises the expressions
for the tesseroid mass volume. These analytical expressions are reviewed
in Section 4. The expressions for computing the far-zone topography by
means of spherical height functions are given in Section 5. The summary
and concluding remarks are given in Section 6.

2. Theory

In spherical approximation, the topography-generated gravitational poten-
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tial V computed at the position (r,Ω) is written in the following form

V (r,Ω) =G

2π∫
0

ψinner∫
0

ρ (α,ψ)
∫ R+H(α,ψ)

R
�−1

(
r, ψ, r′

)
r′2 dr′ sinψ dψ dα+

+G

2π∫
0

ψ0∫
ψinner

ρ (α,ψ)
∫ R+H(α,ψ)

R
�−1

(
r, ψ, r′

)
r′2 dr′ sinψ dψ dα+

+G ρ0

2π∫
0

π∫
ψ0

∫ R+H(α,ψ)

R
�−1

(
r, ψ, r′

)
r′2 dr′ sinψ dψ dα, (1)

where G = 6.674 × 10−11m3 kg−1 s−2 is Newton’s gravitational constant,
R = 6371 × 103 m is the Earth’s mean radius (which approximates the
geocentric radius of the geoid surface), H is the topographical height, ρ
is the lateral topographic density function, ρ0 is the mean topographical
density, and � is the Euclidean spatial distance between the observation
point (r,Ω) and the integration (running) point (r ′,Ω′). The 3-D position is
defined by geocentric spherical coordinates (r, φ, λ), where r is the geocentric
radius and Ω = (φ, λ) denotes the geocentric direction with the geocentric
spherical latitude φ and longitude λ. The surface integration domain in
Eq. (1) is expressed in the system of polar spherical coordinates (α,ψ) with
the spherical azimuth α and the spherical angle ψ. The relation between
the spherical coordinates (φ, λ) and the polar spherical coordinates (α,ψ) is
given by the well-known formulae of spherical trigonometry (e.g., Heiskanen
and Moritz, 1967, Eqs. 2–207, 2–212)

cosψ = sinφ sin φ′ + cosφ cosφ′ cos
(
λ′ − λ

)
, (2)

tanα =
cosφ′ sin (λ′ − λ)

cosφ sinφ′ − sinφ cosφ′ cos (λ′ − λ)
. (3)

The gravitational potential V and acceleration g are continuous at the en-
tire 3-D space and they are regular at infinity (cf. Kellogg, 1929). Newton’s
integral is singular when the integration point coincides with the observa-
tion point (i.e., ψ → 0 ∧ r′ → r). Therefore, special care should be taken
when calculating the contribution to the potential and acceleration from the
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integration area at vicinity of the observation point. However, the singu-
larity of Newton’s integral is weak and thus removable (cf. Kellogg, 1929,
p. 151), see also Martinec (1998). The surface integration area in Eq. (1)
is subdivided into three sub-domains. The first integral term on the right-
hand side of Eq. (1), bounded by the maximum spherical distance ψinner,
represents the inner zone which contains the singularity. There are several
possible methods of solving a weak singularity of Newton’s integral. In our
particular case, we propose the solution based on the analytical expressions
for the cylinder mass volume centred at the observation point. Since the en-
tire surface integration area in Eq. (1) is subdivided unambiguously into the
inner zone (for solving the weak singularity), near zone, and far zone, this
choice of the volumetric element for solving the singularity problem fits very
well with the adopted integration scheme formulated in the system of polar
spherical coordinates. The second integral on the right-hand side of Eq. (1)
represents the gravitational contribution of the near-zone topography. The
near-zone surface integration area is limited by the maximum spherical dis-
tance ψ0. The gravitational contribution of the far-zone topography is given
by the third integral in Eq. (1). Whereas the lateral density distribution ρ
is considered for the near zone, the constant mean value of the topographic
density ρ0 is assumed for computing the far-zone contribution. We further
denote the gravitational potential generated by the near-zone topography
as Vnz and the far-zone topographical potential as Vfz.
The numerical scheme comprises the following steps: First, geographical

coordinates of the elevation and density data (within the near zone) are
converted to polar spherical coordinates using the Möbius transformation
(see Section 3). The evaluation of the elevation and density values on the
integration grid from the corresponding data grid (in the system of polar
spherical coordinates) is done using, for instance, the bilinear interpola-
tion. The surface integration zones, the analytical integration step within
the near zone, and the maximum degree of spherical height functions for
computing the far-zone contribution are chosen depending on the spatial
data grid resolution and the required accuracy. We note that the choice of
these parameters for an efficient integration requires additional numerical
analysis not discussed in detail in this study. The computation of the gravi-
tational field quantities is finally realised according to the expressions given
in Sections 4 and 5 (and Appendix I).
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3. Coordinate transformation

The spherical coordinates (φ, λ) of input data grids are converted to the
polar spherical coordinates (ψ,α) of which the origin is reckoned relative
to the observation point. We note here that if input data are provided on
a grid of geodetic coordinates, the additional conversion of geodetic lati-
tude ϕ to spherical latitude φ is required in prior of computing the po-
lar spherical coordinates. The conversion formula between ϕ and φ reads
tanϕ = tanφ (1− f)−2, where f is the linear flattening of the reference el-
lipsoid (e.g., Bomford, 1962). Bentsen et al. (1999) presented the transfor-
mation scheme, where the north and south poles are mapped onto arbitrary
locations on the sphere. The transformation of spherical to polar spherical
coordinates is performed in three successive steps, namely the stereographic
projection from the unit sphere onto a complex plane, then a Möbius trans-
formation of the complex plane, and finally a reverse stereographic projec-
tion from the complex plane onto the unit sphere. Both, the stereographic
projection and the Möbius transformation are conformal. Therefore, the
resulting three step transformation procedure is also conformal and thus
preserves the angles at which curves cross each other. In particular, the
orthogonal coordinate system on the sphere is transformed to a coordinate
system which is also orthogonal. The direct transformation is given by the
following scheme

z = tan
(

θ
2

)
eiλ w = (z−a)(c−b)

(z−b)(c−a) ψ = 2arctan |w |, α = arg(w)
(θ, λ) z w (ψ,α). (4)

The inverse transformation is described by

w = tan
(

ψ
2

)
eiα z = −wb(c−a)+a(c−b)

−w(c−a)+c−b θ = 2arctan |z |, λ = arg(z)
(ψ,α) w z (θ, λ). (5)

In Eqs. (4) and (5), a, b, and c are the complex constants; z and w are the
complex variables; and θ = π/2−φ is the spherical co-latitude. The Möbius
transformation is uniquely defined by mapping three arbitrary points. To
achieve a more refined integration grid in close proximity of the observation
point while increasing the numerical efficiency by decreasing the integration
step with an increasing distance from the observation point, we specify the
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Fig. 1. The principle of the Möbius coordinate transformation defined in Eqs. (4–12). N
– north pole, S – south pole, A – observation point, E – point in the intersection of the
equator and the meridian of the observation point. During the transformation, the point
E is mapped to C. The (conventional) spherical distance between A and C is denoted as
ψ0.

Möbius transformation as follows: The north pole of the coordinate system
is mapped onto the location of the observation point and the south pole
is mapped onto the point diametrically opposite to the observation point.
The third point on the Earth’s surface is chosen exactly between the north
and south poles on the meridian that passes through the observation point.
The image of this point is on the same meridian but its latitude is shifted
by the value of ψ0 from the observation point. This means that during the
transformation, the entire northern hemisphere is mapped onto the near
zone enclosed by the spherical distance ψ0 from the observation point. The
situation is demonstrated in Fig. 1. We denote the spherical coordinates
of the observation point as (θa, λa), the corresponding coordinates of the
point on the opposite side of the Earth as (θb, λb), and the coordinates of
the point between these two points as (θc, λc). We then write

θb = π − θa, λb = π + λa. (6)

Moreover, for the coordinates (θc, λc) we have
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θc =

{
θa + ψ0, θa + ψ0 ≤ π
2π − θa − ψ0, θa + ψ0 ≥ π

(7)

and

λc =

{
λa, θa + ψ0 ≤ π
π + λa, θa + ψ0 ≥ π

(8)

The complex parameters a,b, and c in Eqs. (4) and (5) are defined as

a = tan
(
θa
2

)
eiλa , b = −1

ā
, c =

a+ d
1− a d̄

, (9)

where ā and d̄ are the complex conjugates of a and d, respectively. The
parameter d reads

d = eiλa tan
ψ0
2
. (10)

The spherical distance ψ and azimuth α are found by substituting the pa-
rameters a, b, and c from Eq. (9) to Eqs. (4) and (5). We obtain

cosψ = cos (2 arctan |w |) = 1− |w |2
1 + |w |2 =

=
cos θ cos θa + sin θ sin θa cos (λ− λa)− cosψ0
1− cosψ0[cos θ cos θa + sin θ sin θa cos (λ− λa)]

, (11)

where

w =
z − a

d(zā+ 1)
. (12)

For ψ0 = π/2, cosψ0 = 0 and the expression in Eq. (11) becomes identical
with the expression given in Eq. (2).

4. Analytical integral approach for the near-zone contribution

The near-zone contribution to the potential Vnz is computed as a sum of indi-
vidual contributions of the tesseroid mass volumes

{
V tesj : j = 1, 2, ... , J

}
.

Hence
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Vnz =
J∑
j=1

V tesj , (13)

where J is the total number of tesseroid elements within the near zone. The
potential V tes generated by the individual tesseroid is given by

V tes = G ρ

α2∫
α=α1

ψ2∫
ψ=ψ1

r′2∫
r′=r′1

�−1
(
r, ψ, r′

)
r′2 dr′ sinψ dψ dα. (14)

The volume element is given by Δv = r′2Δr′ sinψΔψΔα, where Δψ =
ψ2 − ψ1, Δα = α2 − α1, and Δr′ = r′2 − r′1. Furthermore, we assume a ho-
mogeneous mass density distribution ρ within the volume of each tesseroid.
The analytical solution of Newton’s integral in Eq. (14) is given by (Tenzer
et al., 2007)

V tes = G ρFα,ψ,r′

∣∣∣∣∣
r′2

r′1

∣∣∣∣∣
ψ2

ψ1

∣∣∣∣∣
α2

α1

. (15)

where the function Fα,ψ,r′ reads

Fα,ψ,r′ = α
[
1
3r
�3

(
r, ψ, r′

)
+
1
2
�
(
r, ψ, r′

)
cosψ

(
r′ − r cosψ

)
+

+
r2

2
cosψ sin2 ψ ln

∣∣ 2� (
r, ψ, r′

)
+ 2r′ − 2r cosψ ∣∣] (r �= 0) . (16)

By analogy with Eq. (15), the acceleration gtes generated by the tesseroid
is defined as (Tenzer et al., 2007)

gtes ∼= −∂ V
tes

∂ r
= −G ρ ∂Fα,ψ,r′

∂ r

∣∣∣∣∣
r′2

r′1

∣∣∣∣∣
ψ2

ψ1

∣∣∣∣∣
α2

α1

. (17)

The radial derivative of Fα,ψ,r′ in Eq. (17) reads

∂ Fα,ψ,r′

∂ r
= α

[
r cosψ sin2 ψ ln

∣∣ 2� (
r, ψ, r′

)
+ 2r′ − 2r cosψ ∣∣ +

+
� (r, ψ, r′)
6r2

(
4r2 − 2r′2 −2rr′ cosψ − 3r2 cos2 ψ

)
+
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+
cosψ

2� (r, ψ, r′)

(
rr′ cos2 ψ −r′2 cosψ − r2 cosψ + rr′

)
+

+
1
2
r2 cosψ sin2 ψ
� (r, ψ, r′)

(
r − � (r, ψ, r′) cosψ − r′ cosψ
� (r, ψ, r′) + r′ − r cosψ

) ]
(
r �= 0; r �= r′ ∧ ψ �= 0) . (18)

The parameters Δψ and Δα of the analytical integration step within the
inner zone are chosen based on the required accuracy and the spatial res-
olution of the digital terrain and density models. We note here that the
equivalent accuracy of input data and computed results (within the near
zone) can be achieved if the input data and analytical integration have
the same or similar spatial resolution. The maximum spherical distance
ψinner of the inner zone (for solving the singularity) can then be chosen as
Δψ ≈ ψinner. The maximum spherical distance ψ0 of the near zone can be
selected based on the analysis of results computed for different values of ψ.

5. Spectral approach for the far-zone contribution

Novák (2010, Eq. 20) derived the expression for computing the potential V
in the following spectral form

V (r,Ω) =
GM
R

n̄∑
n=0

n∑
m=−n

(
R
r

)n+1
Vn,m Yn,m (Ω), (19)

where

Vn,m =
3

2n+ 1
ρ0

ρ̄Earth
Fn,m. (20)

From Eq. (19), the expression for computing the acceleration g is found to
be

g (r,Ω)∼=−∂ V (r,Ω)
∂ r

=

=
GM
R2

n̄∑
n=0

(n+ 1)
n∑

m=−n

(
R
r

)n+2
Vn,m Yn,m (Ω). (21)

105



Tenzer R., Gladkikh V.: Application of Möbius coordinate. . . (95–115)

The average density of the upper continental crust 2670 kg/m3 (cf. Hinze,
2003) is typically adopted as the mean topographical mass density ρ0 in
Eq. (20), and the value of ρ̄Earth = 5500 kg/m3 is considered for the Earth’s
mean mass density. The geocentric gravitational constant is defined by
the value GM = 3986005 × 108m3/s2. The maximum degree of spherical
harmonics is denoted as n̄. The surface spherical harmonic functions Yn,m
in Eqs. (19) and (21) read (e.g., Hobson, 1931)

Yn,m (Ω) = Pn,m (sinφ)

{
cos m λ (m ≥ 0)
sin |m | λ (m < 0)

, (22)

where Pn.m are the Legendre associated functions of degree n and orderm for
the argument of sine of the spherical latitude φ. The numerical coefficients
Fn,m in Eq. (20) are given by (Novák, 2010)

Fn,m =
Hn,m
R
+ (n+ 2)

H(2)n,m
2R2

+ (n+ 2) (n+ 1)
H(3)n,m
6R3

+

+ (n+ 2) (n+ 1) n
H(4)n,m
24R4

+ (n+ 2) (n+ 1) n (n− 1) H
(5)
n,m

120R5
+

+
n+2∑
k=5

(
n+ 2
k

)
(−1)k
k + 1

H(k+1)n,m

Rk+1
, (23)

where Hn,m are the global elevation model (GEM) coefficients. The GEM

coefficients Hn,m describe the global topography. The series
n∑

m=−n
Hn,mYn,m

defines the surface spherical height function Hn of degree n (e.g., Novák,
2000)

Hn (Ω) =
2n+ 1
4π

2π∫
0

π∫
0

H (ψ,α) Pn (cosψ) sinψ dψ dα =

=
n∑

m=−n
Hn,mYn,m (Ω), (24)

where Pn is the Legendre polynomial of degree n. Consequently,

H(i)n (Ω) =
n∑

m=−n
H(i)n,mYn,m (Ω). (25)
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To derive the expressions for the gravitational field quantities generated by
the far-zone topography of a constant mean density ρ0, we define the far-
zone spherical height functions H̃n in the following form (cf. Tenzer et al.,
2011)

H̃n (Ω , ψ0) =
2n+ 1
4π

2π∫
0

π∫
ψ0

H (ψ,α)Pn (cosψ) sinψ dψ dα = (n− 1)×

× Qn (ψ0)
2

2n+ 1
4π

2π∫
0

π∫
0

H (ψ,α)Pn (cosψ) sinψ dψ dα. (26)

The Molodensky’s truncation coefficients Qn for the argument ψ0 read
(Molodensky et al., 1960)

Qn (ψ0) =

π∫
ψ0

S (ψ) Pn (cosψ) sinψ dψ, (27)

where S is the Stokes function. The coefficients Qn are computed recurrently
according to formulae provided by Hagiwara (1975). Alternatively, they can
be computed using the algorithm developed by Paul (1973). From Eqs. (24)
and (26), the relation between the far-zone and original spherical height
functions H̃n and Hn is defined as

H̃n (Ω , ψ0) = (n− 1) Qn (ψ0)
2

Hn (Ω) =

= (n− 1) Qn (ψ0)
2

n∑
m=−n

Hn,mYn,m (Ω). (28)

As seen from Eq. (28), H̃n and Hn are functionally related by means of
Molodensky’s truncation coefficients. The expression for computing the
far-zone contribution to the potential Vfz (the third term on the right-hand
side of Eq. 1) is obtained after applying the relation between H̃n and Hn in
Eq. (28) to the spectral representation of the potential V in Eq. (19). We
get

Vfz (r,Ω) =
GM
2R

n̄∑
n=0

(n− 1) Qn (ψ0)
n∑

m=−n

(
R
r

)n+1
Vn,m Yn,m (Ω). (29)
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From Eqs. (21) and (28), the expression for computing the acceleration
generated by the far-zone topography gfz is obtained in the following form

gfz (r,Ω) =
GM
2R2

n̄∑
n=0

(n− 1) (n+ 1) Qn (ψ0) ×

×
n∑

m=−n

(
R
r

)n+2
Vn,m Yn,m (Ω). (30)

Equations (29) and (30) define the far-zone contributions to the topographic
potential and acceleration by means of Molodensky’s truncation coefficients.
The far zone is specified by the parameter ψ0 of Molodensky’s truncation
coefficients.
The currently available global elevation models such as the global to-

pographic/bathymetric model DTM2006.0 (publicly released together with
EGM2008 by the U.S. National Geospatial-Intelligence Agency EGM de-
velopment team) allow computing the far-zone contribution to a very high
accuracy and spectral resolution (up to degree 2160 of spherical harmon-
ics). Since the accuracy of computed gravitational field quantities mainly
depends on the accuracy of the input data and integration methods applied
within the near zone, the computational time efficiency can be achieved
by a proper selection of the maximum degree n̄ of the GEM coefficients in
computing the contribution of the far-zone topography.

6. Summary and concluding remarks

We have proposed and discussed the forward modelling technique for com-
puting the topography-generated gravitational potential and its first radial
derivative in the system of polar spherical coordinates. The integration
scheme utilises three different integration approaches specified individually
for the inner zone, near zone, and far zone.
The weak singularity of Newton’s integral is solved analytically within

the inner zone using the expressions for the cylinder mass volume centered
with respect to the observation point. The choice of this particular geomet-
ric body is convenient for the analytical integration scheme in the system
of polar spherical coordinates due to the fact that the upper limit (for inner
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zone) and lower limit (for near zone) of the surface integration domains are
defined uniquely by the parameter ψinner. Similarly, the upper limit (for near
zone) and lower limit (for far zone) of the surface integration sub-domains
are uniquely defined by the parameter ψ0 of the spherical distance. The
near-zone integration is done analytically using the closed expressions for
tesseroid. The analytical integration approach reduces the errors otherwise
presented when using the numerical or semi-analytical integral approaches.
The formulation of the analytical integration in the spherical approxima-
tion also reduces the errors due to the planar approximation presented when
applying, for instance, the commonly used analytical rectangular prism ap-
proach. Moreover, possible errors caused by an ambiguous definition of the
integration sub-domains in the case of using different integration schemes
(for each sub-domain) are completely eliminated. The proposed conversion
of geographical coordinates of input data sets (digital terrain and density
models) to the integration grid of polar spherical coordinates, based on the
Möbius transformation and subsequent data interpolation, has the enhanced
resolution of the analytical integration grid at vicinity of the observation
point while this resolution decreases with an increasing distance from the
observation point. The gravitational contribution of the far-zone topogra-
phy is computed using expressions which utilise the far-zone spherical height
functions defined by means of Molodensky’s truncation coefficients.
The size of the near zone (defined by the parameter ψ0), the resolution

of analytical integration within the inner zone (defined by the size of Δψ
and Δα), and the maximum degree n̄ of the GEM coefficients are chosen
based on combination of several factors such as the required accuracy, the
spatial resolution of digital terrain and density models, and the numerical
efficiently.
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Garćıa-Abdeslem J., 2005: Gravitational attraction of a rectangular prism with density
varying with depth following a cubic polynomial. Geophysics, 70, J39–J42.

Götze H. J., Lahmeyer B., 1988: Application of three-dimensional interactive modelling
in gravity and magnetics. Geophysics, 53, 8, 1096–1108.

Hagiwara Y., 1975: A new formula for evaluating the truncation error coefficient. J.
Geod., 50, 2, 131–135, doi:10.1007/BF02522312.

Hamayun, Prutkin I., Tenzer R., 2009: The optimum expression for the gravitational
potential of polyhedral bodies having a linearly varying density distribution. J.
Geod., 83, 12, 1163–1170, doi:10.1007/s00190-009-0334-1.

Hansen R. O., 1999: An analytical expression for the gravity field of a polyhedral body
with linearly varying density. Geophysics, 64, 1, 75–77.

Heck B., 2003: On Helmert’s Methods of Condensation. J. Geod., 7, 155–170.
Heiskanen W. H., Moritz H., 1967: Physical geodesy. San Francisco, W. H. Freeman and

Co.
Hinze W. J., 2003: Bouguer reduction density, why 2.67? Geophysics, 68, 5, 1559–1560.
Hobson E. W., 1931: The theory of spherical and ellipsoidal harmonics. Cambridge

University Press, Cambridge.

110



Contributions to Geophysics and Geodesy Vol. 41/2, 2011 (95–115)

Holstein H., Ketteridge B., 1996: Gravimetric analysis of uniform polyhedra. Geophysics,
61, 2, 357–364.

Holstein H., Schürholz P., Starr A. J., Chakraborty M., 1999: Comparison of gravimetric
formulas for uniform polyhedra. Geophysics, 64, 5, 1434–1446.

Holstein H., 2002a: Gravimagnetic similarity in anomaly formulas for uniform polyhedra.
Geophysics, 67, 4, 1126–1133.

Holstein H., 2002b: Invariance in gravimagnetic anomaly formulas for uniform polyhedra.
Geophysics, 67, 4, 1134–1137.

Holstein H., 2003: Gravimagnetic anomaly formulas for polyhedra of spatially linear
media. Geophysics, 68, 1, 157–167.

Hurbbert M. K., 1948: A line integral method of computing the gravity effects of two
dimensional masses. Geophysics, 13, 215–225.

Ivan M., 1990: Comment on “Optimum expression for computation of the gravity field of
homogeneous polyhedral body” by V. Pohánka. Geophys. Prospect., 38, 331–332.

Karcol R., 2011: Gravitational attraction and potential of spherical shell with radially
dependetn density. Stud. Geophys. Geodeat., 55, 21–34.

Kellogg O. D., 1929: Foundations of Potential Theory. Berlin, J. Springer.
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Appendix I: Analytical solution for cylinder

The inner-zone integration element centered with respect to the observation
point is represented by a cylinder mass volume of the radius τ = Rψinner
and the height η = Δr for chosen small positive values of Δr and ψinner
(see Fig. I), where ψinner is the maximum spherical distance of the inner
zone (see Eq. 1). The axis of the cylinder coincides with the r-axis of the
observation point. The actual integral element around the computation
point is very close in shape to this cylindrical approximation for the regions
near the surface of the Earth because in this case r >> Δr and ψinner << 1.
We need to distinguish three separate cases depending on the location of
the observation point within the cylinder. If the observation point is on
top/bottom of cylinder (i.e., points A and C in Fig. I), the potential reads
(e.g., Heiskanen and Moritz, 1967).

V (A) = πG ρ

[
η

√
η2 + τ2 + τ2 log

(√
η2 + τ2 + η

τ

)
− η2

]
. (I.1)

Fig. I. The cylinder mass volume centered with respect to the r-axis of the observation
point. The location of the observation point is: A – on top of cylinder, B – in middle of
cylinder, and C – at bottom of cylinder.

114



Contributions to Geophysics and Geodesy Vol. 41/2, 2011 (95–115)

If the observation point is identical with a geometric centre of cylinder (i.e.,
point B in Fig. I), we obtain

V (B) = πG ρ

[
η

2

√
η2 + 4τ2 + τ2 log

(√
η2 + 4τ2 + η√
η2 + 4τ2 − η

)
− η2

2

]
. (I.2)

Similarly, we define the gravitational acceleration g of the cylinder mass
volume for three cases. If the observation point is on top of cylinder, we
have (e.g., Heiskanen and Moritz, 1967)

g(A) = 2πG ρ
(√

τ2 + η2 − τ − η

)
. (I.3)

If the observation point is in middle of cylinder, the acceleration becomes
zero. Hence

g(B) = 0. (I.4)

If the observation point is at bottom of cylinder, we have (ibid.)

g(C) = 2πG ρ
(
τ + η −

√
τ2 + η2

)
. (I.5)
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