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Abstract: This study used the Standardized Precipitation Index (SPI) to detect drought

episodes in Tanzania, as well as their characteristics in terms of duration (years), severity,

and intensity, and analyse their trends. To conduct the analysis, 12-month standardized

precipitation was employed, utilizing historical data from 1970 to 2005 and future pro-

jections from 2021 to 2100 for ten meteorological stations in Tanzania. These historical

projections are based on simulations generated by Coordinated Regional Climate Down-

scaling Experiment (CORDEX-CORE) models. According to projected future changes,

precipitation would increase at 60% of stations, notably in Tanzania’s eastern regions.

The highlands, however, are predicted to experience a greater rise in precipitation than

the desert and semi-arid areas, which are predicted to receive less precipitation. In addi-

tion, it is expected that in the mid-future, drought events will occur more frequently in

Tanzania’s dry regions and will last longer and be more severe. Based on the estimated

SPI values, the Mann-Kendall (MK) test and Sen’s slope estimator were used to examine

the drought trend. The overall analysis of the computed SPI time series demonstrated

that drought is more frequent and severe in Tanzania, especially in Kigoma, Songea and

Tanga. Based on the SPI-12 values, the results show that the most prolonged and severe

droughts occurred during the 2039–2041, 2045–2046, 2068–2072, 2081–2083 and 2092–

2095 marking extremely dry years. To mitigate the potential impacts of climate change,

it is crucial to implement adaptation measures that address the specific challenges faced

by Tanzania.
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1. Introduction

The increasing emission of greenhouse gases contributes significantly to the
observed global warming (Tan et al., 2020), leading to escalating impacts of
climate change on society and the environment (Touma et al., 2015). Cli-
mate change presents one of the most critical challenges for both ecosystems
and human populations (IPCC, 2013). Without effective early adaptation
measures, food and water scarcity are expected to increase under the influ-
ence of climate change (AghaKouchak et al., 2015). According to climate
change studies, there has been an increase in climate variability in Africa,
which would likely lead to more droughts (Meze-Hausken, 2004; Thorn-
ton et al., 2014). Drought, a natural meteorological phenomenon, refers
to a prolonged period of below-normal water availability, spanning from a
few days to months, and occasionally even decades (Mukamuhirwa et al.,
2020). Its impacts are widespread, affecting various socio-economic sectors
and having devastating effects on communities (Dai, 2013; Polong et al.,
2019). Climate change and variability are expected to intensify the effects
of drought in terms of complexity, frequency, and spatial extent (Sheffield
et al., 2012). Drought can be categorized into four types: meteorological,
agricultural, hydrological, and socioeconomic. The meteorological drought
occurs when a specific area experiences a prolonged absence of rainfall, pos-
ing risks to agriculture and hydrology (Wilhite and Glantz, 1985). Recent
studies suggest that distressing drought events and pluvial scenarios are ex-
pected to increase in frequency and severity in many regions (Huang et al.,
2016; Spinoni et al., 2020). Globally, there has been a noticeable rise in
drought occurrences attributed to human-induced climate change (Masson-
Delmotte et al., 2021). Various countries in Asia (Sahana et al., 2021),
Europe (Stagge et al., 2017), and America (Sobral et al., 2019; Zhu et al.,
2021) have experienced the impacts of the drought.

At the Horn of Africa, Tanzania faces climate variability, with rainfall
patterns influenced by factors like the Indian Ocean Dipole and El Niño-
Southern Oscillation. Climate change is expected to worsen drought fre-
quency and severity in these regions (Makula and Zhou, 2022). Human ac-
tivities like deforestation, overgrazing, and land degradation can reduce land
moisture retention, increasing susceptibility to droughts (Olagunju, 2015).
Poor water resource management, including over-abstraction, inefficient ir-
rigation systems, and inadequate storage facilities, can exacerbate water
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scarcity (World Vision International, 2022). Rapid population growth and
urbanization also increase demand for water and land resources, exacerbat-
ing drought impacts (Heidari et al., 2021; Maja and Ayano, 2021). Drought
is a recurrent natural hazard in Tanzania that has been linked to a combi-
nation of natural and human-induced factors (Mdemu, 2021). Additionally,
Ayugi et al. (2022) conducted an extensive investigation into the antici-
pated changes in drought events specifically within the East African region.
Their study revealed future projections indicating that the arid and semi-
arid regions are poised to experience diminished precipitation levels and
more frequent occurrences of droughts in the long term. Similarly, Haile et
al. (2020) undertook an assessment of future drought changes across East
Africa utilizing an ensemble of five Global Climate Models from the Coupled
Model Intercomparison Project. Their findings suggest that the extent of
drought-prone areas is likely to expand by the conclusion of the 21st century
under various emission scenarios.

Researchers, policymakers, and scientists are increasingly interested in
global drought monitoring and assessment. Many Methods for measur-
ing, analysing, and characterizing drought conditions are used to advise
policymakers, resource managers, and researchers in their decisions about
agriculture, water resource management, and other related fields. These
approaches have varying degrees of complexity and data requirements, but
they all aim to comprehend and measure the severity of a drought. Metrics
like Rainfall Anomaly Index (Van Rooy, 1965), Palmer’s Drought Sever-
ity Index (Palmer, 1968), Standardized Precipitation Index (SPI) (Mckee et
al., 1993), and Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al., 2010) are widely used to evaluate drought in var-
ious regions worldwide. These Common drought methods assessments in-
clude the Standardized Precipitation Index (SPI), which transforms rainfall
data into standard deviations from the mean to categorize drought severity.
The SPI gained popularity due to its simplicity and use of only precipita-
tion data (Musonda et al., 2020; Wang et al., 2022). In applications over
East Africa, studies have used the SPI to analyse trends in countries like
Ethiopia, Kenya, and Tanzania (Dutra et al., 2014; Kalisa et al., 2021).
These analyses point to increased meteorological drought associated with
rising precipitation deficits, especially in recent decades. Also, climate pro-
jections estimate further increases in aridity and drought risk in the region
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by 2100, particularly under high emissions scenarios (Ayugi et al., 2022).
These findings underscore the need for robust drought monitoring and as-
sessment to support adaptation in East Africa.

Drought in Tanzania is a pressing issue that requires urgent attention
and evaluation. The nation’s vulnerability to drought events necessitates in-
depth assessments of its potential impacts and magnitude. Understanding
drought dynamics is crucial for developing effective strategies for mitigation,
adaptation, and risk reduction. The main objectives of this study were (1)
to evaluate the future climate of Tanzania under the Representative Con-
centration Pathways (RCPs), for a low-emissions scenario (RCP2.6) and a
high-emissions scenario (RCP8.5), (2) to examine the temporal variation
of drought in selected Tanzanian stations using high resolution CORDEX-
CORE regional climate model simulations based on the Standardized Pre-
cipitation Index (SPI). (3) By quantifying the frequency and severity of
these events. This study aims to better understand the risks associated
with climate change and inform the development of adaptation and miti-
gation strategies targeted at reducing the vulnerability of communities and
ecosystems to extreme weather events in the region.

2. Data and methods

2.1. Dataset

The main sources of data are Coordinated Regional Climate Downscaling
Experiment (CORDEX-CORE), (Giorgi et al., 2009) and Coupled Model In-
tercomparison Project Phase 5 (CMIP5), (Taylor et al., 2012), which are the
two major international initiatives focused on improving our understanding
of climate change and its impacts. The CMIP5 models are as follows: Met
Office Hadley Centre (MOHC) HadGEM2-ES model (Collins et al., 2011),
both Max Planck Institute Earth System Models (MPI-ESM-LR and MPI-
ESM-MR), (Giorgetta et al., 2013), and Norwegian Climate Centre, Nor-
wegian Earth System Model version 1 (NorESM1-M) model (Knudsen and
Walsh, 2016). The list of CORDEX climate Models presented at Table 1
and can be downloaded using the Earth System Grid Federation (ESGF)
nodes such as https://esgf-data.dkrz.de/. These simulations outputs
are available on CORDEX-Africa domain have spatial resolution at grid in-
crement of 0.22◦ × 0.22◦(∼ 25 km× 25 km) and temporal coverage ranging
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from 1970 to 2005 for historical runs and projections from 2021 to 2100.
Furthermore, the Representative Concentration Pathways (RCPs), which
are a set of scenarios used by climate models to project future climate
change (Moss et al., 2010). The RCPs range from a low-emissions scenario
(RCP2.6) to a high-emissions scenario (RCP8.5). They provide a standard-
ized framework for comparing different climate scenarios and for assessing
the likelihood of different outcomes (IPCC, 2014). We utilize the ensemble
of multiple regional climate models which is a commonly used approach in
climate modelling studies. This approach is often used to increase confi-
dence in the projections by reducing the impact of any one model’s biases
or uncertainties (Hawkins and Sutton, 2011; IPCC, 2013).

Table 1. CORDEX-CORE RCM list.

Model Institution Name Reference

CCLM5-0-15
Climate Limited-area Modelling

Rockel et al. (2008)
Community-KIT, Germany

REMO2015
Helmholtz-Zentrum Geesthacht,

Teichmann et al. (2013)
Climate Service Center, Germany

RegCM4-7
Abdus Salam International

Giorgi et al. (2012)
Centre for Theoretical Physics

2.1.1. The Standardized Precipitation Index (SPI)

For identifying, describing, and monitoring drought, the Standardized Pre-
cipitation Index (SPI) was created by (McKee et al., 1993). The SPI is
calculated using rainfall measurements over a long period that have been
adapted to a probability distribution and then transformed into a normal
distribution (Edwards and McKee, 1997). The SPI has the following advan-
tages: it is individually connected to probability; it can compute the recent
period’s precipitation deficiency; and it can monitor both wet and dry pe-
riods because it is a normalized index (Svoboda and Fuchs, 2016). Drought
occurs once the SPI value reaches −1 or below. Oppositely, when the SPI
reaches a positive number, the drought ends. The SPI index calculates pre-
cipitation insufficiency at several time intervals ranging from 1 to 48 months
(Yihdego et al., 2019). The choice of time scale depends on the purpose of
the analysis, the characteristics of the region, and the available data. The
SPI-12 was chosen since it is primarily effective for identifying drought situ-
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ations in dry countries like East Africa (Haile et al., 2020), and it was shown
to be better appropriate for managing water resources (Raziei et al., 2009).
The SPI is calculated by dividing the discrepancy between precipitation and
the average during a chosen period into standard deviation, as indicated in
Eq. (1).

SPI =
xi − x̄

σx
, (1)

where, xi is the observed precipitation value, x̄ is the average of the xi

precipitation series, and the standard deviation of series σx. The SPI
drought index threshold calculations are included in Table 2, along with
their associated categories (McKee et al., 1993; Tigkas et al., 2015). SPI
calculations are based on DrinC (Drought Indices Calculator) software cre-
ated by the National Technical University of Athens (NTUA) (accessible at
http://drinc.ewra.net/). DrinC has been utilized in several applications
and research for drought assessment and monitoring, mostly in arid and
semi-arid locations (El-Tantawi et al., 2021; Yisehak et al., 2021).

Table 2. Drought classification of SPI index.

Drought category SPI Value

Extremely wet ≥ 2.0

Very wet 1.5 – 1.99

Moderately wet 1.0 – 1.49

Near normal (−0.99) – (0.99)

Moderately dry (−1.0) – (−1.49)

Severely dry (−1.5) – (−1.99)

Extremely dry ≤ −2.0

2.1.2. Drought severity, intensity and duration

The degree or scope of the effects brought on by drought conditions is
referred to as drought severity. It is a gauge of how severely the drought
has impacted numerous environmental factors, including agriculture, water
availability, ecosystems, and socioeconomic activity. The severity (S) is an
aggregate summation of the index values across the length of the incident
Eq. (2). Also, intensity (I), is an occurrence’s severity divided by the number
of dry months or years since the incident Eq. (3). The amount of time that
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a region is subject to drought conditions is known as the drought duration
(years). It is the time frame covering the start of the drought and its end.
The length of a drought is often expressed in months or years and indicates
how long the area has experienced drier-than-average conditions.

S = −
Duration∑

t=1

SPI t , (2)

I =
Severity

Duration
. (3)

2.1.3. The Mann-Kendall (MK) test

A non-parametric statistical technique called the Mann-Kendall (MK) test
is used to find trends in time series data. Without making any assumptions
about the distribution of the data, it is frequently used to identify whether
there is a significant upward or downward trend over time in a dataset
(Yue et al., 2002). The MK test assesses the rankings of data points in a
time series to ascertain whether there is a monotonic trend over time. The
Mann-Kendall test statistic is calculated according to Eq. (4):

S =
n−1∑

k=1

n∑

j=k+1

sgn(Xj −Xk) , (4)

where Xj and Xk are the data values at time j and k respectively, and
sgn(Xj−Xk) is the sign function that returns 1 if Xj > Xk, −1 if Xj < Xk,
and 0 if Xj = Xk.

2.1.4. The Sen’s slope

The Sen’s slope is a non-parametric method for estimating the slope of a
linear relationship between two variables (Sen, 1968). It is reliable and un-
affected by data outliers. Sen’s slope can be positive or negative, indicating
an increasing or decreasing trend. A positive slope indicates an increas-
ing trend, while a negative slope indicates a decreasing trend. The trend is
stronger the greater the absolute value of Sen’s slope. Using Sen’s approach,
this test computes the slope and intercepts. The following formula is used
to calculate a set of linear slopes Eq. (5):
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dk =
Xj −Xi

j − i
, (5)

For (1 ≤ i < j ≤ n), where n is the number of data, X stands for the
variable, and i, j are indices. The median of all slopes is then used to
compute Sen’s slope: b = Median {dk}. Each timestep (t) intercepts are
calculated according to Eq. (6):

at = Xt − b ∗ t . (6)

3. Target area

Tanzania, a country in East Africa, bordered by Kenya and Uganda to
the north, Rwanda, Burundi, and the Democratic Republic of the Congo
to the west, Zambia, Malawi, and Mozambique to the south, and the In-
dian Ocean to the east, with a population of around 60 million, with a
majority living in rural areas (Fig. 1). The economy is primarily driven by
agriculture, accounting for over 70% of employment and exports. However,
recent droughts have led to food insecurity and economic hardship for rural
communities (UNDP, 2020). Tanzania has two primary rainy seasons: uni-
modal (October–April) and bimodal (October–December, and March–May)
(Zorita and Tilya, 2002). The bimodal rainfall pattern is generated by the
Intertropical Convergence Zone’s seasonal migration (ITCZ), which causes
two distinct wet periods in the north and east of Tanzania, while other parts
have only one (NOAA, 2021).

The historical climate of Tanzania investigated based of the Climate
Research Unit (CRU) observation data through the period (1971–2020).
The supplementary tables (S1, S2 and S3 – see the online Supplement)
presented the monthly mean statistics of minimum and maximum temper-
ature (◦C) and precipitation (mm/day). The coldest months with mini-
mum temperature are June and July, with mean temperatures of 15.02 ◦C
and 14.25 ◦C, respectively. The warmest months are March and Decem-
ber, with mean temperatures of 18.46 ◦C and 18.52 ◦C, respectively. The
Mann-Kendall test identifies significant positive trends in Minimum Tem-
perature data for all months, ranging from 0.29 ◦C in April to 0.57 ◦C in
November (S1). In addition, the warmest months with maximum temper-
ature are October and March, with mean temperatures of 30.01 ◦C and
29.02 ◦C, respectively. The coolest month is July, with a mean temperature
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of 26.60 ◦C. The Mann-Kendall results show a significant increasing trend in
almost all the months, whereas March and April show no statistically signif-
icant trend (S2). While for the precipitation (S3), the wet season months,
January, February, March, and December, experience higher precipitation
levels (3–5 mm/day), and moderate coefficients of variation (CV), indicat-
ing consistency in precipitation patterns. On the other hand, the dry season
months, June, July, August, and September, experience significantly lower
rainfall (0.3–0.6 mm/day), with high coefficients of variation. The stan-
dard deviation (StDev) values are higher for wet season months, reflecting
larger fluctuations in rainfall amounts, while lower for dry season months,
indicating more stable and consistent precipitation patterns. The Mann-
Kendall test identifies no statistically significant trend precipitation trends,
with increasing trends from September to March, and decreasing trends
from April to July. The sensitivity slope values measure precipitation rate
change, with positive sensitivity slopes for increasing trends and negative
values for decreasing trends (S3).

Fig. 1. Spatial distribution of the 10 meteorological stations in Tanzania area map.
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4. Results and discussion

4.1. Climate change assessment for Tanzanian stations (2021–
2100)

Based on the ensemble mean of the CORDEX-CORE regional climate simu-
lations, Table 3 displays the annual mean and the MK test for the precipita-
tion (mm) during the historical period (1970–2005) and on the future period
(2021–2100) under RCP2.6 and RCP8.5 scenarios. Historically, the Mann-
Kendall (MK) test results for Bukoba, Iringa, Kigoma, Kilimanjaro, Mo-
rogoro, Mwanza, Songea, Tabora, Tanga, and Zazibar show varying mean
precipitation values. Bukoba has a high mean precipitation, indicating a rel-
atively rainy location. Iringa has a lower mean precipitation compared to
Bukoba, suggesting a drier climate. Kigoma has a high mean precipitation,
like Bukoba, with a wide range of precipitation values. Kilimanjaro has the
lowest mean precipitation, indicating a drier climate. Morogoro has moder-
ate mean precipitation, with a moderate standard deviation. Mwanza has a
moderate mean precipitation, with a moderate standard deviation. Songea
has a moderate mean precipitation, with a negative MK test result suggest-
ing a decreasing trend. Tabora has a relatively lower mean precipitation,
with a low standard deviation. Tanga has a high mean precipitation, with a
high standard deviation. Zanzibar has a very high mean precipitation, with
a high standard deviation, indicating significant variability. The positive
MK test results suggest a positive trend in precipitation, though signifi-
cance should be considered.

The projected Precipitation statistics (mm) based on the period 2021–
2100 for Tanzania under the RCP2.6 scenario, revealing Zanzibar with the
highest mean precipitation (2005.0 mm) and Kilimanjaro with the lowest
(598.0 mm), suggesting drier conditions. Zanzibar has the highest StDev
value (309.7 mm), indicating greater variability in projected precipitation.
The Mann-Kendall test identifies significant trends in projected precipi-
tation data, with Kilimanjaro station showing significant positive trends,
Kigoma and Mwanza showing negative trends, and the rest showing no
statistically significant trends. Additionally, Table 3, displays projected
Precipitation statistics (mm) for Tanzania under the RCP8.5 scenario, re-
vealing the highest mean precipitation (1970.5 mm) in Zanzibar, followed
by Kilimanjaro with the lowest mean precipitation (639.8 mm) and poten-
tially drier conditions. Zanzibar has the highest maximum precipitation
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(2744.6 mm), indicating potential for extreme rainfall events. Kilimanjaro
has the lowest maximum precipitation (953.2 mm), suggesting limited rain-
fall even during extreme events. The minimum precipitation values repre-
sent the driest months experienced at each location. Higher StDev values
indicate greater variability in projected precipitation, indicating more un-
certain precipitation patterns. The Mann-Kendall results show significant
positive trends in projected precipitation in Bukoba, Mwanza, Kilimanjaro,
and Tabora, while Tanga has a significant negative trend. The remaining
locations show no statistically significant trend in their projected precipita-
tion patterns.

Table 3. The annual mean and the MK test of the precipitation (mm) for the historical
period (1970–2005) and the projected period (2021–2100) under the RCP2.6 and RCP8.5.

Station
Historical RCP2.6 RCP8.5

Mean MK Mean MK Mean MK
(mm) test (mm) test (mm) test

Bukoba 1224.2 0.01 1293.8 0.0 1372.7 0.4***

Iringa 867.4 −0.2 844.0 0.1 835.1 0.1

Kigoma 1377 −0.2 1344.6 −0.1 1325.0 −0.1

Kilimanjaro 578.5 0.04 598.3 0.2** 639.8 0.2**

Morogoro 816.6 −0.03 846.2 0.1 853.2 0.1

Mwanza 875.5 −0.01 918.2 −0.1 963.6 0.3**

Songea 966.6 −0.12 924.2 0.0 904.1 −0.1

Tabora 782 −0.14 772.6 0.1 775.7 0.2**

Tanga 1379.3 0.1 1433.9 0.1 1399.4 −0.2*

Zanzibar 1916.2 0.1 2005.0 0.1 1970.5 −0.1

Note: * – P-value< 0.05, ** – P-value< 0.01, *** – P-value< 0.001

Figure 2 shows the relative changes in precipitation (%) under two sce-
narios: RCP2.6 and RCP8.5 for each station. The RCP2.6 and RCP8.5
scenarios predict increased precipitation about (3–12%) in several regions,
including Bukoba, Kilimanjaro, Morogoro, Mwanza, Tanga, and Zanzibar.
RCP8.5 indicates a more significant increase in precipitation, suggesting a
higher impact under the high emission scenario. Stations Iringa, Kigoma,
Songea and Tabora experience a decrease around (1–7%). Kilimanjaro ex-
periences a higher increase in precipitation, while Morogoro experiences a
slightly larger increase. Stations Tanga and Zanzibar experience a larger in-
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crease in precipitation, suggesting a higher impact under the lower emission
scenario. Generally, the expected rise in precipitation in a high emission
scenario shows how anthropogenic GHG emissions have an impact. The
findings of this research are consistent with earlier studies on East Africa
that showed a considerable increase in precipitation under high emission
scenarios compared to low forcing sustainability pathways (Onyutha et al.,
2021; Ayugi et al., 2021; 2022; Makula and Zhou 2022).

Fig. 2. The relative change of precipitation for the future period (2021–2100) under
RCP2.6 and RCP8.5.

Additionally, Table S4 (online Supplement) shows projected Maximum
Temperature statistics (◦C) for Tanzania under the RCP2.6 and RCP8.5
scenarios. Tanga, Kigoma, and Bukoba have the highest mean maximum
temperatures (30.96 ◦C), with higher StDev values and higher CV values.
Kilimanjaro has significant negative trends in projected maximum temper-
ature, while the rest show no statistically significant trend. Table S5 (on-
line Supplement) presents projected Minimum Temperature statistics (◦C)
for selected locations in Tanzania under the RCP2.6 and RCP8.5 scenar-
ios. Zanzibar has the highest mean minimum temperature (25.71 ◦C), while
Iringa has the lowest (16.33 ◦C), suggesting potentially cooler conditions.
Stations with higher StDev values exhibit greater variability in projected
minimum temperatures, indicating more uncertain temperature patterns.
Mwanza and Tabora have higher CV values, suggesting greater variability
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in projected minimum temperatures. Morogoro station shows a significant
positive trend in projected minimum temperature, suggesting a potential in-
crease in temperatures under the low emissions RCP2.6 scenario. Table S5
also shows projected Minimum Temperature statistics for selected locations
under the RCP8.5 scenario. Zanzibar has the highest mean minimum tem-
perature (26.91 ◦C), Iringa has the lowest (17.86 ◦C), and Tabora and Iringa
have higher CV values, suggesting greater variability in projected minimum
temperatures. The Figure 3 presents the box plot range of the maximum
and minimum temperature difference for all stations under RCP2.6 and
RCP8.5 emission scenarios. The projected warming will raise the minimum
temperature and maximum temperature in average of 0.11–0.26 ◦C/decade
and 0.11–0.24 ◦C/decade under RCP2.6 and RCP8.5, respectively. A persis-
tent increase in mean and extreme temperature properties over East Africa
in comparison to other sub-regions of the continent has been noted by recent
research based on CMIP6 models (Almazroui et al., 2020; Ayugi et al., 2021;
Iyakaremye et al., 2021). For example, according to Almazroui et al. (2020),
the warming trend over East Africa under different Shared Socioeconomic
Pathways (SSPs) is anticipated to be 0.03, 0.22, and 0.49 ◦C/decade, respec-
tively. Drought episodes are predicted to occur more frequently because of
the rising temperature and decreasing precipitation over most of Africa.

Fig. 3. The Temperature difference range for minimum and maximum temperatures for
both RCP2.6 and RCP8.5 scenarios.
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4.2. Drought heatmap for Tanzania

4.2.1. Tanzania historical SPI-12 (1970–2005)

The following provided dataset (Fig. S6) is a heatmap showing the standard-
ized precipitation index (SPI-12) classification for various stations in Tan-
zania between 1970 and 2005. The classification scheme used in this dataset
ranges from extremely dry (less than −2.00) to extremely wet (greater than
or equal to 2.00), with several intermediate categories. It appears that
Tanzania has experienced extreme weather conditions in the past, with in-
stances of both extreme drought and extremely wet conditions. The years
1976–1979 experienced periods of extremely wet conditions in Kilimanjaro,
Morogoro, Tanga, Mwanza, and Bukoba, while in 1998–1999 Zanzibar expe-
rienced extremely wet conditions. On the other hand, the years 1988–1989
and 2004–2005 experienced extreme drought conditions in Morogoro, Iringa,
Kigoma, Songea, and Tabora.

4.2.2. Tanzania SPI-12 under RCP2.6 emission scenario (2021–
2100)

Figure S7 shows Tanzania stations under RCP2.6 scenario. The dataset
provides SPI-12 values for ten different stations across Tanzania for each
year between 2021 and 2100. From the heatmap, it is evident that the pre-
cipitation pattern varies significantly across the different stations in Tanza-
nia. For instance, Bukoba and Mwanza stations have relatively high SPI
values, indicating wetter conditions compared to the other stations such as
Iringa and Kilimanjaro, which have negative SPI values, indicating drier
conditions. The heatmap for Extreme Drought shows that Tabora is ex-
pected to have the most frequent extreme drought events, with occurrences
in 2039–2040, 2040–2041, and 2082–2083. Iringa is also expected to have
multiple extreme drought events, with occurrences in 2031–2032, 2040–2041,
and 2099–2100. In contrast, the heatmap for extremely wet shows that Kil-
imanjaro, Morogoro, Tanga, and Zanzibar are expected to have the most
frequent occurrences of extreme wet events in 2027–2028, while Morogoro is
the only station expected to have an extreme wet event in 2036–2037. The
differences between these results suggest that different regions in Tanzania
may experience different patterns of extreme precipitation events under the
RCP2.6 scenario. For example, Tabora and Iringa are expected to experi-
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ence more frequent extreme drought events, while Kilimanjaro, Morogoro,
Tanga, and Zanzibar are expected to experience more frequent extreme wet
events.

4.2.3. Tanzania SPI-12 under RCP8.5 emission scenario (2021–
2100)

The dataset provides information about Tanzania’s drought conditions at
different stations between 2021 and 2100 under RCP8.5 scenario (Fig. S8).
Analysing the dataset reveals that there are variations in precipitation lev-
els across different stations and years. For instance, some stations like
Zanzibar experienced extremely wet conditions in 2021–2022, while oth-
ers like Iringa and Bukoba experienced dry conditions during the same
period. However, Kilimanjaro station had a consistent moderate condi-
tion throughout the years. Under RCP8.5 scenario, most stations are likely
to experience moderate to severe dry conditions, with some experiencing
extremely dry conditions in the future. For instance, Tabora station ex-
perienced extreme drought conditions in the years 2026–2027, 2077–2078,
and 2094–2095. Iringa station experienced extreme drought conditions in
the years 2026–2027, and 2071–2072. Additionally, in terms of extremely
wet periods, we can observe that some stations experience multiple wet pe-
riods. For example, Tanga station experiences extremely wet conditions in
the years 2027–2028 and 2030–2031. Mwanza station experiences extremely
wet conditions in the years 2075–2076 and 2088–2089.

As presented in the Figures S6, S7 and S8 (online Supplement), the tem-
poral distribution of SPI-12 reveals noteworthy drought (wetness) events
during the mid-future (far future) under the RCP2.6 and RCP8.5 scenarios.
Furthermore, the study indicates a link between drought/flood changes and
warming levels, with extreme precipitation events likely to increase in high
emission scenarios. This aligns with the IPCC 2021 report, which predicts
an increase in extreme wet events due to human-induced greenhouse gas
emissions (IPCC, 2021). The persistent dry anomaly in the mid-future is
evidence of drying patterns, first detected in 1999 due to sea surface temper-
ature changes in the tropical Pacific basin (Lyon and DeWitt, 2012). The
shift from drought to wet events in the future is attributed to increased
atmospheric moisture (Trenberth, 2011).
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4.3. Trend analysis of annual drought with SPI-12 time series

The Mann–Kendall test and Sen’s slope were devoted to identifying trends
of SPI-12 values in Tanzania. Table 4 shows the Mann-Kendall (MK) trend
test results of the SPI-12 values for different stations in Tanzania under
historical conditions and two different climate change scenarios (RCP2.6
and RCP8.5). A significant positive MK trend suggests a statistically sig-
nificant increasing trend in precipitation, while a significant negative MK
trend suggests a statistically significant decreasing trend in precipitation.

Table 4. Mann-Kendall (MK) trend test results of the SPI-12 values for different sta-
tions in Tanzania under historical conditions and two different climate change scenarios
(RCP2.6 and RCP8.5).

Station
MK test Sen’s slope

Hist. RCP2.6 RCP8.5 Hist. RCP2.6 RCP8.5

Bukoba −0.02 −0.01 0.44*** −0.003 −0.001 0.03

Iringa −0.11 0.11 0.06 −0.01 0.01 0.004

Kigoma −0.07 −0.09 −0.15 −0.01 −0.01 −0.01

Kilimanjaro 0.01 0.23** 0.22** 0.001 0.02 0.02

Morogoro −0.03 0.08 0.13 −0.01 0.01 0.01

Mwanza 0.04 −0.08 0.28*** 0.004 −0.01 0.02

Songea −0.03 0.03 −0.13 −0.004 0.003 −0.01

Tabora −0.08 0.05 0.18* −0.01 0.004 0.01

Tanga 0.05 0.06 −0.20* 0.01 0.004 −0.01

Zanzibar 0.05 0.13 −0.1 0.01 0.008 −0.01

Note: * – P-value< 0.05, ** – P-value< 0.01, *** – P-value< 0.001

For the historical period, most locations show negative MK values, in-
dicating periods of below-average precipitation in the past like Iringa and
Bukoba. However, the MK test for the rest of stations as Kilimanjaro
is generally close to zero, suggesting near-average precipitation historically.
Under the RCP2.6 scenario, there is a mix of positive and negative MK test,
indicating potential shifts between wetter and drier conditions compared to
historical conditions. Under both scenarios, only Kilimanjaro station shows
significant positive MK trends around 0.22, suggesting increasing precipita-
tion trends. Under the RCP8.5 scenario, there are more positive MK test
values, indicating more instances of above-average precipitation compared
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to historical conditions. Some locations show significant positive (Bukoba,
Kilimanjaro and Mwanza) or negative (Tanga) MK trends, suggesting sig-
nificant increasing or decreasing precipitation trends under RCP8.5.

4.4. The analysis of drought characteristics and their categories

Figure 4, presents the number of drought events for various weather stations
in Tanzania for historical period and two different climate scenarios RCP2.6
and RCP8.5. The drought events are categorized into Sever Drought, Mod.
Drought, Mild Drought, Mild Wet, Mode. Wet, and Sever Wet. Most sta-
tions have experienced a low frequency of severe drought events historically,
with several stations reporting zero occurrences. However, Kilimanjaro and
Tanga stations have consistently experienced moderate occurrences of severe
drought. Several stations including Iringa, Kigoma, Kilimanjaro, Morogoro,
Mwanza, and Songea, have faced moderate and mild drought events across
all scenarios, indicating their vulnerability to drought conditions. Under the
RCP2.6 scenario, most regions are expected to experience more “Moderate
Drought” and “Mild Drought” occurrences. This implies that even under a
more optimistic scenario with reduced greenhouse gas emissions, Tanzania
is still likely to face challenges related to water scarcity and agricultural
productivity. The RCP8.5 scenario, which represents a high greenhouse gas
emission trajectory, predicts a higher number of severe drought events in
several regions. Stations like Iringa, Kigoma, and Morogoro are particu-
larly susceptible to severe drought conditions, with potential implications
for water resources and agricultural activities.

4.5. Drought characteristics analysis

This study characterized and analysed drought duration (in years), severity,
and intensity by utilizing SPI values generated at 12-month timescale at ten
meteorological stations across Tanzania. Table 5 provides valuable insights
into the longest drought incidents recorded at various meteorological sta-
tions and their categorization based on the intensity during the study period.
The data reflects the historical conditions as well as projections under differ-
ent climate scenarios, including RCP2.6 and RCP8.5. The results highlight
the significant variability in drought occurrences across different regions in
the study area. For instance, the station Bukoba experienced a moderate
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Fig. 4. The number of moderate, severe, and extreme events detected under SPI-12 for
each station.
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Table 5. The longest drought incidents recorded, and their categories of dryness based on
the intensity during the study period for each meteorological station.

Station Year Duration Severity Intensity Category

Bukoba

Hist
1973–1975

2 −2.78 −1.39
moderately

1974–1975 drought

RCP2.6
2058–2059

2 −2.53 −1.27
moderately

2059–2060 drought

RCP8.5
2040–2041

2 −3.57 −1.79
severely

2041–2042 drought

Iringa

Hist 1988–1989 1 −1.57 −1.57
severely
drought

RCP2.6

2022–2023

4 −5.34 −1.33
moderately2023–2024
drought2024–2025

2025–2026

RCP8.5
2025–2026

2 −3.29 −1.65
severely

2026–2027 drought

Kigoma

Hist

1989–1990

3 −4.09 −1.36
moderately

1990–1991 drought

1991–1992

RCP2.6
2066–2067

2 −3.47 −1.73
severely

2067–2068 drought

RCP8.5
2077–2078

2 −2.63 −1.31
moderately

2078–2079 drought

Kilimanjaro

Hist 1974–1975 1 −1.36 −1.36
moderately
drought

RCP2.6

2022–2023

5 −5.66 −1.13
moderately

2023–2024

drought2024–2025

2025–2026

2026–2027

RCP8.5

2039–2040

3 −3.79 −1.26
moderately

2040–2041 drought

2041–2042
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Table 5. Continued from the previous page.

Morogoro

Hist 1974–1975 1 −1.41 −1.41
moderately
drought

RCP2.6
2023–2024

2 −3.1 −1.5
severely

2024–2025 drought

RCP8.5
2022–2023

2 −2.25 −1.12 moderately

2023–2024 drought

Mwanza

Hist 1988–1989 1 −1.75 −1.75
severely
drought

RCP2.6

2048–2049

3 −6.29 −2.1
extremely

2049–2050
drought

2050–2051

RCP8.5

2040–2041

3 −3.75 −1.25
moderately

2041–2042
drought

2042–2043

Songea

Hist
1987–1988

2 −2.98 −1.49
moderately

1988–1989 drought

RCP2.6
2055–2056

2 −2.28 −1.14
moderately

2056–2057 drought

RCP8.5
2067–2068

2 −2.31 −1.16
moderately

2068–2069 drought

Tabora

Hist
1987–1988

2 −3.11 −1.55
severely

1988–1989 drought

RCP2.6
2039–2040

2 −4.26 −2.13
extremely

2040–2041 drought

RCP8.5

2024–2025

3 −5 −1.67
severely

2025–2026
drought

2026–2027

Tanga

Hist
1999–2000

2 −3.63 −1.81
severely

2000–2001 drought

RCP2.6
2029–2030

2 −2.09 −1.04
moderately

2030–2031 drought

RCP8.5
2068–2069

2 −3.87 −1.94
severely

2069–2070 drought
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Table 5. Continued from the previous page.

Zanzibar

Hist
1999–2000

2 −3.88 −1.94
severely

2000–2001 drought

RCP2.6
2029–2030

2 −2.18 −1.09
moderately

2030–2031 drought

RCP8.5
2068–2069

2 −2.85 −1.43
moderately

2069–2070 drought

Note: Duration (years) – The amount of time the region experienced drought condi-
tions, Severity – Cumulative SPI values over the drought duration period, and Intensity
– Severity divided by Duration (dimensionless)

drought incident during the historical period, whereas the RCP8.5 scenario
projected a severe drought incident, indicating a potential worsening of
drought conditions in the future. Similarly, Iringa station recorded a severe
drought incident historically, and the RCP2.6 scenario suggested a moder-
ate drought incident, which indicates some variations in the severity and
frequency of droughts. On the other hand, Mwanza station witnessed an
extreme drought incident under the RCP2.6 scenario, signalling a height-
ened risk of prolonged and severe droughts in the region.

Generally, relative to the baseline period, most areas under the two sce-
narios are projected to experience drought duration (DD) in the mid-future
than the far future over Tanzania (Table 5). For instance, drought duration
for SPI-12 under the most scenario for mid-future shows varying patterns
of drought changes at stations Bukoba, Kilimanjaro, Mwanza, Songea and
Tabora likely to experience a higher number of years affected by drought
as compared to other stations of the study area. The emission effect from
RCP2.6 scenario on drought duration is distinct in the mid-future but not
evident in the far future. Interestingly, drought duration shows a reduction
in occurrence toward the far-century (2071–2100), except in the northwest-
ern (Kigoma station), and southeastern (Songea station). Overall, the find-
ings from various stations reveal that while some areas may experience a
reduction in drought severity, others might face an increase in the frequency
and intensity of drought events, especially under the RCP8.5 scenario.

As shown in Table 5, the study calculated the drought severity (DS),
which is defined as the total SPI value over the course of the drought event
and is used to determine the severity of the drought. The severity of the
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drought increases with the DS value. According to the various scenarios,
Tanzania is predicted to endure a drought that is more severe in the mid-
and long-term future. The large increase in DD as shown in Table 5, par-
tially explains why DS increases substantially more in the mid-term than in
the long-term. Regarding Kigoma, Mwanza, Songea, and Tabora stations,
there is an intriguingly larger DS for the low emission concentration (Ta-
ble 5), although in the distant future, the impacts of emission concentration
on DS are less significant.

The analysis of the drought intensity (DI), which is determined by divid-
ing the length of the drought by its severity, is shown in Table 5. The overall
intensity of drought events is gauged using the DI. Under various scenarios,
the mean DI values are estimated for historical and future time periods. In
general, in the various scenarios, Tanzania’s DI maintains similar levels or
declines in the far future and rises in the mid-future relative to the baseline
period. Under RCP2.6 and RCP8.5, DI is projected to have an influence on
Tanzania’s northeast and east in the mid-term (Table 5).

5. Measures to reduce the effects of future droughts

Climate change projections show a significant increase in droughts, par-
ticularly in East Africa and Tanzania towards the end of the 21st century
and the warmer RCP 8.5 emission scenario. This could lead to recurrent
droughts in most East African countries, particularly in the Horn African
countries (Osima et al., 2018). The combined effects could negatively im-
pact the livelihoods of people living in coastal areas, lake regions, highlands,
and arid and semiarid lands of Tanzania. Climate change projections also
lead to increasing aridity in East Africa, affecting key sectors such as agri-
culture, water, energy, and health (Osima et al., 2018; Serdeczny et al.,
2017). Understanding projected spatiotemporal changes in future drought
patterns is crucial for taking mitigation measures before the full range of
projected drought risks affects societal setups and the overall environments.
Mitigation measures include greater implementation of environmental re-
habilitation approaches and water resources management strategies, which
are essential to combat future water shortages and land degradation over
East Africa (Gebremeskel et al., 2018; Haile et al., 2019). Efficient drought
management and monitoring, designing response policies and strategies at
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national, regional, and international levels, are required to build resilien-
cies to future droughts (Haile et al., 2019; Sheffield et al., 2014). Build-
ing a drought-resilient economy for drought-vulnerable societies can help
reduce the future impacts of droughts on socioeconomic activities and nat-
ural ecosystem functions across East Africa (Mwangi et al., 2014; Shukla et
al., 2014).

6. Summary and conclusions

Determining the severity of a drought in a certain area requires knowledge of
its characteristics. The Eastern Africa, including Tanzania has experienced
drought crises often throughout the past fifty years, particularly from 1988
to 2010. Ten meteorological stations located throughout Tanzania were
used in this study to assess and analyse drought characteristics such as
duration (years), severity, and intensity. Additionally, the Mann–Kendall
(MK) trends test combined with Sen’s slope Estimator was employed to
detect trends of the Standardized Precipitation Index (SPI) values. The
monthly precipitation for Tanzania based on CRU dataset from 1971 to
2020 identifies no significant precipitation trends, while minimum and max-
imum temperature exhibit significant increasing trends in most months.

Based on CORDEX-CORE simulations, under RCP2.6 scenario, the
Mann-Kendall test for precipitation reveals significant positive trend in Kil-
imanjaro station, while under the RCP8.5, stations Bukoba, Kilimanjaro,
Mwanza and Tabora have significant positive trend in precipitation, while
Tanga station examined a significant negative trend. All stations have signif-
icant positive trend of maximum and minimum temperatures under RCP8.5
scenario. Under RCP2.6 scenario, Kilimanjaro shows significant negative
trends and Morogoro station shows a positive trend for maximum and min-
imum temperature, respectively.

From the standardized precipitation index (SPI-12) classification for Tan-
zania between 1970 and 2005, it is evident that the region has experienced
extreme weather conditions, including extreme drought and extreme wet pe-
riods in 1976–1979, 1998–1999, and 1988–1989 and 2004–2005. From SPI-12
heatmap, under RCP2.6 scenario (2021–2100), extreme drought events are
more frequent in Tabora and Iringa, while extremely wet events are more
frequent in Kilimanjaro, Morogoro, Tanga, and Zanzibar under the RCP8.5
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scenario. Some stations experienced extreme wet conditions, while others,
like Zanzibar, experienced dry conditions. Kilimanjaro station maintained
a consistent moderate condition. Most stations are expected to experience
moderate to severe dry conditions, with some experiencing extremely dry
conditions in the future.

The Mann-Kendall test and Sen’s slope were used to identify trends in
SPI-12 values in Tanzania. Most locations showed negative SPI values,
suggesting below-average precipitation in the past but near-average precip-
itation for most stations. The RCP2.6 scenario shows mixed positive and
negative SPI values, suggesting potential shifts between wetter and drier
conditions. Kilimanjaro station shows positive MK trends, while RCP8.5
shows more positive SPI values and significant positive or negative MK
trends in some locations.

Furthermore, The RCP2.6 scenario predicts more moderate and mild
droughts in Tanzania, highlighting challenges related to water scarcity and
agricultural productivity. The RCP8.5 scenario predicts more severe
droughts, with Iringa, Kigoma, and Morogoro stations being particularly
vulnerable. Results show significant variability in drought occurrences across
regions, with some areas experiencing a reduction in severity while oth-
ers may face an increase in frequency and intensity, particularly under the
RCP8.5 scenario. These findings underscore the urgency of implementing
climate mitigation and adaptation strategies to minimize the impacts of
severe droughts in the future.
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Vicente-Serrano S. M., Begueŕıa S., López-Moreno J. I., 2010: A Multiscalar Drought
Index Sensitive to Global Warming: The Standardized Precipitation Evapotran-
spiration Index. J. Clim., 23, 7, 1696–1718, doi: 10.1175/2009JCLI2909.1.

Wang Q., Zhang R., Qi J., Zeng J., Wu J., Shui W., Wu X., Li J., 2022: An improved
daily standardized precipitation index dataset for mainland China from 1961 to
2018. Sci. Data, 9, 124, doi: 10.1038/s41597-022-01201-z.

Wilhite D. A., Glantz M. H., 1985: Understanding: the drought phenomenon: the role of
definitions. Water Int., 10, 3, 111–120, doi: 10.1080/02508068508686328.

World Vision International, 2022: available online (accessed on September 21st 2023):
https://www.wvi.org/stories/tanzania/solving-water-challenge-tanzania-o

ur-commitment-most-vulnerable.

Yihdego Y., Vaheddoost B., Al-Weshah R. A., 2019: Drought indices and indicators
revisited. Arab. J. Geosci., 12, 3, 69, doi: 10.1007/s12517-019-4237-z.

Yisehak B., Shiferaw H., Abrha H., Gebremedhin A., Hagos H., Adhana K., Bezabh
T., 2021: Spatio-temporal characteristics of meteorological drought under chang-
ing climate in semi-arid region of northern Ethiopia. Environ. Syst. Res., 10, 21,
doi: 10.1186/s40068-021-00226-4.

Yue S., Pilon P., Cavadias G., 2002: Power of the Mann–Kendall and Spearman’s rho
tests for detecting monotonic trends in hydrological series. J. Hydrol., 259, 1-4,
254–271, doi: 10.1016/S0022-1694(01)00594-7.

Zhu Y., Liu Y., Wang W., Singh V. P., Ren L., 2021: A global perspective on the proba-
bility of propagation of drought: From meteorological to soil moisture. J. Hydrol.,
603A, 126907, doi: 10.1016/j.jhydrol.2021.126907.

Zorita E., Tilya F. F., 2002: Rainfall variability in Northern Tanzania in the March-May
season (long rains) and its links to large-scale climate forcing. Clim. Res., 20, 1,
31–40, doi: 10.3354/cr020031.

300




