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Abstract: Time-varying relationships between two atmospheric oscillation modes and

precipitation (rainfall and snow) in the western portion of the Carpathian Mountains

and the northern part of the Pannonian Plain are investigated in this paper. The Arctic

Oscillation (AO) and the North Atlantic Oscillation (NAO) modes were used to explain

the intra-annual variability of monthly rainfall totals and new snow over a 36-year pe-

riod (1981–2017) observed at a dense network of 177 rain gauges and 33 snow rods lo-

cated throughout the investigated area, respectively. The Continuous Wavelet Transform

(CWT) was deployed as a band-pass filter to quantify the spectral coherence and attri-

bution (based on signal-to-noise ratio) of the NAO and AO modes to the precipitation

variability. The temporal and spatial patterns of NAO and AO-related signal variance in

monthly rainfall totals and fresh snowpack were evaluated on seasonal and monthly bases.

The NAO mode explained the major historically observed snow calamities, such as the

snowy cold spell of January 1985 that hit central and southern Europe, bringing heavy

snowfall to the investigated region and many other parts of Europe. This event was the

beginning of a prolonged cold wave in Europe, with extremely low air temperatures across

the continent. Our analyses showed that the AO mode appears to have only a limited

effect on the overall variability of new snowpack in late winter. The attribution of NAO

and AO modes to the variability of monthly rainfall totals is less pronounced compared

to new snowpack.

Key words: signal-to-noise ratio, NAO, AO, Carpathians, precipitation, rainfall, snow-
pack

1. Introduction

Rainfall and its temporal variability are important factors in the develop-
ment of droughts and floods. Long-distance relationships between two or
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more climate phenomena (known as teleconnections) have been the sub-
ject of extensive research over the past decades (Rust et al., 2021; Tabari
and Willems, 2018; Peings et al., 2017; Casanueva et al., 2014; Fye et al.,
2006; Feldstein, 2000). Teleconnections have been related to air tempera-
ture, precipitation, snow cover, and runoff (Wang et al., 2017; Casanueva
et al., 2014; Brands et al., 2014).

Several teleconnection patterns in the Northern Hemisphere have been
proposed to facilitate our understanding of pressure anomalies over the
Northern Atlantic and the Arctic Ocean and their impact on precipita-
tion extremes in the Northern Hemisphere. Perhaps the most frequently
examined relationship between precipitation and climate system anomalies
is the North-Atlantic Oscillation (NAO). NAO is often used as an indicator
of hydrometeorological conditions due to its leading control over wintertime
precipitation (Rust et al., 2021). Bednorz and Wibig (2008) investigated the
influence of NAO on snowpack depth. Tabari and Willems (2018) found that
in Europe, the correlation between the anomalies of extreme precipitation
and NAO ranges from 2% to 21%. The area over which the correlation be-
tween the anomalies of extreme precipitation and NAO is significant ranges
from 2% in spring to 21% in winter. Although the NAO is dynamically ac-
tive mostly during the winter season, summer NAO is a weaker counterpart
with an inverse effect on precipitation across Europe (Tabari and Willems,
2018).

Similarly to the NAO, the Arctic Oscillation (AO) has been previously
shown to have a similar yet weaker effect on winter precipitation in Eu-
rope (Tabari and Willems, 2018). Positive phases of AO are associated with
extreme manifestations of rainfall, especially in the northern parts of Eu-
rope, whereas the negative phase is associated with extreme precipitation
in the Mediterranean area (Tabari and Willems, 2018). Yet, there are also
other studies that support the potential impacts of AO and NAO on Euro-
pean precipitation patterns and extreme precipitation events. For example,
Seager et al. (2020) described the mechanisms of winter precipitation vari-
ability in the European-Mediterranean region and associated them with the
North Atlantic oscillation. A recent study by Tabari and Willems (2018)
showed that concurrent and seasonally delayed impacts of the NAO and AO
on extreme precipitation in Europe. They found that summer extremes in
precipitation are affected by the preceding winter NAO anomalies. This has
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direct implications for water resources forecasting, understanding hydrolog-
ical variability over seasonal and annual time-scales (Rust et al., 2021), and
adaptation planning and preparedness for natural disasters arising from ex-
treme precipitation (Tabari and Willems, 2018).

Every effort to identify a desired signal in a noisy background requires
the application of signal processing techniques. Most attempts to identify
“fingerprints” of NAO and AO in observed time series rely on the use of
Spearman and Pearson correlation techniques (Rı́os-Cornejo et al., 2015;
Tabari and Willems, 2018). Unfortunately, Pearson correlation makes it
impossible to identify the exact timing when NAO or AO signals correlate
with the hydrometeorological observations. Rather than focusing only on
globally averaged attribution measures, such as the commonly used Pearson
correlation coefficient, this paper extends to detailed temporal (localized in
time) fingerprints of the North-Atlantic and Arctic oscillation patterns on
the observed precipitation series. The Signal-to-Noise ratio (S-N ratio) was
used to quantify the effects of the studied climatic indices on rainfall and
new snow.

The purpose of this paper is twofold: first, to investigate the temporal
effects of the AO and NAO on rainfall and new snow; second, to investigate
the spatial patterns of affected stations located within the western portion
of the Carpathian Mountains and a part of the adjacent Pannonian Plain.

2. Materials and methods

2.1. Study area and data

The western Carpathians and the adjacent Pannonian plain are located in
central Europe, as shown in Fig. 1. For the purposes of this study, we used
monthly data on precipitation and new snow. All data were obtained from
the national weather service (Slovak Hydrometeorological Institute) and un-
derwent standard quality control.

New snow is defined here as a snowpack accumulated over the previous
24 hours prior to measurement at 0700 Local Mean Time. The monthly
values of new snow were calculated as a sum of new snow daily recordings.
Similarly, the monthly values of precipitation are the sum of all daily ob-
servations of precipitation (both liquid water and ice/snow in winter). The
time series of monthly rainfall totals and new snow were obtained from the
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databases of the national hydrometeorological service (Slovak Hydrometeo-
rological Institute, Bratislava, Slovakia). The precipitation and snow cover
a period of ∼ 36 years. In total, we analysed 177 rainfall series and 33
snowpack series.

Monthly values of the AO were obtained from the Regional Climate
Center at KNMI via the Climate Explorer located at https://climexp.

knmi.nl/. The station-based NAO indices produced by NCAR’s Climate
Analysis Section were downloaded as an ASCII text file from Hurrell North
Atlantic Oscillation (NAO) Index (station-based) |NCAR – Climate Data
Guide (https://www.ucar.edu/). This index is based on the paper of Hur-
rell (1995). The NAO index was calculated for each station’s raw sea level
pressure data, normalized each month separately by the long-term mean
over the period of 1864–1983. The pressure at the northern station (Reyk-
javik) was then subtracted from the southern station (Ponta Delgada). The
monthly climatic indices NAO and AO were downloaded from the Climate
Explorer located at https://climexp.knmi.nl/.

Fig. 1. Location of the investigated region: the western part of the Carpathians Mountains
and the adjacent Pannonian Plain.

2.1.1. Data analyses

A comprehensive flowchart describing the procedure we followed in this
paper is presented in Fig. 2. First, it was necessary to calculate the con-
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Fig. 2. Flowchart representing the structure of data analyses.

tinuous wavelet transform for the observed time series of rainfall and new
snow. The climatic indices (NAO and AO) were used as covariates for
the wavelet-coherence transform. As originally described in Torrence and
Compo (1998), for a series of observations xn the wavelet transform is de-
fined as a convolution of xn with a scaled and translated wavelet basis
function Ψ0(η):

Wn(s) =

√

t

s

N−1
∑

n′

xnΨ ∗

[

(n′ − n) δt

s

]

, (1)

where Ψ is the wavelet basis function (mother wavelet) that depends on
a non-dimensional time parameter η. The wavelet power is the squared
absolute value of the wavelet transform |W Y

n (s)|2 (Grinsted et al., 2004).
By stretching the wavelet in the time domain (i.e. varying the scale s) so
that η = std, a set of different wavelet basis can be obtained. The wavelet
transform can be viewed as a band-pass filter in which the time series (xn)
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is convolved with the scaled and normalized wavelets (Duan et al., 2018;
Grinsted et al., 2004). We applied the Morlet basis function, which is far
the most common basis function used in geosciences (e.g. Onderka and Chu-
doba, 2018; Duan et al., 2018; Rashid et al., 2016; Grinsted et al., 2004).

Our goal was to decompose the signal into time-frequency space and iden-
tify noise-related time-frequency regions within the CWT. Furthermore, we
used the CWT to identify co-varying time-frequency regions related to the
climatic indices. A de-noising mask was generated by setting the wavelet
coefficients outside the significant coherent time-frequency regions of the
wavelet transform to zero. The wavelet energy of signals other than the
climatic indices AO and NAO was suppressed by applying the previously
created mask to the wavelet coefficients. Finally, the signal related to NAO
and AO was reconstructed using the inverse wavelet transform (Eq. (2)).

One of the advantages of wavelet transform is that the wavelet coeffi-
cients can be used to reconstruct the original signal xrec :

xrec =
δj δt1/2

Cδ Ψ0(0)

J
∑

j=0

real{Wn(sj)}

s1/2

j

, (2)

where Ψ0(0) is a factor to remove the energy scaling, s1/2 converts the
wavelet transform to an energy density; Cδ is an empirically derived con-
stant with a values of 0.776 for the Morlet basis function (Torrence and
Compo, 1998). Equation (2) can be thought of as a band-pass filter when
used for a sub-set of scales or for both the scale and time simultaneously
by defining a threshold of e.g. wavelet power, cross-wavelet transform, or
wavelet coherence. In our approach we used the wavelet coherence to de-
fine regions of significant common power (coherent spectra) to filter out the
“signal” and the “noise” from the time series. This technique removes noise
at all frequencies and can be used to identify individual events with varying
frequencies (Torrence and Compo, 1998).

Another important piece of information that can be extracted from wavelet
analysis is the wavelet coherence. Similar to the traditional Spearman cor-
relation coefficient, the wavelet coherence always takes values between zero
and unity. The coherence spectrum shows how strongly two signals are
correlated across a wide range of frequencies because its definition closely
resembles that of a traditional correlation coefficient (Schulte et al., 2016;
Grinsted et al., 2004):
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where S is a smoothing operator, |WX
n (s)|2 is the wavelet power of time

series X, and |W Y
n (s)|2 is the wavelet power of the time series Y , and finally

WXY
n (s) is the cross-wavelet of the two time series X and Y . A detailed

description of the cross-wavelet transform WXY
n (s) can be found in the

relevant literature (e.g. Torrence and Compo, 1998; Grinsted et al., 2004).
The spectral coherence between time series of NAO, AO and precipitation
(rainfall and new snow) is used in this study to identify regions where two
investigated signals are mutually coherent (or correlate in time).

2.1.2. Signal-to-Noise ratio

The Signal-to-Noise ratio (S-N ratio) is defined as the squared ratio of the
signal variance σsignal to the noise variance σnoise. The term “signal”, for
the sake of this paper, is defined a significantly coherent portion of the
observed variable Y (rainfall or snowfall) with the covariate X(i.e. NAO
or AO). The term “noise” refers to all signals that are not related to the
considered climatic indices (NAO and AO). The S-N ratio is mathematically
expressed as:

SNR =
σ2

signal

σ2

noise

. (4)

The S-N ratio (Eq. (4)) was calculated for statistically only significant re-
gions of the cross-wavelet spectrograms. Note, that variance σ is defined as
the sum of signal departures from the mean divided by the standard devi-
ation (yn − m)/std , but in our calculations, the mean is zero because the
reconstructed signal has a zero mean.

3. Results

Temporal patterns

First, we focused on the wavelet spectra of the long-distance drivers of pre-
cipitation variability, specifically using the NAO and AO indices. The time
series of these two indices and their corresponding wavelet spectra are de-
picted in Fig. 3, where distinct features delineated by areas of high spectral
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Fig. 3. Time series of monthly Arctic Oscillation index (AO) and the North Atlantic
Oscillation index (NAO) over the period 1981–2017. The corresponding spectrograms
of CWT are displayed below each time series. Note that the wavelet transform is not
completely localized in time, leading to the presence of edge artefacts delineated by a
‘cone of influence’, where edge effects cannot be ignored.

power are evident. As indicated by the wavelet spectra, these areas of high
spectral power exhibit interruptions over time. Some years show high spec-
tral power, followed by years with spectral lows. This interrupted pattern
in the power spectra is an intriguing observation, particularly when con-
sidering the conventional notion of periodicity known from Fourier spectra.
Although Fourier analyses were not performed explicitly in the paper, we
estimated the global wavelet spectra (i.e. averaging the wavelet spectral co-
efficient over the entire time scale), which can essentially be interpreted in
the same way as Fourier spectra.

As shown in the global wavelet spectrograms in Fig. 4, the AO index
exhibits strong annual (1−year), 3−year and 10−year periodicities, while
the NAO index exhibits a strong annual periodicity and a periodicity at
around 3 years.

As an illustrative example, we utilized a rainfall series collected from a
specific rain gauge (Fig. 5) and performed the wavelet transform on its data.
Upon initial examination, the wavelet power spectra of the rainfall reveal
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Fig. 4. Global wavelet power spectra (averaged in time) of the Arctic Oscillation index
(left) and the North Atlantic Oscillation index (right). The dominant quasi−period in
both spectrograms is located at ∼20 – 35 months.

a considerably stronger annual signal in comparison to the NAO and AO
indices (Fig. 3). However, the most intriguing aspect lies in the spectral
coherence between the rainfall and the two indices. The coherence spectra,
shown in Fig. 5, indicate periods of substantial common power and phase
relationships between the two time series. To further analyse this coherence,
we employed statistically significant regions in the coherence spectrograms
as a filtering mask. This enabled the reconstruction of the precipitation
signal, which, as we hypothesize, is influenced by the NAO and AO modes.
Conversely, the regions with low coherence, deemed insignificant in the co-
herence spectrograms, were used to reconstruct the remaining portion of
the rainfall signal and to calculate the signal-to-noise ratio. The resulting
coherent rainfall signal exhibits some similarities with the isolated coherent
structures seen in the coherence spectrogram (Fig. 5).

This procedure was also applied to the snow time series (Fig. 6), where
the coherence spectra exhibit a robust annual pattern, characterized by
more distinct temporal features. Notably, the strongest snow signal asso-
ciated with the AO mode is observed at the beginning of the years 1985,
1993, and 2012 (Fig. 6), which coincide with the reported snowfall extremes.

Areal patterns

The areal distribution of signal-to-noise ratios, calculated for monthly rain-
fall and snowfall totals, along with the two indices, is presented in Figs. 7,
8, 9, and Fig. 10. When considering the annual totals of rainfall, the influ-
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ence of the NAO mode on the monthly rainfall variability is most prominent
from December through June, whereas the impact on summertime rainfall
appears negligible (Fig. 7). Similarly, in the case of the AO, its attribution
is evident, but the period of influence is shorter, mainly extending from
June to July during early summer (Fig. 8). For snowfall analysis, the fo-
cus is limited to the snow season (DJF) since this period corresponds to
when snowfall is typically observed in the Western Carpathians region un-
der investigation. Analyzing the effects of NAO and AO on new snowpack

Fig. 5. An example of rainfall series observed at the Gauge No. 13100 (station name:
Podolinec; latitude = 49◦15′18′′; longitude = 20◦32′0′′; elevation = 563 m a.s.l.).
(a) wavelet spectra of monthly rainfall totals (b); wavelet coherence spectra between
monthly rainfall totals and NAO (c) and AO (d); the relative contribution of NAO (e)
and AO (f) to the coherent portion of the total rainfall signal.
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in the summer would not be meaningful. The AO oscillation exhibits sig-
nificant attribution to the overall variability of new snowpack, primarily in
the eastern portion of the investigated region. As the winter season pro-
gresses toward spring, the AO gradually starts to affect a larger portion of
the studied area (Fig. 9). In contrast, the NAO seems to impact only the
southern part of the investigated area, particularly at the end of the snow
season (specifically the Pannonian Plain south of the Western Carpathian
mountains) as depicted in Fig. 10.

Fig. 6. An example of time series of new snowpack observed at the Gauge No. 11813
(station name: Bratislava−Koliba; latitude = 48◦10′7′′; longitude = 17◦6′38′′; elevation
= 287 m a.s.l.). (a) wavelet spectra of monthly snowpack (b); wavelet coherence spectra
between monthly snowpack and NAO (c) and AO (d); and the relative contribution of
NAO (e) and AO (f) to the coherent portion of the snowpack series.
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Fig. 7. Areal distribution of signal-to-noise ratio determined for monthly rainfall totals
and Arctic Oscillation index.

4. Discussion and conclusions

We analysed influence of two major atmospheric oscillation modes, namely
the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO), on
the temporal and spatial variability of monthly rainfall totals and new snow-
pack in the western part of the Carpathians and the adjacent Pannonian
Plain. The temporal and spatial patterns of NAO and AO-related signal
variance in monthly rainfall totals and new snowpack was evaluated on
ground-based observations (station data) on a monthly basis. Our findings
revealed varying degrees of contribution by the NAO and AO to the intra-
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Fig. 8. Areal distribution of signal-to-noise ratio determined for monthly rainfall totals
and North atlantic Oscillation index.

annual variability of monthly rainfall totals and new snowpack in the inves-
tigated region. Using wavelet analyses, we showed that historical snowfall
extremes and the overall variability of monthly cumulative new snowpack
depth were largely attributable to the variability of the North Atlantic Oscil-
lation. Notably, the NAO mode played a significant role in major observed
snow calamities. For example, in January 1985, Europe experienced an
extremely cold and snowy month following a warm December of 1984. Cen-
tral and southern Europe, including the investigated region, were impacted
by heavy snowfall, marking the beginning of a prolonged cold wave with
extremely low air temperatures across the continent. Similarly, in 2012,
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Fig. 9. Areal distribution of signal-to-noise ratio determined for new snowpack and Arctic
Oscillation index.

Fig. 10. Areal distribution of signal-to-noise ratio determined for rainfall totals and North
Atlantic Oscillation index.
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a notable snowfall event affected the northern part of Europe, with heavy
snowfall observed in the second half of January 2012, leading to new snow-
pack reaching up to 1m, significantly impacting Slovakia and Bulgaria. In
contrast, our analyses indicated that the AO mode had only a limited effect
on the overall variability of new snowpack in late winter. When it comes to
the variability of monthly rainfall totals, the attribution of NAO and AO
modes was found to be less pronounced compared to their influence on new
snowpack variability.
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