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Abstract: The area of study is a Pliocene gas field, located in the Eastern portion of

the West Nile Delta Deep Marine Concession (WDDM) offshore Egypt. The primary

aim of this study is to establish a methodology for direct porosity estimate from 3D

post-stack inversion (Zp) and assess its reliability. Porosity estimation from seismic in-

version is a commonly used technique in geophysics to predict subsurface porosity from

seismic data. Seismic inversion is the process of converting seismic reflection data into

a quantitative representation of subsurface properties. Seismic inversion methods aim

to relate the seismic response (amplitude, phase, frequency content) to rock properties

such as porosity. The inversion process typically involves the following steps: Acoustic

impedance inversion from seismic data is a widely utilized technique in reservoir charac-

terization. In cases where well penetrations are limited, the resulting impedance section

can be employed to predict reservoir parameters, including porosity. However, the rela-

tionship between acoustic impedance (AI) and porosity is influenced by the lithofacies

and requires geological interpretation. To construct a porosity map and porosity static

model, a comprehensive methodology was developed, capitalizing on the expected poros-

ity volumes. By applying cut-offs to shear and acoustic impedance logs, categorical facies

or fluid classes were established. The mean porosity for each lithofacies category is de-

termined from the porosity logs of the wells under study. The inverted porosity model is

validated against well log data or other independent measurements like core porosity to

assess its accuracy and reliability. If necessary, additional adjustments or calibration may

be performed to improve the porosity estimation. Subsequently, a final trend porosity

volume was generated to estimate the porosity in areas distant from the study wells by

establishing a correlation between average porosity values and acoustic impedance. This

process of creating a porosity map will significantly mitigate drilling uncertainties going

forward.
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1. Introduction

Simian Field is located at the north-western margin of the offshore Nile
Delta, approximately 120 km from Alexandria shoreline. The field lies in
the West Delta Deep Marine (WDDM) concession. It lies at the cross of
latitudes 31◦46′ & 32◦10′ 48.085′′ N and longitudes 30◦10′ & 30◦49′ 21.733′′ E
(Fig. 1). Porosity prediction from seismic inversion enables the prediction
of porosity distribution away from drilled wells, improves the technical and
economic characterization of discovered reservoirs, and provides much more
information than standard seismic interpretation in the search for new hy-
drocarbon fields (Aly et al., 2019). The relevance of quantitative seismic
interpretation to reservoir characterisation is increasing as seismic data re-

Fig. 1. The location map shows WDDM concession and a pop-up map showing the Simian
Field and the study wells Simian-1, Simian-2, Simian-3, and Simian-DP.
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liability increases due to recent improvements in acquisition and process-
ing methods. These improvements increase the effectiveness of the multi-
disciplinary data integration methods in reducing the operational risks as-
sociated with reservoir exploration and production. Geology, geophysics,
and engineering approaches are additionally necessary for a better compre-
hension of the reservoir properties. The estimated porosity trends could be
revealed in the unknown reservoir geological model. The available data is
post-stack seismic cube and five well penetrations with their complete set
of logs such as; resistivity, gamma ray and density logs.

The early 1980s saw the advent of wavelet amplitude and phase spectra
extraction methods. This led to the development of the post-stack AI inver-
sion technique (Lindseth, 1979). High resolution inversion results improved
the interpretation and decreased drilling risk (Pendrel, 2006). In practice,
a lot of methods are used to perform post-stack AI inversion. Post-stack
inversion can be subdivided into two main approaches: band-limited (iter-
ative) inversion and broad-band inversion, which in its turn includes the
model-based inversion (deterministic inversion) as discussed by Russell and
Hampson (1991). Abbas et al. (2019) integrated the seismic interpretation
with the petrophysical data and the seismic attributes; Moreover, Abdolahi
et al. (2022), studied Seismic inversion as a reliable technique for anticipat-
ing the porosity and facies delineation.

A machine learning – a novel approach of well logs similarity based on
synchronization measures to predict shear sonic logs was investigated by
Ali et al. (2021); Classification of reservoir facies using well logs and 3D
seismic attributes for prospect evaluation and field development (Ashraf et
al., 2019). An integrated sedimentological, rock typing, image logs, and
artificial neural networks analysis for reservoir quality assessment of the
heterogeneous fluvial-deltaic Messinian Abu Madi reservoirs (El-Gendy et
al., 2022), Tonn (2002) studied the neural network seismic reservoir char-
acterization in a heavy oil reservoir.

Predicting a trustworthy porosity is a key component of reservoir mod-
elling for slope channel gas fields due to the complex porosity distribution
in clastic reservoirs. Reservoir elastic characteristics are evaluated during
the seismic inversion process.

Due to the complex porosity distribution in clastic reservoirs, predicting
a reliable porosity is a crucial part of reservoir modelling for slope channel
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gas fields. During the seismic inversion process, reservoir elastic properties
are assessed. It is possible to execute a fluid classification using these in-
verted elastic characteristics, and as a results of this stage, porosity volumes
are produced in collaboration with the field geologists to be utilised as input
in the geological modelling process. It can also be done, with certain restric-
tions, in locations where such reliable data are notably absent. Pre-stack
inversion, post-stack inversion, and geostatistical seismic inversion are all
possible (Helal et al., 2014). They concluded that the choice of a particular
inversion technique is largely influenced by the properties of the subsurface
depositional facies. For all methods, estimated seismic wavelets from the
seismic reflection data are necessary.

The statistical wavelet (Helal et al., 2014), phase, and frequency are
typically estimated using a reflection coefficient series from a stratigraphic
control well with available sonic and density logs that is located inside the
seismic survey field. A precise connection between the impedance log and
seismic data is necessary for accurate wavelet estimate. Phase and/or fre-
quency aberrations in the estimation wavelet may be the result of well-tie
errors. The most typical step following wavelet identification is to eliminate
wavelet tuning and interference effects, which results in a high-resolution
depiction of the acoustic impedance volume, or the principal seismic ve-
locity multiplied by the bulk density. The results of the inversion are next
convolved with the seismic wavelet to create artificial seismic traces that are
subsequently updated and compared repeatedly to the original (measured)
traces (Helal et al., 2014). Barakat and Dominik (2010) conducted seismic
studies on the Messinian rocks in the Onshore Nile Delta. Challenges of
the seismic image resolution for gas exploration in the East Mediterranean
Sea and decoding of seismic data for complex stratigraphic traps revealed
by seismic attributes analogy in Yidma/Alamein concession area Western
Desert, Egypt was illustrated by Barakat et al. (2021) and El-Nikhely et al.
(2022). The present interpretation is revealed using the available data in
each studied well.

2. Geological setting

Simian Field is a Pliocene gas field located in the Eastern part of the West
Delta Deep Marine (WDDM) concession, with water depths ranging be-
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tween 500 to 1500 m. The WDDM concession is affected by major tectonic
events that shaped the present-day alignment of the northeast, southwest
trending Rosetta fault, and the east-northeast, west-northwest Nile Delta
offshore anticline (NDOA) (Eid et al., 2020). These structural features have
been shaped due to the wrench tectonics (Sehim et al., 2002) resulting from
the rotational movement of the African plate towards the Eurasian plate
(Dolson et al., 2005). The Nile delta region occupies a key position within
the plate tectonic development of the East Mediterranean and Levantine
basins. It lies on the northern margin of the African plate which extends
from the subduction zone adjacent to the Cretan and Cyprus arcs to the
Red Sea rift basin which was rifted apart from the Arabian plate (Cowan et
al., 1998).

The majority of deep-water hydrocarbon reserves have so far been dis-
covered in reservoirs between the Cenozoic and Mesozoic ages. Nearly 90%
of these reserves are in deep-water sandstone reservoirs. The top seal is
widespread as mud rock deposited in deep marine environments. However,
this top seal is insufficient because the seal integrity is a crucial concern
and is seen as a significant risk in deep-water environments. In deep marine
environments, source rock potentiality is considerable. The ages of most
source rocks range from the Mesozoic to the Cenozoic (Dolson et al., 2001).
According toMitchum et al. (1993), and Duval et al. (1998) the source rocks
were considered as lacustrine deposits, terrigenous deltaic deposits, and/or
deep marine deposits. Therefore, the variety of hydrocarbon composition
includes biogenic gas, waxy, sulfur-rich oil, and asphaltenes (Weimer and
Slatt, 2004). Simian Field represents a channel complex deposited on the
Nile delta slope in the early Pliocene within El-Wastani Formation package
(Othman et al., 2020). The stratigraphic succession of Simian Field is com-
posed of Bilqas, Mit Ghamr, and El-Wastani formations (Fig. 2). Simian
reservoir mainly belongs to El-Wastani Formation.

3. Data and methods

The Pliocene reservoirs of the WDDM and Rosetta concessions are well-
defined on 3-D seismic data, originally acquired in 1996 (Samuel et al.,
2003; Cross et al., 2009). The acquisition of a new seismic survey in 2006
was required because of the fields’ increasing maturity and the requirement
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Fig. 2. Nile Delta tectonostratigraphic displaying the key stratigraphic, and tectonic
events modified after Deibis et al. (1986), Cowan et al. (1998), Dolson et al. (2005),
Wood et al. (2012), and Eid et al. (2020).
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for a better resolution development survey. This development survey, which
was intended to serve as a baseline for the four-dimensional survey and cov-
ers an area of roughly 1800 km2, has enabled subsequent infill drilling and
greater resolution static models (Cross et al., 2009).

The method begins, Fig. 3, porosity prediction workflow, with statisti-
cal wavelet extraction from the seismic data in the study area as the first
step of the inversion process in the vicinity of the study wells (Fig. 4) us-
ing Hamson Russel software. The log-to-seismic correlation (the well to
seismic tie) process was finished when a satisfactory wavelet was extracted,
and top and base the reservoir were chosen. The post-stack inversion then
proceeded to determine the initial model (Fig. 5). An initial layered elas-
tic model defined in the time domain serves as the foundation for the 3D
model-based inversion approach (Coulon et al., 2006). In order to find a
global solution that concurrently optimizes the match between the seismic
and the corresponding synthetics generated by convolution with full Zoep-
pritz reflectivity equations. The model was given a 10-Hz, low-pass filter for
two purposes; the low frequencies absent from the stacked seismic data had
to first be recovered using the low-frequency impedance trend. Moreover,
as impedances above 10 Hz should only be derived from seismic data, this
frequency range should be excluded from the well-log data when creating
the initial model. Because the spectrum of the stacked seismic section pro-
vided no data below this frequency, the 15-Hz cut-off was used. Iterations

Fig. 3. Porosity prediction workflow.
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Fig. 4. Statistical wavelet estimation from seismic and Simian Dn well, with depth re-
sponse on top and respective amplitude spectrum on the bottom. The phase is constant
180 degrees for the wavelet.

Fig. 5. (A) Representative seismic section in the field of study area range of 2000–3300 m;
(B) cross-section of the low-frequency initial acoustic impedance model. (Hot colours
represent low amplitude and pale colour background), the displayed log is GR.
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were utilized in model-based inversion to improve the similarity of the real
and synthetic seismic traces. The model’s average impedance, which was
represented by filtered well impedances, was used as the reference point for
the impedance change restrictions.

Following that, a cross plot between shear impedance (Zs) and compres-
sional impedance (Zp) at the well locations was conducted to distinguish
shale from non-shale areas (gas and water sands) using techlog software.
The cut-off values were employed to distinguish between reservoir and non-
reservoir facies. The Zp Values below 3980 represent gas sand, while the
range of 3950–4800 corresponds to shale, and values above that indicate
water sand. These cut-off values were determined based on the reservoir’s
properties. Additionally, a useful porosity vs. P-impedance relationship
was constructed from the wells to produce Eq. (2), such equation for trans-
forming the impedance cube into a porosity cube for use in the building of
reservoir static models.

4. Results

This section displays the findings of the lithofacies classification and elastic
inversion performed over the research region, emphasizing how these out-
comes combine data for reservoir characterization and geological modelling.
The total porosity in the location of the study wells was calculated using the
porosity Eq. (1) (Schlumberger, 1987) which revealed from the density logs
in Simian-3, Simian-Dp and Simian-2 wells (Fig. 6). After that the volume
of shale was calculated to obtain the effective porosity from the calculated
total porosity. The porosity values range from 0.15 (15%) to 0.30 (30%)
as shown in Fig. 6. The depicted figure illustrates the frequency distribu-
tion of porosity for the wells under study. It reveals that both Simian-3
and Simian-2 exhibit bimodal porosity ranges, except for Simian-Dp, which
displays a unimodal distribution of porosity.

Φ =
ρma − ρb

ρma − ρf

, (1)

where Φ = porosity, ρma = matrix density (2.65), ρb = formation bulk den-
sity (log value), ρf = density of the fluid saturating the rock (1.07).
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Fig. 6. Average calculated effective porosity histogram for the wells in the study area.

A common way to extract porosity from the seismic data is to use the
acoustic impedance inversion results, one can estimate the porosity from the
inverted Al, using a mathematical relation between the Al and the porosity
derived from well log (Fig. 7), Eq. (2). According to the conclusions of
rock physics, there should be a correlation between acoustic impedance and
porosity in the well data. In agreement with these conclusions, the revealed
results from cross plotting (Fig. 7), the acoustic impedance is strongly cor-
related to the porosity. In order to convert the acoustic impedance data to
porosity, the acoustic cube should be classified into reservoir sandy facies
and non-reservoir muddy facies as shown in (Fig. 8). A cross-plot analysis
was conducted using shear and compressional impedance to delineate the
boundary between reservoir and non-reservoir facies. This analysis helped
establish the acoustic impedance cut-off for separating the different facies
as each facies has its range from acoustic impedance (Fig. 8). An arbitrary
seismic line was taken through the study area to illustrate the inverted
acoustic impedance versus the raw seismic data (Fig. 9). Root mean square
amplitude from the post stack seismic was used to map the distribution
of the reservoir facies in the area, which represent slope channel features
(Fig. 10).
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Fig. 7. Cross plot between the target log (effective porosity) and the seismic attribute
(AI) for Simian-3, Simian-Dn, and Simian-Dp wells.

Porosity prediction Eq. (2) from the cross plot in Fig. 6 as a best fit
regression equation:

Effective Porosity = −0.837 · log10 (Acoustic Impedance) + 3.182 . (2)

The obtained porosity cube from the acoustic impedance relationship
demonstrated the spatial distribution of the porosity in reservoir units and
the areas which have a good trend of the porosity (Fig. 11). Figure 12
depicts the seismic-derived porosity overlaid by the calculated porosity log,
providing a visual representation of the relationship between the two. By
revealing details about the reservoir’s spatial variation distant from the ex-
isting well’s control, seismic porosity prediction might enhance reservoir
characterization. Seismically derived maps and volumes have a vertical
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Fig. 8. Cross plot of Shear impedance (Zs) Vs compressional impedance (Zp) cross plot
for separating Gas sand, shale and water sand facies.

resolution measured in tens of meters. Although porosity variations can
be significant at the reservoir characterization scale, porosity maps derived
from seismic data tend to reduce these fluctuations by averaging them ver-
tically.

The estimated porosity logs were used to validate the developed porosity
model, and the results matched where the areas with high porosity values
are located in relation to the increasing porosity indicated by the log data.
The porosity cube will be utilized as a trend cube for distribution of the
porosity values, which will have a reliable impact on the static reservoir
model. The inverted porosity model would be very helpful if used as a re-

140



Contributions to Geophysics and Geodesy Vol. 53/2, 2023 (129–149)

Fig. 9. (A) Representative seismic section in the study area; (B) Acoustic impedance
cross section as a result of the Post Stack inversion generated for the location of the study
wells (soft kick is represented by blue, while hard in red colour).

gional trend for delineating the areas with higher porosity values due to the
method’s limitation.

This limitation is related to the differences in scale/sampling rate be-
tween the seismic and the well (Fig. 12). In order to validate the expected
porosity values away from the wells in the predicted model, a blind well
(Simian-1) was employed with significant results as shown in Fig. 13. A cer-
tain porosity maps including the maximum amplitude of porosity and the
sum of porosity magnitude (Fig. 14) were constructed to identify the best
locations for the future drilling wells. The created maps exhibit the same
depositional trends in the region identically similar to the channel (Fig. 10).
Apparently, the porosity increases in the northern sector if compared to the
southern sectors.

5. Discussion

Porosity estimation from seismic inversion is a commonly used technique
in geophysics to predict subsurface porosity based on seismic data. Seismic

141



Eid R. et al.: Porosity estimation in deep-water slope-channel system . . . (129–149)

Fig. 10. Root mean square (RMS) amplitude from the top to base gas sand using full
stack seismic.

inversion is the process of converting seismic reflection data into a quanti-
tative representation of subsurface properties.

Porosity is a measure of the void spaces or gaps within a rock formation
and is a critical parameter for assessing reservoir potential and fluid storage
capacity. It directly influences the flow of fluids such as oil, gas, and water
within the subsurface. Seismic inversion methods aim to relate the seis-
mic response (amplitude, phase, frequency content) to rock properties such
as porosity. A rock physics model is created to establish the relationship
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Fig. 11. Distribution of effective porosity estimated using the relationship established
between porosity and AI.

Fig. 12. Porosity cross section through Sim-3. The black curve is the density calculated
porosity log, hot colours represent sand reservoir and pale represent background. For the
location see Fig. 10. Nil means zero effective porosity in shale.
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Fig. 13. Porosity cross section through Simian-1 as a blind testing well in the study area,
the black curve is the density calculated porosity log.

between seismic response and porosity. This model incorporates informa-
tion about the elastic properties of the rock, pore fluid properties, and the
porosity-permeability relationship. The model can be derived from well log
data.

The inversion process utilizes algorithms to invert the seismic data and
estimate the subsurface properties. Different inversion techniques exist, in-
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Fig. 14. Maximum amplitude (left) from the calculated porosity volumes and sum of
magnitude (right) from the post-stack seismic from top to base of the reservoir section.

cluding deterministic, probabilistic, and model-based approaches. These
methods attempt to find the best-fit model that reproduces the observed
seismic data by adjusting the parameters, such as porosity, within the rock
physics model. The inverted porosity model is validated against well log
data or other independent measurements like porosity from the core to as-
sess its accuracy and reliability. If necessary, additional adjustments or
calibration may be performed to improve the porosity estimation.

It is important to note that porosity estimation from seismic inversion
is subject to uncertainties and limitations. The accuracy of the results de-
pends on factors such as the quality and resolution of the seismic data, the
reliability of the rock physics model, and the presence of other geological
complexities that may affect porosity distribution.

Overall, seismic inversion provides a valuable tool for estimating porosity
from seismic data, allowing geoscientists and reservoir engineers to make in-
formed decisions regarding resource exploration and production strategies.
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6. Conclusion

Seismic inversion is a widely employed geophysical technique that enables
the estimation of subsurface porosity based on seismic data. It involves the
conversion of seismic reflection data into a quantitative representation of
subsurface properties.

Porosity serves as a measure of the void spaces or gaps within a rock
formation and plays a crucial role in evaluating reservoir potential and fluid
storage capacity. It directly influences the flow of oil, gas, and water within
the subsurface. Seismic inversion methods aim to establish a connection
between the seismic response (including amplitude, phase, and frequency
content) and rock properties such as porosity.

To achieve this, a rock physics model is developed, which considers the
elastic properties of the rock, properties of the pore fluid, and the relation-
ship between porosity and permeability. This model can be derived from
well log data, providing valuable insights into the subsurface properties.

The inversion process employs algorithms to invert the seismic data and
estimate the underlying subsurface properties, including porosity. By com-
paring the seismic response with the rock physics model, the inversion al-
gorithms work to find the most suitable subsurface property model that
reproduces the observed seismic data.

Through the utilization of seismic inversion, geoscientists can gain valu-
able information about subsurface porosity and its impact on fluid flow
dynamics. This knowledge aids in making informed decisions in various ap-
plications, such as resource exploration and reservoir management.

We utilized post-stack seismic inversion products, specifically Zp, for es-
timating porosity. Initially, we calculated the porosity at the drilled well
locations and created a cross-plot comparing the raw acoustic impedance
data with the calculated porosity. This cross-plot allowed us to observe
the correlation between these two variables. Subsequently, we employed the
correlation equation to convert the inverted post-stack seismic data (Zp)
into porosity values. To validate the accuracy of the new porosity volume,
we tested it using a blind well and obtained reasonable results. The newly
derived porosity cube will serve as a valuable tool for constructing reservoir
static models. It will provide guidance on areas with both increased and
decreased porosity, such as the central regions of the channels, which indi-
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cate a high-quality reservoir in the core of slope channels. Additionally, the
porosity shows an increasing trend towards the northern parts.

When a strong correlation exists between log porosity and acoustic im-
pedance, porosity estimated through inversion can be utilized to analyse
reservoir heterogeneities and identify promising areas distant from well data.
It is important to note that while the inverted model can capture lateral
variations effectively, the lower vertical resolution of seismic data, compared
to well log data, leads to smoother vertical fluctuations. To handle finer ver-
tical resolution necessary for reservoir simulation, simulation or stochastic
techniques based on property distribution might be more suitable. To en-
sure reliable and robust conclusions when employing seismic inversion for
porosity prediction, the availability of a rock physics model and correla-
tion model specific to the study area is imperative. Seismic inversion has
demonstrated its capability to accurately predict reservoir porosity.
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