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Abstract: Groundwater is an important factor in establishing new urban communities,

especially in coastal arid and semi-arid regions. Egypt is one of the world’s driest coun-

tries, with hyper-arid territory accounting for 86% of the total area and arid and semi-arid

terrain accounting for the rest. The present work aims to demonstrate the powerful in-

tegration of geophysical techniques to assess groundwater potentiality and suitability in

Gara Oasis (GO), which describes a good example of Egypt’s strategic southern extension

of its arid north-western coast. Geophysical methods, including electrical resistivity and

aeromagnetics, were used to evaluate groundwater resources. The study region reduced

to pole total magnetic intensity map is subjected to digital filters that include deriva-

tives, analytic signal, and tilt angle. The possible structures controlling the shallow and

deep aquifers are delineated and integrated with geoelectric results. Moreover, two mag-

netic tomography sections are constructed to show the subsurface distribution of magnetic

susceptibilities and formation boundaries. Ten vertical electric soundings (VESs) are mea-

sured and used in this study to construct four geoelectrical cross-sections. According to

the results, Gara’s commonly calculated subsurface resistivity model comprises six major

resistivity layers. The 5th layer, in particular, is composed of Fractured dolomitic Lime-

stone and represents a possible promising shallow aquifer. Moreover, as evidenced by

various magnetic data filters, the shallow (Miocene carbonate) and deep (Nubian sand-

stone) aquifers are structurally controlled and regulated by a system of faults or contacts.

These contacts trends NW–SE, E–W, and NE–SW as common trends emerged from the

total derivative and tilt maps. Results suggest that the central part (N–S zone) together

with the western side of Gara, have the most notable aquifer possibility demanded future

improvement strategies.
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1. Introduction

North Africa’s great Sahara is one of the driest lands on the earth. The
great African Sahara extends from Egypt at the east to Morocco at the
west. It measures approximately 4800 km from east to west and between
1287 km and 1931 km from north to south. Water represents the critical
factor of life in this hyper-arid region. Due to the scarcity of rainwater,
groundwater is the main source of water. The search and assessment of the
groundwater are of utmost importance in these regions. Many investiga-
tions have been tried for groundwater exploration using various geophysical
methods due to their efficiency and reliability such as the electrical resistiv-
ity, magnetic and electromagnetic methods. Such studies have inspected the
relationship between geomorphology, tectonic structures, and groundwater
(Gobashy and Al-Garni, 2008; Al-Garni and Gobashy, 2010; Apaydin, 2010;
Manning, 2011; Yuan et al., 2011; Herrera and Garfias, 2013; Roques et al.,
2014; Arnous et al., 2017; El Rayes et al., 2017; Abdelazeem et al., 2020).
These studies confirmed that faults and folds greatly affect the groundwater
flow regime.

On the other hand, groundwater is influenced via geological and anthro-
pogenic impacts. The mineralogy of rock categories, geological structures,
water recharge source, period of occupancy, and aquifer conditions are all
geological impacts. Anthropogenic impacts include population growth, over-
pumping, and agricultural and industrial development without appropriate
corrective procedures (Chapman, 1996). When water flows from recharge to
discharge regions, it exhibits significant changes in groundwater chemistry
according to many factors including precipitation, weathering, dissolution
of minerals, evaporation, topography, exchange of ions, and saltwater inter-
ference (Elango and Kannan, 2007; El Osta et al., 2021). The interaction
of groundwater to saline water with the host rock can alter the chemistry
of the groundwater to irrigate its validity. Groundwater is recharged by
vertically infiltrating rainwater, the influence of host rocks is more evident
(Abdelazeem et al., 2020).

The present geophysical and geological study is carried out on the Gara
Oasis (GO), which is one of the many oases that are distributed all over the
Sahara and one of the main seven depressions in the Egyptian desert that
represent typical arid regions. It is one of Egypt’s most private destina-
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tions and is considered an excellent example of the virgin oasis of main
natural depressions in Egypt’s Western Desert (WD) and the great African
Sahara.

Many studies were applied basically for evaluating and delineating the
groundwater resources and implement a complete evaluation of the qual-
ity concerning groundwater using joint geophysical and geological methods
within this region and other close regions of similar conditions, among them
(Said, 1962 & 1990; Gindy and El Askary, 1969; Himida, 1970; El Shazly
et al., 1976; Abdel-Mogheeth et al., 1996; Awad et al., 1995; Aly, 2001 &
2007; Rabeh, 2004; Aly et al., 2008 & 2011; Abo EL-Fadl et al., 2015; El
Hossary, 2013; Hedia, 2015; Khalil et al., 2015; Aly, 2015; Aly et al., 2016;
Farrag et al., 2016; Saleh et al., 2016; Farrag and Sediek, 2017; Salman et
al., 2018; Gad et al., 2018; Abdel Zaher et al., 2018; Aly, 2020; Moghazy
and Kaluarachchi, 2020; Abdel-Gawad et al., 2020). While particularly for
Gara, a relatively few studies are carried out (Aly, 2015). Geoelectrical
investigation comprising VES (Vertical electrical sounding) is a powerful
method for the evaluation of aquifer qualities. These studies constitute the
base for planning underground water wells and the future development of
the aquifer. Magnetic methods, on the other hand, support these VESs
results by delineating the structural controls of this aquifer. Hence, improv-
ing a relevant groundwater sustainability expansion system is essential to
minimize the consequences of irregular good excavation and over-abstrac-
tion of groundwater (El Osta et al., 2020 & 2021; Masoud, 2020; El Osta,
2018).

This study is aimed to investigate and delineate the shallow Miocene
groundwater aquifer with changes in the GO’s vertical and lateral facies.
This is accomplished for the first time in GO to the knowledge of the au-
thors. The study is intended to facilitate the conservation and sustainabil-
ity of the groundwater through the integrated interpretation of Electric and
magnetic measurements in the area. The aeromagnetic data is integrated
with the geoelectrical method to delineate the subsurface structure of the
area. Moreover, a road map for constructing groundwater wells in the tar-
geted area is developed. The results should be useful to regulate the oasis’
underground water resources to limit the decline in levels and quality of
groundwater in the region and to support future improvements within the
region.
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2. Study area and methods

Overview of the study area

Gara Oasis is located between Siwa Oasis (SO) (depression) in the north-
eastern part (between Siwa Oasis and Marsa Matrouh) and the north-
western part of Qattara depression within latitudes 29.575◦ and 29.675◦ N
and longitudes 26.475◦ and 26.55◦ E (Fig. 1). Gara includes thermal sources
(hot springs) and wells. The GO lies around 40 m below sea level in a de-
pression (Aly, 2015). The Gara depression, located in Egypt’s north-western
corner, and the closest depression to Siwa Oasis (SO), is considered as one
of the desert areas that have no running canals or streams. GO is essentially
dependent on groundwater, in particular, brackish water that flows from the
limestone fractured Miocene aquifer (shallow), distinguished as the source
for farming of agricultural, manufacturing, and constructive improvement
in the region (El Hossary, 2013; Abo EL-Fadl et al., 2015; Aly, 2015; Gad
et al., 2018; Aly, 2020). Owing to the availability of groundwater that may

Fig. 1. Location map of the study area, Gara Oasis, North-Western Desert, Egypt.
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be employed for future development, depression attracted significant atten-
tion in earlier studies. It has saline lakes developed because of the lack of
sufficient drainage (Moghazy and Kaluarachchi, 2020).

GO groundwater is a very significant natural resource for the people of
these oases because of the arid environment of Northern Africa and the
great Sahara (Aly et al., 2011; Nazih et al., 2022). It is artesian and avail-
able from both the deep aquifers of Nubian sandstone (NSSA) and shallow
Eocene and Miocene carbonate aquifers of the Tertiary carbonate (TCA)
in natural springs, and drilled wells (El Hossary, 2013). Many wells have
been drilled to correspond to the expansion of the agricultural land, devel-
opment projects, and food industry (Salheen, 2013). Since the main activity
in GO, in particular, is agriculture, consequently, aquifer thickness, hydro-
geochemical characteristics, and quality are fundamentally determined for
evaluating and improving groundwater aquifers and their operation to man-
age the agriculture of these aquifers (El Osta et al., 2021) and other similar
regions of the same geological conditions.

Climatic conditions

According to Abdallah (2007), the lowest recorded air temperature in Jan-
uary is about 5.80 ◦C and in July is 37.8 ◦C. The diurnal range is 32 ◦C.
Precipitation is precarious and variable 0.87 mm/month and evaporation
ranges between 4.8 to 13.5 mm/day. Contemporaneously, air temperature
records its maximum value and rainfall drops to nothing ceases to excess
and consequently evaporation becomes extreme and responsible for the for-
mation of the salty layer in the soil profile with a marked decrease in sub-soil
water level. The main wind direction in the area is NE, SE, and NW with
general rations of 12.4%, 18.2%, and 24.4%, respectively. The physical ef-
fects of this wind (erosion and deflation) attain their highest effect in April.
The transported fine sand and salt fragments are deposited in low lands
within and around the oasis. This phenomenon affects the impermeable
layer by soil erosion carrying the soil matrix away leading to a decrease in
the soil profile and thus raising the groundwater table. Based on the above,
insufficient rainfall, high temperature, and high evaporation and aspiration,
increase the capillary rise of water to the sediments on the surface bringing
about a concentration of salt crystals in the soil surface causing the increas-
ing acceleration of salt weathering activities.
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Geomorphological setting

Geomorphologically, the Gara depression was initiated as a result of the
folding followed by faulting and erosional effect, the location of the oasis
in the western desert’s northern portion made the depression a natural dis-
charging locality for the different aquifers through springs and wells (Abdel-
Gawad et al., 2020). The surface of the depression and its surroundings
represents the following geomorphological units (Figs. 2 and 3): sabkha de-
posits, lake, the Moghra Fm, Mokattam group, and Marmarica Fm. Quater-
nary sediments of a thickness of 0.5 to 3 m, comprising aeolian and alluvial
sediments displaced by sabkhas or salt near the lake’s vicinity, were evident
in the investigated region (Gad et al., 2018). The composite stratigraphic
section in and about the Gara depression (Fig. 4) reveals that the basement
of the Precambrian complex consists of gneiss and volcanic sedimentary
sequences and granitoid in the southern section related to Arab-Nubian
Shield Massif and to the north, there is a Phanerozoic sedimentary succes-
sion (Abouelmagd et al., 2014).

Fig. 2. Geological and Geomorphological map of the important features developed in
Gara Oasis area, Egypt (modified after Conoco,1987).
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Surface and underground water

Within the GO, the hydrogeological layers are ranged from 450 to 600 m
thick of the fractured dolomitic limestone (shallow Miocene and Eocene
aquifer) overlying the Nubian sandstone aquifer (NSSA, deep aquifer). Shale
and clay layers with low permeability separate the fractured Miocene-Eocene
carbonate zones from the underlying NSSA. The Nubian aquifer NSSA is
about 2600 meters thick and belongs to the Paleozoic and Mesozoic pe-
riods. The upper zone is approximately 500 meters in thickness and is
saturated with freshwater including less than 500 ppm (mg/l) salinity and
around 70 ◦C temperature (Abo EL-Fadl et al., 2015). In the north and
west, the residual sand thickness is reduced. The heads of water pressure
of the aquifer’s Nubian sandstone vary from 80 m in the west of Gara and
Siwa districts, where springs and shallow wells occur, to 120 m in the east
(El Arabi et al., 2013; Abo EL-Fadl et al., 2015; GPC, 1991). The salinity
ranges from 1600 to 8000 ppm of water from shallow wells in the shallow
Miocene aquifer, while the salinity ranges from 300 to 400 ppm from deep
artesian wells (NSSA, Nubian sandstone aquifer) (Aly, 2001).

2.1. The general geological setting

To define the hydrogeological conditions of the GO, the geologic setting of
the oasis should be reviewed. It will be discussed under two topics, the
lithostratigraphy, and structural setting (Figs. 2 and 3):

a) The lithostratigraphy

The outcropping formations (surface geology) and the subsurface forma-
tions, which are related to groundwater as water-bearing formations in the
Gara area, include various rock units. These units cover geological ages
between Cambrian and quaternary ages. This succession had underlain by
granitic rocks. The Phanerozoic rocks of the GO area and its environments
are discussed in the following:

Surface stratigraphy

The oasis’s surface geology is characterized and identified by sabkhas, which
are quaternary deposits of silt, evaporated deposition, and clay combina-
tions (Figs. 3a and b). The Mokkatam group of Middle Eocene (white cal-
careous limestone associated with grey shale and evaporite layers) is among

523



Nazih M. et al.: Geophysical studies to delineate groundwater aquifer . . . (517–564)

Fig. 3. Surface geological formations in the study area: (a) salt sabkha (Karshef), (b) qua-
ternary deposits, (c) upper carbonate unit of Eocene, (d) lower shale unit of Middle
Eocene, (e) karst features at most upper Eocene limestone and (f) glauconitic sand with
iron oxides concretions at Naqb Al-Ahmer.
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the oldest rocks in the area and is exposed in the southeast and west section
of the region. There are many erosional drainage lines inside, and through-
out, the northern escarpment surrounding the depression, largely impacted
by the developing trends of fracture systems in NW–SE and NE–SW. The
Middle Eocene chalky limestone Mokkatam Group is exposed with an un-
wrapped thickness of 75 m has been measured (Antar, 2011). This section
consists of an upper unit of white chalky limestone and a lower shale unit
22 m thick which dominated glauconitic sand and siltstones with iron oxides
concretions (Fig. 3f). The later shale unit observed west Ain Timeira and
formed Naqb Al-Ahmer due to SW of Gara depression.

Fig. 4. Composite stratigraphic section in Gara depression and its surroundings (oases)
formations, Egypt (compiled after Abdel-Gawad et al., 2020; Afifi, 2005; EGPC, 1992;

Ibrahim, 1991).

Moreover, this Middle-Eocene unit is overlain by silicified wood and
quarzitic gravel of Lower Miocene Moghra Formation (Moghra Formation,
consisting of a continuous to shallow marine silici-clastic succession with
an abundance of silicic wood, including shale, siltstone, and white sandy
carbonate layers) (Fig. 3d). In the subsurface, the Formation of Moghra,
a clastic series of fluviomarine Early Miocene delta basins that laterally
grade marine facies (Said, 1990), the Upper Eocene overlying by uncon-
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formable. In this particular region of the depression, the Middle Miocene
of the Marmarica Formation about (94 m thick) provides a more compre-
hensive portion of the area of research (Figs. 3c& f). It consists mostly of
calcareous limestone, dolomite, and shale (Upper Miocene, Marmarica For-
mation consisting of grayish-white calcarenite, with little shale association
including fossil-rich white limestone). The north scarp of the depressions
Gara and Siwa oases, and various hills in Mortazak, Gebel El Dakrour,
Zomaq, Khameisa, and El Mawta, are fundamentally produced. It is 78 m
high. The thickness of the surface is 78 m at the scarp and 94 m throughout
the whole depression (Gindy and El Askary, 1969).

The Quaternary deposits are expressed in the Gara Oasis by alluvium
and aeolian deposits cover Tertiary rocks (Fig. 3b). The quaternary de-
posits have a thickness range from 2 m to 3 m soil zone which at the lakes
approach is replaced with salt or sabkha (Gad et al., 2018). The area nearby
the lake composes salt crust (Korsheef) or sabkha (Fig. 3a).

Subsurface stratigraphy

A Paleozoic, Mesozoic, and Cenozoic succession with a thickness of about
3400 m makes up the stratigraphic subsurface sequence (El Hossary, 1999).

There are two major clastic and carbonate deposition cycles (periods) in
it (Abdel-Gawad et al., 2020) (Figs. 2 and 4). The Paleozoic and Mesozoic
groups are represented in this primary clastic cycle, which involves the old-
est sedimentary strata. The Tertiary Eocene and Miocene groups are part
of the other cycle of carbonate facies. The whole Paleozoic, Mesozoic, and
Cenozoic stratigraphic succession were controlled by several normal faults
orientated northwest–southeast (NW–SE), east–west, northeast–southwest
(NE–SW), and north–south, that stabilized at the top of the basement (Said,
1962; Afifi, 2005). The development of the Gara and Siwa springs is caused
by certain faults (Shata, 1982) and the lithofacies variation and thicknesses
of formation.

b) The structural setting

The GO occupies a regional synclinal fold trend (NNW–SSE), which is asso-
ciated with the end of the Eocene period, and the compressional Oligocene
forces (NW–SE) has influenced Cretaceous folding which has led to the cre-
ation of the “Syrian Arc System” while in a NE–SW trend characterized by
normal and reverses faulting parallel to the axes of the fold. (Kaiser and
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Vollen Weider, 1972). The study area shows also the major structural char-
acteristics mainly those, which extend in northwest–southeast (NW–SE)
and northeast–southwest (NE–SW) directions. The appearance of these
configurations performs an essential role in the presence of the springs of
the Gara and Siwa depressions oases.

The hydrogeological setting (water-bearing formation)

In the GO and SO, the groundwater is exhibited in different water-bearing
formations. These formations are (the Miocene fractured limestone shallow
aquifer, the Eocene fractured limestone, and the deeper aquifer of Creta-
ceous Nubian sandstone).

The Miocene and Eocene water-bearing formations describe the tertiary
carbonate aquifer system. It consists of carbonate (limestones and dolomite)
rocks intercalations with sandstone, shale, siltstone, and evaporates sedi-
ments in certain sections, 450–600 m in thickness. The water supply system
is under confining conditions (El Hossary, 2013). The aquifer of Nubian
sandstone is overlaid by the tertiary carbonate aquifer (Eocene–Miocene).
The low permeability shale and clay layer separate the fractured carbonate
sections from the underlying Nubian sandstone. This layer is behaving as a
cap rock and is between 60 m to the west and 250 m to the east in thickness
(El Hossary, 2013). The major source of recharge for the aquifers is the
upward leak from the NSSAS (Ibrahim, 1991; Dahab, 2004). The interest-
ing one for our study is The Miocene carbonate aquifer (shallow aquifer).
The Miocene fractured limestone involves the floor of the depression under
the surface part. This aquifer achieves a thickness of about 250 m realized
by medium-hard to hard limestone, white, sandy, and siliceous downward
with intercalations of shale and marl. The field survey of the private shows
that the shallow wells (less than 40 m depth) have low yield accomplish
240 m3/day (El Hossary, 1999). On the other hand, the wells with depths
less than 150 m exhibit a zone of 80 m thick, consisting of hard limestone
interbedded with shale has a yield of 960 m3/day (El Hossary, 1999). The
productivity of this aquifer has varied from one place to another due to
the variety of fracture occurrences and the extent of its relationship with
the source of recharge (Nubian sandstone aquifer). The various drillings of
RIGW (1996 – 1999) exhibit several zones of fractures inside the carbonate
aquifers.
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2.2. Geophysical methodology

Two geophysical techniques are used and integrated with this study to
delineate the groundwater aquifer and examine its controlling parameters.
The magnetic method is used to figure out the possible faulting systems
that may control structurally the aquifers and the subsurface distribution
of the magnetic susceptibilities related to different rock units, Moreover, the
electrical survey is used to investigate the subsurface groundwater aquifer’s
electrical and hydraulic characteristics.

Magnetic methods

The magnetic method of exploration is a simple, yet valuable and effective
technique in different fields of shallow and deep exploration. It is imple-
mented in many integrated studies aiming to delineate the structural set-
ting (e.g. Abdelazeem et al., 2021; Araffa et al., 2021; Azeem et al., 2014;
Al-Garni et al., 2012) and in groundwater studies (Gobashy et al., 2021b;
Al-Garni et al., 2006) and exploration of the mineral (Gobashy et al., 2022;
Gobashy et al., 2020; Gobashy et al., 2021a; Abdelrahman et al., 2019),
groundwater contamination (Rehman et al., 2019).

The present study is based on the available aeromagnetic data from the
survey conducted byEGPC (1989). The survey was conducted by Egyptian
General Petroleum Cooperation using airborne magnetic, the total magnetic
intensity (TMI) measurements were carried out using the high-sensitivity
(0.01 nT) airborne proton free-precision magnetometer (Varian, V-85). The
magnetometer was mounted in a tail stinger. In addition, the Varian (VIW
2321 G4) single-cell caesium vapour was used as a base station magnetome-
ter, (Aero-Service, 1984). The aeromagnetic data interpretation aims to
delineate the regional structural setting of the Gara region and to examine
the structural controlling parameters (folds and faults) of the shallow and
deep groundwater aquifer of the depression. This survey data is re-digitized
and processed to 674 data points and a reduced-to-pole map is calculated
(Fig. 5). To evaluate the general structure of the Gara region, this map is
subjected to several linear spatial filtering techniques. Also, two selected
profiles (P1 & P2) perpendicular to each other are extracted (approximately
35 km and 55 km, respectively) and studied extensively.

The reduced to pole magnetic anomaly is calculated to minimize the
dipolar nature of the geomagnetic field. A MATLAB c© function is used to
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Fig. 5. (a) Reduced to pole magnetic anomaly map of Gara and (b) location of the mea-
sured electric VES’s and geoelectric sections.
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deskew (normalize) the field based on the Fourier transform. The inclina-
tion and declination of the field are specified from the IGRF calculations
as I = 42.17◦ and D = 4.3◦, respectively. The filter transforms the regu-
lar grid of the total-field anomaly into new anomalies with new directions
of magnetization and ambient field. The following steps are used: (1) the
field was transformed using Fourier transform, (2) multiply by the phase
filter and (3) inverse Fourier transform was used to transform to space do-
main as RTP field. Anomaly values were specified on the rectangular grid.
The first-order derivatives are then calculated in all orthogonal Cartesian
directions to enhance the spatial distribution of magnetic anomalies. More-
over, analytic signal (Nabighian, 1972) and tilt angle (Salem et al., 2008)
are used to extract possible direction and depths to magnetic sources. The
analytic signal is a complex function that makes use of Hilbert transform
properties to detect geologic boundaries, faults, and dykes. It is effective for
the interpretation of subsurface magnetic contacts (e.g., Nabighian, 1972,
1974). This method does not require prior knowledge of magnetization di-
rections and thus does not require reduction-to-the-pole processing. A fault
or geologic contact with susceptibility contrast can be extracted by track-
ing the maxima of the simple analytic signal, which is calculated from one
vertical gradient and two horizontal (Nabighian, 1972, 1974, 1984; Roest et
al., 1992). It is classically assumed that the causative sources are vertical
or near-vertical, step-like geologic structures (Hsu et al., 1996; Nabighian,
1972; Roest et al., 1992) in this case the maxima are located directly over
the boundaries of the structures. However, in the case of two maxima from
two nearby parallel edges merging to one maximum and the half-width be-
tween the edges is less than the depth, an interpretation pitfall of using this
method may arise (Atchuta Rao et al., 1981). For complete mathematics
of the technique, the reader can be referred to Hsu et al. (1996). The tilt
angle derivatives (Salem et al., 2008) on the other hand, is a simple and
straightforward technique that assumes also vertical or near-vertical step
structures and utilizes the second derivatives of the magnetic anomaly. In
this technique, a linear equation is introduced to estimate the horizontal
location and depth of magnetic sources without previous information about
the nature of the sources. The source body information is obtained by find-
ing structural indices (SI) using the estimated location parameters of the
sources.
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To quantitatively evaluate the subsurface magnetic anomalies across se-
lected profiles P1 and P2, we carried out magnetic tomography analysis
using regularized focused inversion. In this technique, the 2D half-space is
subdivided into a large number of cells or blocks with unknown magnetic
susceptibilities. The relative values of these susceptibilities are obtained
through magnetic inversion. In brief, the solution of the inverse problem
is transformed into the Tikhonov parametric functional’s minimization P α

(Portniaguine and Zhdanov, 1999):

Pα(m) = ϕ(m) + α s(m) , (1)

when, mL < m < mU , where, m is unknown parameter (magnetic suscep-
tibilities of each cell) and ϕ(m) denotes a misfit functional error estimated
as a model (norm) of the difference between the expected and observed
(calculated) fields. The inequality restricting parameters are mL and mU ,
and s(m) is a function that helps to stabilize (stabilizer). These are based
on the sample’s magnetic susceptibility obtained in the research region that
has been assessed.

Geoelectrical methods

For decades, direct current (DC) surveys have been utilized to investigate
groundwater resources worldwide. The geoelectric technique is generally as-
sociated with groundwater investigation and correlates the electrical prop-
erties of geological formations with their fluid content (Zohdy et al., 1974;
Ogilvy, 1970; Zohdy, 1965; Flathe, 1955 & 1970). Several investigations
have been carried out in establishing aquifer geometry.

The geoelectrical cross-sections when correlated with the available geo-
physical, geological information, and the available wells, can provide in-
formation for the lithological, hydrogeological, and structural conditions
within the studied area. Generally, the DC resistivity technique was pro-
posed in this study for outlining the vertical and horizontal distributions
of geologic formations, groundwater, and its quality. These objectives will
be represented as depths and the thicknesses of the water-bearing struc-
tures. The obtained field data were corrected, analysed, and interpreted
to obtain the specific parameters which define the layering models beneath
the surface. Interpretation of (VESs) measurements was achieved by ap-
plying conventional (manual) and analytical procedures (Reynolds, 1997).
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The initial model for analytical technology was presented with resistivity
and thickness estimates from conventional interpretation. These methods
involved using the (IPI2WIN, 2000) program to decrease RMS errors, which
describe the performance comparison among the measurements on the field
and the analytical curves since a low RMS value indicates more consider-
ation (Zohdy et al., 1974). Four geoelectric cross-sections show the major
structural components and geoelectric properties of the geological strata
in the investigated region, models of the true final Resistivity generated
from the assessed reversion of the resistivity data at every VES were used.
Accordingly, vertical electrical sounding (VES) technique was conducted
(VESs #7, #8, #9, #11, #12, #13, #14, #16, #17, and #18 as shown
in Figs. 5 and 6) for exploring the resistivity variations at certain selected
sites along profiles (A, B, C, and D) (Fig. 6) to define the variations of resis-
tivity values with depth. The lateral variations were recorded throughout
the constructed geoelectric cross-sections. The Schlumberger configuration,
with AB/2 ranges between 1 and 400 m utilized in ten vertical electrical

Fig. 6. Location of vertical electrical sounding (VES) as measured in Gara Oasis and the
geoelectric cross-sections.
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soundings (VESs). Intervals have been achieved in this area, so that the
shallow Miocene carbonate aquifer depth may be achieved. The Syscal-Pro
switch unit, made by IRIS Instruments in France, is used to estimate resis-
tivity measurements.

Usually, an electrical resistivity survey is typically performed by intro-
ducing the current source into the ground through two electrode surface,
which provides the best means of focusing in the earth, and two potential
(voltage) electrodes, which measure the voltage differential to determine its
subsurface resistivity distribution.

The present investigation utilizes a sample interval of one-sixth of a
decade. According to Zohdy (1989), however, because of the non-uniqueness
inherent in the resistivity interpretation methods, any well-behaved model,
in the sense that the layer resistivities do not oscillate, and whose computed
curve fits the sounding curve within a few percent is an acceptable model.
This means that the model error is a useful statistic for determining how
well an inversion is performed.

Using the above technique of iterative interpretation in the present study,
the interpretation of the acquired sounding data (employing the Schlum-
berger configuration) is carried out using a simple computer program. This
program requires the digitized values of the apparent resistivity field curve
and an initial model in the form of resistivity and thickness interval as in-
put data. In addition to the values chosen for model parameters (resistivity
and thickness), the mean error between estimated and observed data was
acquired as output results for each step in the iteration process and may
then be shown as contour maps.

The following steps have been used to interpret field data:

a) Field curve matching to the conventional auxiliary technique curves
(Marsden, 1973; Mooney et al., 1966);

b) construction of a forward particular set model of a limited number of
geoelectrical layers based on existing data collected from the boreholes
in the investigation area as (the thicknesses and correspondence of re-
sistivity) (Patella, 1975); and

c) in the geoelectric modelling package, enter the initial geoelectric model
of Van Der Velpen (1988). The inversion of one-dimension (1D) mod-
elling of each VES has been used in Zohdy’s iterative method (Zohdy,
1989). The best match between the smoothed and calculated field curve
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was performed using Iterations. The root mean square errors (RMS) are
determined for the resultant models. Fig. 7a shows a field data example
for VES (and the configuration of the array used), and Fig. 7b shows
all 10 VESs used in this study.

The A–A’, B–B’, C–C’, D–D’ are the cross-sectional profiles, constructed
from the ten measured VESs (#7, #8, #9, #11, #12, #13, #14, #16, #17,
and #18) to elucidate the extension of Miocene aquifer (shallow aquifer) in
GO (Fig. 6) and to Illustrate the distribution over the researched area of the
calculated resistivity parameters in the vertical plane (true resistivity and
thickness). Results of magnetic interpretations are implemented in con-
structing the geoelectric sections. This includes the location of expected
faults/or boundaries. The drilled deep wells in the area were also used to
calibrate the geological information to be confirmed with the true resistiv-

Fig. 7a. Example of field data for VES 9 with (a) the constructed one-dimensional inverse
model with true resistivity, thickness, depth, and its topography to the top of each layer.
(b) the Schlumberger configuration as used in this study. A and B are current electrodes,
and M and N are potential electrodes.
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ity values. Table 1 summarizes the layer characteristic properties (thickness
and true resistivity) determined by quantitative interpretation. As a conse-
quence, these characteristics are merged with previously collected geologi-
cal information (Flathe, 1976) for the construction and development of the

Fig. 7b. Data for the 10 VESs acquired in the GO and the one-dimensional inverse model
for each VES with true resistivity, thickness, and depth to the top of each layer.
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research region’s geological perspective and vision. In the cross-sectional
profiles, each of the displayed vertical and horizontal scales is in meters,
while the vertical scale indicates the depth relative to sea level, and the
horizontal scale indicates the distance between the VESs along the section.

Table 1. Subsurface layers true resistivity and thickness.

VES VES S.L ρ1 h1 ρ2 h2 ρ3 h3 ρ4 h4 ρ5 h5 ρ6 depth
No. Name (m)

7 G 1 −37 7 3.08 4 16.23 14 33.8 4 30.22 31 65.49 7.6 185.2

8 G 2 1 1458 1.01 65 3.7 14 46.7 10 51.1 36 68.4 26 170

9 G 3 −27 13 5.7 7 9.5 22 40 9 27.7 51 60.9 24 170.8

11 G 5 12 28 8.7 18 24.8 39 31.5 5 25.9 76 67.2 43 146.1

12 G 6 −50 5.3 1.7 8 17.7 10 36.4 2.6 29.9 11.9 49.7 0.1 185.4

13 G 7 −51 6.8 2.2 8.6 17.3 5 36.7 2.2 31.1 6.8 47.2 0.1 185.5

14 G 8 −52 27390 0.4 3 4.6 1 18.6 0.9 31.1 1.9 47.2 0.1 154.9

16 G 10 −46 3.6 1 5.5 1.6 3 47.5 1.2 22.4 5.7 76.1 0.5 194.6

17 G 11 −46 188 0.4 1.9 2.5 1 47.5 0.9 22.4 4 76.1 0.2 194.9

18 G 12 −35 7.8 1.6 3 11.8 10 35.6 3.6 24 45.9 68.4 12 176.4

Dar Zarouk Parameters

A geoelectric-sounding quantitative interpretation is relevant in the hori-
zontal construction of stratified layers with a resistivity (ρi) and a spatial
thickness (hi) characteristic of each layer (i) when specific accurate analyses
of the data with electrical anisotropic (λ) are available. And this conse-
quently, Dar Zarouk (DZ) parameters could be used to explain and identify
electrical anisotropy from the electrical vertical sounding VES, first pro-
posed by Maillet (1947).

Total transverse resistance (Tr), total longitudinal conductance (Sc), Av-
erage Longitudinal resistivity (ρL), Anisotropic coefficient (λ), and Trans-
verse resistivity (ρt) are the parameters. In geoelectrical soundings (VESs),
various thickening (H) and resistivity (ρ) combinations play a vital role
(Zohdy et al., 1974). They are used to distinguish between various ground-
water characteristics and geological settings. Many authors have described
the practical applications of these parameters (Utom et al., 2012; Srinivas
et al., 2012; Nwankwo et al., 2011; Ehirim and Nwankwo, 2010; Batayneh,
2009; de Oliveira Braga et al., 2006; Henriet, 1976; Singh, 2005; Singh
et al., 2004; Mazáč et al., 1985; Zohdy, et al., 1974; Zohdy, 1965; Oteri,
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1981; Campbell, 1977; Worthington, 1975; Orellana, 1963; Flathe, 1955)
They can be summarized as follows:

Sc =
N
∑

i=1

hi
ρi

, (2)

Tr =
N
∑

i=1

hiρi , (3)

ρL =
H

Sc
. (4)

Also, the thickness and resistivity are employed to estimate the additional
parameters anisotropy (λ) and average transverse resistivity (ρt).

ρt =
Tr

H
, (5)

λ =

√

ρt
ρL

=

√
ScTr

H
, (6)

where N defines the number of layers with resistivities ρ1, ρ2,... ρn and
thicknesses h1, h2,... hn for a unit square area and thickness of a block
H =

∑N
i=1 hi. The above parameters are calculated for a specific layer

in the GO area to examine the aquifer characteristics.
An illustrative flowchart is given in Fig. 8 to summarize the successive

steps followed in the application of different techniques for acquisition, pro-
cessing, and interpretation.

2.3. Results and discussion

The study area’s reduced-to-pole (RTP) magnetic anomaly map (Fig. 5)
shows a 240 nT magnetic relief. Three major high magnetic anomalies can
be distinguished, anomaly A to the west of Gara Lake, B to the east, and
C to the north. These three anomalies are separated from the surrounded
low magnetic background with possible magnetic contacts or faults. (F1–
F8) as shown in Fig. 5a. The spatial analysis of the RTP map is carried
out using derivative filters to examine the possible extent of the surface or
subsurface magnetic contacts. The first derivatives of the three orthogonal
directions are revealed in Figs. 9a,b& c. The peaks of these derivatives illus-
trate the possible magnetic susceptibility contrasts. This contrast may be of
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Fig. 8. An illustrative flowchart for the successive steps flowed in the application of dif-
ferent techniques for acquisition, processing, and interpretation.

deep origin (corresponding to the basement) or to any magnetized rock for-
mations representing intra-sedimentary anomalously magnetic bodies. The
total derivative and tilted maps (Salem et al., 2008) (Figs. 9d& e) peaks
show possible NW–SE, EW, and NE–SW as common trends. These trends
bound the major anomalies A, B, and C as shown in the RTP map (Fig. 5).
The trend of NE–SW is a significant pre-Cambrian pattern with right-lateral
movement. The rejuvenation is associated with a higher rate of northward
movement in Arabia than in Africa (Said, 1990). The Erythrean faults fit
with the NW–SE trend (Said, 1962) and the trend of the Suez Gulf (Youssef,
1968). During the Hercynian and Alpine orogenies, this trend was thought
to be an old trend that was periodically renewed. The Tethyan trend, the
E–W trend, is Egypt’s Precambrian basement’s oldest tectonic trend. The
analytic signal on the other hand shows partially similar trends. Analysis
of the tilt derivative map (Fig. 9e) shows possible basinal areas formed at
the downthrown side of the proposed faults/contacts. Both the analytical
signal map AS (Fig. 9f) and the tilt derivative map TD (Fig. 9e) were car-
ried out to emphasize the short-wavelength magnetic anomalies which are
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Fig. 9. The spatial filters were applied to the Gara area. The dx (a), dy (b), and dz
(c) gradient filters, and variant filters generalized derivative (d), tilt derivative (e) and
analytic signal (f).

mostly due to near-surface targets. Moreover, the AS map assisted to trace
effectively magnetic anomaly trends and patterns along their strike. The
detected basins constitute a large volume of non-magnetic sediments that
form a suitable location for groundwater accumulations and flow.

Magnetic tomography shows regional variations in the subsurface mag-
netic susceptibilities that may be separated by a system of faults as shown in
Figs. 10 and 11. Along profile P1, Fig. 10, the inversion shows a low mag-
netic anomaly is underlying the Gara lake, and bounded by western and
eastern high magnetic anomaly zones. Two faults F1 and F2 control this
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Fig. 10. Magnetic tomography across profile P1.

Fig. 11. Magnetic tomography across profile P2.

structural pattern. Similarly, inversion along profile P2 shows a southern
high magnetic anomaly zone separated from the northern low susceptibility
zone by a fault F1. Toward the north, the relative magnetic susceptibility
decrease. These zones of high magnetic susceptibility may be related par-
tially to the glauconitic sand with iron oxides concretions exposed at Naqb
Al-Ahmer (southwest Gara lake, Fig. 3f) and may be extended with con-
siderable concentrations at the subsurface. Particularly this high magnetic
anomaly may reflect economic iron ore concentration in this zone.

The evaluation of the Geoelectric profiles across GO, on the other hand,
reveals that Gara’s common calculated subsurface resistivity model consists
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of six major resistivity layers. In general, they are represented by the four
geoelectric cross-section profiles A–A’, B–B’, C–C’, and D–D’ (Figs. 12 to
15) and described spatially as follows:

1) The first layer (Figs. 12 to 15) depicts a Wadi Fill-deposit surface over-
burden layer with true resistivity values ranging from 3.6 to 27390 Ω.m,
which correlates to alluvium deposits of limestone, sandstone, and clay.
While the thickness of this layer ranges between 0.4 to 8.7 m. This layer
is observed in the four profiles along the GO area. VESs (13, 14, 16,
and 17) are close to the Gara lake and contain sabkha deposits (silt,
sand, clay, and salt) due to lake evaporation. These are mixed with the
surface deposits (slats, sandstone, clay, and limestone) and measured as
highly conducting layers. Moreover, it will affect the induced electric en-
ergy pulsed within the subsurface and force the electric current to move
horizontally within the highly conducted layer, consequently, the energy
will travel vertically a few meters in the subsurface. In sections (A–A’,
B–B’, Figs. 12 and 13) the discontinuity of the geoelectrical indicates a
presence of a fault located between VESs (7, 16 and 7, 9).

2) The second layer represents a subsurface overburden layer of dry sand-
stone with some clay deposits (clayey sandstone). The true resistivity
values range between 1.9 to 65 Ω.m, which is comparable to sandstone
and clay. The layer’s thickness ranges from 1.6 to 24.8 m and is con-
stantly defined in the four profiles that develop all along GO area.

The highest resistivity value is 65 Ω.m, indicating less clay and more
sandstone, while low resistivity values (1.9 Ω.m) indicate less sandstone
and more clay since clay is more conductive than the dry sand so it has
low resistivity. The red dashed lines in profiles (B–B’, C–C’ Figs. 13
and 14) corresponding VESs (14 and 17) represents a continuity of these
layer from the previous VESs. This agrees with the drilled well within
the area projected on the same profile.

3) The third layer represents a subsurface overburden layer of wet sandstone
and fractures limestone deposits (calcareous sandstone) due to medium
range values of resistivity within this layer with true resistivity values
ranging between 1 to 39 Ω.m which is comparable to wet sandstone
and fractured limestone (calcareous sandstone). The thickness varies
from 18.6 to 47.5 m and it is continually observed in the four profiles.
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Fig. 12. Geoelectric cross-section A–A’.

Fig. 13. Geoelectric cross-section B–B’.

The highest resistivity value (39 Ω.m) is observed below VES 11 that
is away from the lake, so the amount of salinity and seepage is low and
started to increase toward the Gara Lake. The lowest recorded resistivity
values of this layer range from 1 to 10 Ω.m in all the other VESs (12, 13,
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Fig. 14. Geoelectric cross-section C–C’.

Fig. 15. Geoelectric cross-section D–D’.

14, 16, 17, and 18) representing a high concentration of sandstone and
fractured limestone (calcareous sandstone).

4) The fourth layer represents a subsurface overburden layer of sticky clay
with true resistivity values ranging between 0.9 to 10 Ω.m indicating
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a highly clay content. The thickness varies from 22.4 to 51.1 m. The
maximum resistivities vary from 4 to 10 Ω.m. are recorded at VESs 7, 8,
9, 11, 12, and 18. Those are away from the lake, so the amount of salinity
and seepage is less and started to increase when moving in all directed
toward the Gara Lake. The low resistivity values ranged between 0.9 and
4 Ω.m under all the other VESs (13, 14, 16, and 17) represented highly
amount of saturation of the seepage of the lake. The red dashed lines
in profiles (B–B’, C–C’, Figs. 13 and 14) below VESs (14 and 17) show
the continuity of these layers from the previous VESs. This is confirmed
from the well data. They are not observed clearly due to the masking of
the energy dissipated horizontally within the highly conducted layer.

5) The fifth layer represents a subsurface overburden layer of fractured
dolomitic limestone with true resistivity values varying between 1.9 and
76 Ω.m. This corresponds to dolomitic limestone that is cemented with
some clay. The thickness varies from 47.2 to 68.4 m as observed in all
profiles. The resistivity values vary from 11.9 to 76 Ω.m as measured in
VESs 7, 8, 9, 11, 12, and 18. In the later VES, VES 18, which is away
from the lake, the amount of clay that is cemented within it and seep-
age are less around them and started to increase toward the Gara Lake.
The low resistivity values ranged from 1.9 – 11.9 Ω.m under all VESs
(13, 14, 16, and 17) represented the presence of cemented clay and the
high amount of saturation of seepage from the lake with the fractures.
The red dashed lines found in profile (B–B’, C–C’, Figs. 13 and 14) and
below VESs (14 and 17) represents a continuity of these layer from the
previous VESs and also confirmed with the well within the area on the
same profile.

6) The sixth and last layer represents a subsurface overburden layer of sand-
stone intercalated with some clay (clayey sandstone) with true resistivity
values ranging between 0.1 and 43 Ω.m which is sandstone intercalated
with some clay (clayey sandstone). The top of this layer is continuously
observed in the four profiles along the GO area.

The high resistivity values vary from 12 to 43 Ω.m. These are shown in
VESs 7, 8, 9, 11, 12, and 18, hence, the amount of clay that is intercalated
within it and the seepage of the lake is less around them and started to
increase when moving in all directions toward the Gara Lake. The low
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values of resistivity ranged from 0.1 to 12 Ω.m under VESs (13, 14, 16, and
17) denoted the presence of intercalated clay and high amount of saturation
of seepage brackish water from the lake within the porous.

After correlating these sections with the Upper Zone of Gara (drilled
deep well (W-7)) and field observations in the studied area, the geoelectrical
profiles confirm that:

1) The 1st layer represents a surface overburden layer of Wadi fill-deposits
(alluvium deposits of limestone, sandstone, and clay).

2) The 2nd layer is correlated and composed of sandstone with clay (clayey
sandstone).

3) The 3rd layer is correlated and composed of wet sandstone and fracture
limestone (calcareous sandstone), this fractured and porous sandstone is
filled with brackish water.

4) The 4th layer is correlated and composed of sticky clay that is affected
with brackish water due to seepage on VESs that surrounded the lake.

5) The 5th layer is correlated and composed of fractured dolomitic limestone
that is cemented with some clay that is affected with brackish water
due to seepage on VESs that surrounded the lake. It’s important to
mention that, the brackish to slightly saltwater that filled the fractures
of carbonate Miocene rocks (limestone or dolomite) affects the resistivity
values and causes the reduction of these resistivities. The condition of
this layer represents a possible shallow aquifer in the region.

6) The 6th layer is associated and comprised of sandstone intercalated with
some clay (clayey sandstone) that is affected with brackish water due to
seepage.

Shallow aquifer fractured dolomitic limestone of the 5th layer

To examine the conditions of the 5th layer fractured dolomitic limestone,
depth and resistivity maps were constructed.

The iso-contour depth map of the possible shallow aquifer in the frac-
tured dolomitic limestone layer (Fig. 16a & Table 2) gives the depth to the
wet layer across the area. The depth varies between 54 and 102 m (Fig. 16a).
It shows an increase of depth toward (northern, central, and SW). While
depth decreased toward the (eastern and SW) part. On the other hand, the
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Fig. 16. Depth (a), isopach (b), and resistivity (c) maps of expected shallow aquifer in
fractured dolomitic limestone of the 5th layer.

Table 2. Depth, thickness, and true resistivity of the possible shallow aquifer in the
fractured dolomitic limestone layer.

VES depth to 2nd aquifer thickness true resistivity
No. 5th layer (m) (m) (Ω.m)

7 83.33 65.49 31

8 102.51 68.4 36

9 82.9 60.9 51

11 90.9 67.2 76

12 85.7 49.7 11.9

13 87.3 47.2 6.8

14 54.7 47.2 1.9

16 72.5 76.1 5.7

17 72.8 76.1 4

isopach map of the aquifer gives a thickness of the wet layer across the area.
The thickness varies between 40 and 73 m (Fig. 16b). It shows increasing in
thickness toward (northern, western, southern, and SW) parts and reaches
a maximum thickness that occurred at VESs (16 & 17) at the Southern
part. While thickness decreased toward (eastern, and NE) parts and reach
to minimum thickness occurred toward VESs (12, 13, and 14).

The iso-true resistivity map, on the other hand, was generated at an
interval of (6 Ω.m) and is shown in Fig. 16c. It shows the resistivity distri-
bution across the study area which varies from a very small value (0.5 Ω.m)
to (70 Ω.m) since this very small value (0.5 Ω.m) due to the invasion of lake
salinity with the high effect of brackish to saline water. The resistivity is
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highly increased at each of (northern, and SW) parts of the area at VESs
(7, 8, 9, 11, and 18) while it attains a maximum at VES 11 as it’s away
from the lake effect. On the other hand, it decreases at VESs (12, 13, 14,
16, and 17) toward eastern–SE parts. The resistivity values on this map
indicate the wet fractured dolomitic limestone layer if filled with brackish
to saline water.

Estimation and interpretation of Dar Zarouk parameters (DZ) for
dolomitic limestone aquifer of 5th layer

The DZ parameters are calculated for GO for the dolomitic limestone aquifer
of the 5th layer. The following represents the results of this analysis:

a) As indicated in Table 3 and Fig. 17a, total longitudinal unit conductance
(Sc), was calculated by integrating resistivity data from 10 (VESs) with
an interval of 0.5 Siemens units to generate an Sc contour map. The
high Sc values indicate low aquifer transmissivity with Sc values, varying
from 0.003 to 8 S. The Sc variation from one place to another has been
utilized to describe changes in the overall thickness of low resistivity ma-
terials in a qualitative sense (Henriet, 1976; Zohdy, 1989). An increase
in the value of longitudinal conductance may correspond to an increase
in clay content and thus, a reduction in transmissivity. The clay over-
burden which gives relatively high longitudinal conductance protects the
underlying aquifer. The lowest values of Sc could be noticed in Fig. 17a
at the northern, southern, and western parts. In addition to the mid-
dle part of the eastern side while highly increased at the central part,
based on Oteri (1981) longitudinal conductance decreased may suggest
decreased infiltration of seawater or decrease in water salinity (low clay
content). The increase of the longitudinal conductance behaviour might
thus be regarded as a reduction of the transmissivity.

b) Total transverse resistance (Tr) is used to investigate variations in the
thickness of high resistivity material as well as their transverse resis-
tance (Zohdy, 1989). Increasing Tr values are indicative of an increase
in the thickness of the high resistivity materials. as shown in Table 3
and Fig. 17b, a contour map of Tr values of the study area was produced
by using the resistivity data of 10 (VESs) sounding stations with a con-
tour interval of 200000 Ω.m2 unit. Homogeneity in the total transverse
resistance could be explained throughout the study area, except at the
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eastern and south-eastern parts where an anomalous increase in the (Tr)
could be observed. Based on Niwas and Singhal (1981), there is a di-
rect relationship between transmissivity and transverse resistance. They
stated that the chemical quality of the groundwater within the evaluated
zone remains relatively uniform. As a result, the present Tr map reveals
a homogeneous distribution of electrical transmissivity across the study
region, except the above-mentioned sections with high Tr values. The
greatest transverse resistance value most likely represents the highest
auriferous zone transmissivity values (Kumar et al., 2001; de Oliveira
Braga et al., 2006). So the eastern and south-eastern parts of the area
have good transmissivity because of the high value of Tr values as shown
in the map.

c) The longitudinal resistivity (ρL) and the average transverse resistivity
(ρt) are constructed by combining the longitudinal and transverse resis-
tivity values of the 10 (VESs) geoelectrical soundings collected in the
research region (Figs. 17c & 17d). The contour interval of this map is
2000 Ω.m as shown in Figs. 6c & 16d both of (ρL) and (ρt) are the same
distribution that indicates a homogeneous distribution.

d) Anisotropy (λ) as demonstrated in Table 3 has root mean square resis-
tivity and is dimensionless. It reflects the electrical anisotropy’s areal
distribution over the research region. For altering electric resistivity in
both horizontal and vertical directions, electric anisotropy was deter-
mined. In most geologic settings, the anisotropy coefficient is 1 and
does not exceed 2 (Zohdy et al., 1974). The anisotropic factor is in-
creased by a compact and complicated rock at shallow depth (Keller
and Frischknecht, 1966). The 1.0 anisotropy regions with 10 VESs in
Table 3 are categorized as high groundwater prospects (high porosity
and permeability) (Jagadeeswara Rao et al., 2003). The variation of
the isotropic layers (where anisotropic = 1.0) might become a hetero-
geneous and anisotropic equivalent structure has been well established.
As shown in Table 3 the values of anisotropy λ = 1, which mean it is
homogenous.

Contour maps of Dar-Zarouk parameters for dolomitic limestone
aquifer of 5th layer that’s is more interested

The 2D analysis of DZ parameters to examine the spatial distributions of
the aquifer parameters is demonstrated as follows:
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Table 3. Values of Dar-Zarrouk (DZ) parameters. The total transverse unit resistance
(Tr), total longitudinal unit conductance (Sc), and longitudinal resistivity (ρL) at all
10 (VESs) in a fully examined region with depth (H) to the aquifer, average transverse
resistivity (ρt), and anisotropy (λ).

Parameters of expected shallow aquifer fractured dolomitic limestone of the 5th layer

VES H Sc Tr ρL ρt λ layer re- electric con- TDS
No. (m) (siemens) (Ω.m2) (Ω.m) (Ω.m) sistivity ductivityEC (mg/l)

(Ω.m) (dS/m)

7 148.82 2.480 8929.2 60 60 1 31 0.322 206.451

8 170.91 0.107 270550.53 1583 1583 1 36 0.277 177.777

9 143.8 1.409 14667.6 102 102 1 51 0.196 125.490

11 158.1 0.952 26244.6 166 166 1 76 0.131 84.210

12 135.4 3.582 5118.12 37.8 37.8 1 11.9 0.840 537.815

13 134.5 4.574 3954.3 29.4 29.4 1 6.8 1.470 941.176

14 101.9 0.003 2791733.92 27396.8 27396.8 1 1.9 5.263 3368.421

16 148.6 7.821 2823.4 19 19 1 5.7 1.754 1122.807

17 148.9 0.760 29154.62 195.8 195.8 1 4 2.5 1600

18 141.4 2.0111 9940.42 70.3 70.3 1 45.9 0.217 139.433

Contour maps of apparent resistivities at constant AB/2

The present study’s field measurement results are provided as a qualitative
interpretation (maps of iso-apparent resistivity). Five apparent resistivity
contour maps are constructed at AB/2 = 10, 100, 200, 300, and 400 m. Each
spacing option is determined by the variation among them. The variations
in electrical resistivity on the horizontal scale are depicted by these maps,
at depths of 4, 40, 80, 120, and 160 meters, respectively (Roy and Elliot,
1981).

a) At AB/2 = 10 m, the map of iso-apparent resistivity is exhibited (Fig.
18a). At a depth of about 4 meters, this map illustrates the interchange
of lateral variation across a horizontal plane perspective. It illustrates
relatively high apparent resistivity values ranging from (11 – 18 Ω.m) at
VESs (20 and 44) indicating that its wadi fill-deposits with less sabkha
content and away slightly from the effect of lake salinity. While it has
low apparent resistivity values ranging from (1 to 20 Ω.m), at VESs
(7, 11, 12, 13, 14, 16, 17, and 18) indicate that the sabkha and lake
salinity are the most dominant and controlling constituent of the wadi
fill deposits.
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Fig. 17. Contour maps of the Sc (a), Tr (b), ρL (c) , and ρt (d). Location of geoelectrical
soundings are shown as inverted black triangle.

b) At AB/2 = 100 m, the map of iso-apparent resistivity is exhibited (Fig.
18b). At a depth of about 40 meters, this map illustrates the interchange
of lateral variation across a horizontal plane perspective. It shows rel-
atively high apparent resistivity values ranging from (10 – 18 Ω.m) at
the surrounding VESs (7, 8, 9, 11, and 18) in northern, western, NW,
NE, and SW parts indicate that a high amount of filling sediments that’s
indicated porous medium (clayey sandstone) based on the geological ex-
planation from the geologic well, with slightly brackish water effect from
the lake or less salinity effect. In another way, there is an increase in
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apparent resistivity towards the sediments, indicating that the invasion
of lake water in these areas is decreasing at (northern, western, NW,
NE, and SW) parts.
The electric resistivity values ranged from (2 – 8 Ω.m) at VESs (12,

13, 14, 16, and 17) decrease from central to the eastern, southern, and
SE parts towards the Gara lake indicate that the most more effect of
lake salinity.

c) At AB/2 = 200, and 300 m, the map of iso-apparent resistivity is ex-
hibited (Figs. 18c, and d). These two maps explain the lateral variation
exchange over a horizontal plane view at a depth of around 80 to 120
meters they are near to similarity due to approximately the invasion
within the same layer (dolomitic fracture limestone) based on the geo-
logical explanation from the geologic well. they explain relatively high
apparent resistivity values ranging from (11 – 25 Ω.m) at the surround-
ing VESs (7, 8, 9, 11, and 18) in northern, western, NW, NE, and SW
parts indicate that a high amount of filling sediments of dolomitic frac-
ture limestone that’s indicated porous medium with slightly brackish
water effect. That means apparent resistivity increases towards the sed-
iments at (northern, western, NW, NE, and SW) parts.
The electric resistivity values ranged from (1 – 9 Ω.m) at VESs (12,

13, 14, 16, and 17) that decrease from central to the eastern, southern,
and SE parts towards the Gara lake indicate that the most more effect
of lake salinity and filled with brackish to slightly saltwater.

d) At AB/2 = 400 m, the map of iso-apparent resistivity is exhibited (Fig.
18e). At a depth of about 160 meters, this map illustrates the inter-
change of lateral variation across a horizontal plane perspective. It rep-
resents (clayey sandstone) based on the geological explanation from the
geologic well. They explain relatively high apparent resistivity values
ranging from 11 to 25 Ω.m at the surrounding VESs (7, 8, 9, 11, and
18) in Northern, Western, NW, NE, and SW parts indicate that a high
amount of filling sediments of dolomitic fracture limestone that’s indi-
cated porous medium with slightly brackish water effect. That means
apparent resistivity increases towards the sediments at northern, west-
ern, NW, NE, and SW parts.
The electric resistivity values ranged from 1 to 9 Ω.m at VESs (12,

13, 14, 16, and 17) that decrease from central to the eastern, southern,
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and SE parts towards the Gara lake indicate that the most more effect
of lake salinity and filled with brackish to slightly saltwater.

Fig. 18. Contour maps of apparent resistivities at constant AB/2 = 10 (a), 100 (b),
200 (c), 300 (d) and 400 m (e).

The relation between true resistivity and groundwater salinity
(TDS)

The salinity of groundwater total dissolved solids (TDS) at various depths
can be predicted utilizing relationships based on measured VESs, much
quicker than analysis of water samples and traditional digging methods
(Attwa et al., 2016). According to Iyasele et al. (2015), as well as Hem
(1970), the combination of total dissolved solids (TDS) and electric con-
ductivity (EC) is as follows:

Total dissolved solids (TDS)(ppm) = 640 ∗ EC (dS/m) , (7)

where ρw = 1/EC. The electric groundwater resistivity (Ω.m) is denoted by
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ρw, while the electric groundwater conductivity (dS/m) is denoted by EC
(siemens/m = 10 ∗deci-siemens/m).

Figure 19a and Table 4 show the salinity (TDS of aquifer water) in the
research region. The results were computed from the calculated VES resis-
tivities. It is found that the maximum groundwater salinity (TDS) is less
than 600 ppm in all VESs except VESs (13, 14, 16, and 17) where the TDS
values exceed 600 ppm due to being close to the Gara lake. On the other
hand, the lowest measured value of TDS was (less than 100 ppm) at VES
11 toward the South Western part of the research region. The maximum
recorded value is (3368 ppm) at VES 14 toward the eastern part. Based on
the salinity values determined by the aquifer and evaluated salinity hazard
through TDS and EC (Iyasele et al., 2015; Carrow and Duncan, 1998) as
given in Table 4 the aquifer can be described as fresh, marginal, and slightly
brackish to saline water.

v Fig. 19. Salinity (TDS) (a), and true resistivity (b), maps of the study area, estimated
via the results of geoelectrical sounding (VES).

Figure 20a exhibits the salinity (TDS) of water samples covered by field
analysis and its distributions; it shows the TDS increase toward the eastern
and south-eastern parts. While Figure 20b shows TDS estimated from the
geoelectrical sounding measurement (VES), it reveals the same purpose of
increment TDS toward the eastern, southern, and south-eastern parts.
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Table 4. TDS and EC-based guidelines for assessing overall salinity hazards in variable
quality irrigation water (Iyasele et al., 2015; Carrow et al., 1998).

salinity EC TDS description and management

hazard class (dS/m) (ppm) use requirements

low
(fresh)

<0.75 <500 drinking and all
irrigation

no detrimental
effects are expected

medium
(marginal)

0.75−1.5 500−1000 most irrigation,
adverse effects on
ecosystems become
apparent

moderate leaching
to prevent salt
accumulation

high
(brackish)

1.5−3.0 1000−2000 irrigation of certain
crops only; useful for
most stock

turf species/cultivar
selection, good
irrigation, leaching,
drainage

very high
(saline)

>3.00 >2000 useful for most
livestock

most salt-tolerant
cultivars, excellent
drainage, frequent
leaching, intensive
management

Fig. 20. The maps of salinity (TDS) of water samples measured in field (a) and TDS that
were calculated from the geoelectrical sounding measurement (VES), (b).
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3. Conclusion

Integrated interpretation of aeromagnetics and electric measurements could
result in a valuable tool for the assessment of groundwater aquifers in hyper-
arid and arid environments. In Gara Oasis, the shallow (Miocene carbon-
ate), as well as the deep (Nubians sandstone) aquifers, are structurally con-
trolled by a complex fault/magnetic contact system, evident from various
filters that have been applied to the aeromagnetic data and the available
drilling information. These contact trends northwest–southeast (NW–SE),
east–west (E–W), and northeast–southwest (NE–SW) as common trends
generated from the total derivative and tilt maps. The consequence of
these trends is that subsurface water flow is directly controlled in all direc-
tions. The near-surface structurally controlled shallow Miocene carbonate
groundwater aquifer described in the study region by dolomitic limestone
(5th layer) is saturated by fresh to slightly brackish water. Six lithological
layers that were successfully delineated by VESs conducted by the GO may
be categorized into overloaded surface layers. The depth of the Miocene
aquifer was shallow and ranged from 80 to 130 meters from sea level. Based
on the combined aeromagnetic and geoelectrical investigations, the water
quality derived from geophysical investigations and wells range from fresh
to slightly brackish. Slightly brackish groundwater dominates the region,
according to geoelectric cross-sections and resistivity values, while freshwa-
ter is found in isolated patches. The results demonstrate that the upper
northern central portion of the GO, the southern central portion, and the
western side of the GO have the most distinct aquifer possibilities that will
demand future improvement strategies. The study may be applied to other
depressions of similar conditions to extract the controlling parameters and
sustainability of the different groundwater aquifers.
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