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Abstract: Versus the theory of fully stochastically mechanism of geomagnetic jerks based

on the buoyant force driven Quasi-Geostrophic (QG) dynamo, the torsional waves in re-

alistic condition of the Earth’s core evolve in the intradecadal time scales. Geostrophic

slow MC (& Rossby) waves as entanglement of inertial and Alfvén waves are the source

of 6& 9 year geomagnetic secular variations inferred with intradecadal variations in the

Earth’s rotation rate defined by length of day. From MHD equations in the Earth’s liquid

metal core, we find a suit of equations equivalent with Hall-MHD in plasma physics with

variables and coefficients defined merely in the system of Earth’s core dynamo. On reduc-

tive perturbation theory, it is deduced derivative nonlinear Schrödinger (DNLS) equation

which describes torsional Alfvén waves. In nonlinearity, Modulational and decay instabil-

ities of torsional Alfvén waves in the Earth’s core maintain and control occurrences of the

geomagnetic jerks and relevant LODs via perturbation theory. Instability induced from a

small amplitude perturbation of the plane Alfvén wave can lead to an exponential growth

or decay of nonlinear structures to maintain large amplitude turbulences, reasonable to

produce the geomagnetic jerks and relevant LODs. Then interplanetary tiny electromag-

netic inductions on the Earth’s core dynamo via perturbation theory in nonlinearity can

produce the jerks and relevant LODs. Also the first-order perturbation of 6-yr Alfvén

wave for modulational instability yields to the localized wave-packets called Kuznetsov-

Ma breather coincided to 14-yr periodicity for jerk’s reports in the years 1902, 1916, 1930,

1944, 1958, 1972, 1986, 2000, 2014. We don’t deny the random turbulences but we find

that the random driven jerks have lower energies.
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1. Introduction

As defined in the Treatise on Geophysics (Olson, 2015):

“Geomagnetic jerks are sudden changes in the otherwise smoothly changing
secular variation of the geomagnetic field (Mandea et al., 2000) and varia-
tions in the Earth’s rotation (defined in terms of length of day) arise from
external tidal torques, or from an exchange of angular momentum between
the solid Earth and its fluid components. The occurrence of geomagnetic
jerks appears to be correlated with sudden changes in the time rate of change
of LOD (e.g. Holme and de Viron, 2005; Mandea et al., 2010; Olsen and
Mandea, 2008),. . . ”

Geomagnetic jerks are believed to be caused by changes in the flow patterns
of the liquid outer core of the Earth (Mandea et al., 2000) as for instance
carried by hydromagnetic waves such as torsional oscillations (Braginsky,
1984; Bloxham et al., 2002; De Michelis et al., 2005) which our mechanism
here is following it.

Newly Aubert and Finlay (2019) on the numerical simulations of the core
dynamo (Aubert et al., 2017; Aubert, 2018; Wicht and Christensen, 2010;
Teed et al., 2014; Schaeffer et al., 2017) have claimed to reproduce the
characteristics of well documented jerks on the fully chaotic processes. By
monitoring the control parameters, Aubert and Finlay (2019) have found
that running the simulation along the thousands years results stochastically
arrangements of the impulses concerning to relevant geomagnetic acceler-
ation so that the recurrence time is longer for larger energies on a scaling
law. In these simulations (Aubert et al., 2017; Aubert, 2018), the jerks are
derived theoretically by quasi-geostrophic (QG) Alfvén waves emitted in-
side the outer core and focusing at the core surface as noted by Aubert and
Finlay (2019) that in their Midpath model sequence, a localized, intense
and temporally alternating pulse of azimuthal flow acceleration is observed
in the vicinity of the jerk time.

The theory claims geomagnetic jerks sourced by density anomaly in the
outer core (Aubert and Finlay, 2019) that:
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“The source of this perturbation in the simulation can be traced back to a
sudden buoyancy release from the tip of an isolated density anomaly plume
at mid-depth in the core 25 years before the event.”

Strongly Aubert and Finlay (2019) have based their mechanism on the
assumption that the QG dynamics is dominant in the Earth’s outer core
referring to the T −` regime diagram (Schaeffer, 2015) for turbulence in the
Earth’s core.

Aubert and Finlay have proposed a mechanism for origin of the jerks
on the buoyancy force that arises from small variations of density ρ, writ-
ten using a codensity c which is completely chaotic process whereas here
we refer in our mechanism to the non-chaotic geostrophic torsional waves.
Aubert and Finlay have inferred a short patch of simulated occurrences
with real geomagnetic jerks among the years 2008–2016 such as the 2014
event whereas that at the year 2018 we have published the interplanetary
external driven geomagnetic jerks (Lutephy, 2018) and correlation between
Jovian alignments and a family of geomagnetic jerks in clear whether size
or phase.

Here we consider reductive perturbation theory (Washimi and Taniuti,
1966; Kakutani et al., 1968; Taniuti and Wei, 1968; Taniuti and Yajima,
1969) to show nonlinearity of the torsional waves and we find a relation
between the space path parameter ε in the geodynamo simulations and
small parameter ε applied in the expansion series of the perturbation the-
ory. We find the derivative nonlinear Schrödinger (DNLS) equation which
allows torsional waves to be possible in the regions where QG waves are
only possible in linearity for codensity dependency. Derivative nonlinear
Schrödinger (DNLS) equation also is reduced in long wave perturbations to
nonlinear Schrödinger equation (NLSE) first derived independently in hy-
drodynamics by Benney and Newell in 1967 for wave packet envelopes and
longtime behavior of weakly interacting waves (Benney and Newell, 1967)
and in 1968 by Zakharov for deep-water waves using a spectral method
(Zakharov, 1968).

For confrontation of analytical studies and numerical simulations it is
argued that instead extrapolation of the diagrams in geodynamo simula-
tions to the end-path model (Aubert and Finlay, 2019), for nonlinearity of
the system it needs the program to be continued up to end-path actually.
We show here correlation of the Alfvénic perturbations in nonlinearity with
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geomagnetic jerks and relevant LODs. We see that modulational and decay
instability of Alfvén waves in the outer core is the center of mechanism of
geomagnetic jerks and relevant LODs.

2. The discrepancies of the numerical simulation of the jerks

The generation/formation of geomagnetic jerks according to the computer
simulations is on the MHD model in liquid metal core. But yet there are in-
consistencies with realistic conditions of the Earth core which we see these
discrepancies even in the quotations by Aubert and Finlay themselves as
noted by Aubert and Finlay (2019) that:

“According to the mechanism described here, the duration and alternation
time scale of jerk events are expected to scale with τA, which is about seven
times shorter in Earth’s core (Gillet al., 2010) than in our Midpath simula-
tion. (Supplementary Table 1). Yet the observed geomagnetic acceleration
changes are only two or three times faster than those simulated by the Mid-
path model. This discrepancy is probably related to the limited temporal
resolution of geomagnetic field models, which prevents the true, potentially
sub-annual variations associated with jerks from being retrieved at present.”

Another discrepancy is secular acceleration pulses of alternating sign as
noted by Aubert and Finlay (2019) that:

“...another difference involves the sequence of secular acceleration pulses of
alternating sign that has been observed in relation with recent jerks (Figs. 1c
and 2a). Such features can be explained in our models by the arrival of suc-
cessive quasi-geostrophic Alfvén wavefronts (Figs. 1d and 2c). However, in
the simulation presented in detail here, we only see two significantly weaker
jerks at (−6 yr and + 6 yr, Fig. 1d) on each side of the main jerk. This
difference is a consequence of the wave damping factor, which also weak in
the Midpath model (as evidenced by the ratio τA/τη ≈ 10−4) is still seven
times stronger than expected in Earth’s core.”

Other discrepancy is related to the scaling law of simulation as noted by
Aubert and Finlay (2019) that:

“The model outputs follow scaling laws (Aubert et al., 2017) depending on
ε that also closely approach the conditions expected in Earth’s core as we
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progress along the path (Supplementary Table 1). Once the magnetic dif-
fusion time τη = D2/η is set to an Earth-like value (see Rescaling sec-
tion), the end of path simultaneously matches the Earth’s core rotational
time τΩ = 2π/Ω, convective overturn time τU = D/U , and Alfvén time
τA =

√
ρµD/B (here B is the dynamo-generated magnetic field in the fluid

shell). This confirms the continuous physical progression of our suite of
models towards Earth’s core conditions.”

Then simulations of the geodynamo don’t run on a fixed space path param-
eter but the end-path model is more matched with decadal and intradecadal
recurrences as confirmed byAubert and Finlay (2019) correlated to the ref-
erences (Brown et al., 2013; Finlay et al., 2016).

Then for agreement with real jerks, the geodynamo simulations need an
extended domain of models with scaling law. However the preferred model
is considered by Aubert and Finlay at the mid-path model.

These discrepancies are revealing that the assumption of mid-path model
isn’t correct and linear extrapolation to find the end-path model isn’t also
matched with reality. We use here the reductive perturbation theory on
MHD model as a cause for such a discrepancy for mid-path model assump-
tion in simulations of the core dynamo. The realistic end-path model seems
matched with analytical results, of course not via virtual extrapolation but
the end-path should be processed actually. The agreement of a few numbers
of consequent simulated impulses with real jerks in a short interval of time
may be a selection effect, where along the thousands years we have thou-
sands variant arrangements of the simulated impulses; as noted by Aubert
and Finlay (2019) in a discrepancy that:

“One limitation of the paper is that theory model does not necessarily fit with
geomagnetic jerks recorded in earlier periods, like the one that took place in
1969, for example.”

Also as noted by Aubert and Finlay (2019):

“The energy concentration mechanism can be understood by noting that
quasi-geostrophic Alfvén wavefronts are both guided along, and bounded by,
a strongly heterogeneous distribution of magnetic field lines (Duan et al.,
2018).”

But inversely, heterogeneous magnetic field will break the long Alfvén waves.
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Also for a long Alfvén wave comparable to the width of the outer core, the
scale of the concentration event should be larger than the length of wave
whereas Aubert and Finlay (2019) in their interpretations speak out about
a local anomaly in the density.

3. Slow MC (& Rossby) waves as the source of fast in-
tradecadal geomagnetic secular variations

The Earth’s liquid metal core is a medium to produce the Alfvén waves on
the electromagnetism and hydrodynamics (Alfvén, 1942). The experimental
confirmation of Alfvén wave was found several years later in studies of waves
in liquid mercury (Lundquist, 1949). Alfvén waves arise in a liquid metal
permeated by a magnetic field because the Lorentz force tends to oppose
the curvature of magnetic field lines. In a rotating system, such as planetary
core, the Coriolis force inhibits motions that vary along the rotation axis
which is called the Proudman-Taylor theorem.

In a sphere, axisymmetric motions that are purely azimuthal and in-
variant along the rotation axis obey Proudman-Taylor’s constraint in which
called geostrophic motions. Geostrophic Alfvén waves are thus favored in
a rotating system (Lehnert 1954; Braginsky, 1970; Jault, 2008; Jault and
Finlay, 2015). They are called also torsional Alfvén waves (Schaeffer et
al., 2012). When the Earth’s relative rotation inhibits Alfvén waves, it is
possible geostrophic torsional waves to be driven by balance between the
Coriolis and Lorentz forces (Cardin and Olson, 2015), observationally de-
tected in the Earth’s core (Gillet et al., 2010).

On extended version of a lecture “Waves in the presence of magnetic
field, rotation and convection” by Christopher C. Finlay given during the
August 2007 (Cardin and Cugliandolo, 2008), we continue here mathematics
of the torsional Alfvén waves in the Earth’s liquid core. The Alfvén wave
equation is obtained as:

∂2ζ

∂t2
=

1

ρµ
(B0 · ∇)2 ζ , (1)

where the fluid velocity is defined by ζ = ∇× u.
The term on the right hand side arises from the restoring force caused

by the stretching of magnetic field lines.
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Substituting plane wave solution of the form ζ = Re
(
ζ̂ei(k·r−ω t)

)
in

Eq. (1), the dispersion relation for angular frequency is deduced as:

ω = ± vA
(
k · B̂0

)
, (2)

where B̂0 = B0/ |B0| and vA = B0/
√
ρ0µ0 is the Alfvén velocity.

Lehnert (1954) deduced that rapid rotation of a hydromagnetic system
leads to the splitting of Alfvén waves into the two circularly polarized,
transverse waves. He realized these so called MC waves (Magnetic Cori-
olis) would have very different timescales if the frequency of inertial waves
was much larger than that of pure Alfvén waves. To derive the MC waves
for a rapidly-rotating fluid permeated by a strong magnetic field in the ab-
sence of viscous and magnetic diffusion, the starting point is the linearized
momentum equation including Coriolis, Lorentz and inertial acceleration
and, also the frozen flux induction equation. This is known as equation for
Alfvén-Inertial wave (or magnetostrophic waves) (Acheson and Hide, 1973;
Davidson, 2001; Lehnert, 1954) which reads four solutions:

ωMC = ±Ω · k
k

±
√

(Ω · k)2
k2

+
(B0 · k)2

ρµ
, (3)

When two signs are the same polarity, then 2 fast MC waves (with Lorentz
and Coriolis forces reinforcing each other) travelling in opposite directions
are obtained. When two signs are of different polarity, 2 slow MC waves
(with Lorentz and Coriolis forces opposing each other) travelling in opposite
directions are obtained. Then superposition of two-ways propagating MC
waves yields to the oscillatory standing wave as follows:

ζ = ζ0 sin(kx) cos(ωt) , (4)

and periodicities 2π/ω concern to oscillation of standing oscillatory Alfvén
waves in the outer core. As argued previously by scientists that the possible
Alfvén waves in realistic condition of the Earth core are stationary Alfvén
waves.

For slow MC waves, dispersion relation yields to the below equation:

ωs
MC≈ ± k (B0 · k)2

2 (Ω · k) ρµ . (5)
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Coriolis force is proportional with the radius and then the excitation of MC
waves in the outer core is limited to the North Pole and South Pole spherical
cylindrical regime with lower length scales. In the regime of strong Coriolis
force, the Alfvén waves are instable for latitude variant of the Coriolis force
by distance. If we substitute l ≈

√
2× 105 m into the Eq. (5) it is deduced

8.6-yr slow MC wave.
There are two reports for intradecadal secular variation of the geomag-

netic field related to LOD changes. First so called 6-yr secular variation
initially reported by Abarca del Rio et al. (2000) and Chao et al. (2014)
and the second, newly discovered 8.6-yr (∼ 9) secular variation (Duan and
Huang, 2020).

In slow MC waves, the circularly polarized motion of velocity pertur-
bation occurs in a clockwise direction and then the Coriolis force acts in
opposite direction to the restoring Lorentz force. Then the Alfvén wave
is fainted by increment of the ambient magnetic field. Then the slow MC
wave is matched with the 8.6-yr geomagnetic secular variation. This effect
answers to the question why trend of 8.6-yr secular geomagnetic field is in-
creased while ambient magnetic field is decreasing as questioned by Duan
and Huang (2020) that:

“Why amplitude of 8.6-year oscillation in LOD shows a secular increasing
trend during the past several decades?”

On the other hand, the effect of variation of Coriolis force with latitude
in a spherical shell is essential ingredient needed for Rossby waves (Rossby,
1939; Pedlosky, 1987). Hide’s waves (Hide, 1966) arising from the magnetic
modification of Rossby waves are referred to as MC Rossby waves. Inter-
estingly it is deduced a dispersion relation for MC Rossby waves similar to
the slow MC waves but referred to the β-plane that:

β = −2Ω cos θlat
D

, (6)

and D is the outer radius of spherical shell and θlat is the latitude angle.
Dispersion relation is extracted in Hide’s β-plane model of MC Rossby

waves (Hide, 1966) as follows:

ω = − β

2k
± β

2k

√

1 +
4B2

0k
4

ρ0µ0β2
. (7)
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Then it is extracted angular velocity ωs
MC for slow MC Rossby wave sim-

ilar to the slow MC wave found in a rotating plane layer, but inversely
proportional to β rather than Ω so that:

ωs
MC(Rossby) =

B2
0k

3

µ0ρ0β
. (8)

The scale of slow MC Rossby wave is about the same for slow MC wave that
is ` ∼

√
2 × 105 m. Referring to the Hide’s (1966) analysis, the slow MC

Rossby wave has two equal components along the North-south and east-west
directions. Then equilibrium point of the MC Rossby wave is at θlat = 45◦.
The slow MC Rossby wave coincides with 6-yr geomagnetic secular variation
(Abarca del Rio et al., 2000; Chao et al, 2014). In slow MC Rossby wave,
Coriolis and Lorentz forces reinforce each other and increment of ambient
magnetic field increases the trend of slow MC Rossby wave reported and
verified previously (Duan et al., 2015; Lutephy, 2018).

4. Modulational and decay instabilities of the slow MC (&
Rossby) waves in the center of mechanism of the geomag-
netic jerks and relevant LODs

In a rotating magneto-hydrodynamics (MHD) of an incompressible fluid in
a reference frame in the center of the Earth with angular rotation rate Ω0,
using the Boussinesq approximation (e.g., Gubbins and Roberts, 1987) and
treating the density ρ as constant, except in the buoyancy force that arises
from small variations of ρ, written using a codensity c, the equations gov-
erning evolution of the velocity field u, the perturbation magnetic field b as
the composite of Navier-Stokes equation and magnetic induction equation
(Schaeffer, 2015; Teed et al., 2015) read:

∂tu+ (2Ω0 +∇× u)× u = −∇p∗ + ν∆u+ (∇× b)× b+ cg , (9.1)

∂tc+ u · ∇ (c+ C0) = κ∆c , (9.2)

∂tb = ∇× (u× b) + η∆b , (9.3)

∇ · u = 0 , (9.4)

∇ · b = 0 . (9.5)
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Noting that the Eq. (9.1) is the so-called Navier-Stokes equation and the
Eq. (9.3) is the so-called magnetic induction equation. The important fluid
properties are its kinematic viscosity ν, its magnetic diffusivity η = (µ0σ)

−1

(where σ is its conductivity), and the diffusivity of the codensity κ (the
thermal diffusivity in the case of thermal convection). p∗ is a dynamic pres-
sure (including terms that can be written as a gradient, such as centrifugal
force, hydrostatic gravity,...) and C0 is the imposed base codensity profile.

For a given length scale L, typical velocity U and magnetic field B (in
velocity units), the model is controlled by four main dimensionless param-
eters, the flux-based Rayleigh RaF = g0F/4πρΩ

3D4, Ekman E = ν/ΩD2,
Prandtl Pr = ν/κ and magnetic Prandtl Pm = ν/η numbers (Aubert and
Finlay, 2019).

Here g0, ρ, ν, κ and η are the gravity at core–mantle boundary, fluid den-
sity, viscosity and thermochemical and magnetic diffusivities (η = 1/µσc,
where µ is the fluid magnetic permeability). However from a geophysical
point of view, some are difficult to determine for the Earth’s core.

Aubert and Finlay (2019) for interpretation of the geomagnetic jerks have
referred to the density anomaly and relevant codensity c in the Eq. (9.2).
But despite the claimed theory in (Aubert and Finlay, 2019), the density
anomaly is not the source of jerks unless very less marked events may be
concerned.

We can consider complete equation of Navier-Stokes in compressible fluid
which is matched with equation of continuity (11.2) written as follows:

∂t (ρu) + (2ρΩ0)× u+ ρu · ∇u = −ρ∇p∗ + νρ∆u+ ρ (∇× b)× b . (10)

The equation of continuity is hidden in the body of complete equation of
Navier-Stokes and then in MHD of incompressible fluid described by the
Eqs. (9.1–9.5) in which the Eq. (9.1) is the Navier-Stokes equation, it is not
added independently the equation of continuity to the equations.

But here for our required results we use independently the equation of
continuity and then the Eq. (10) can be written in the version of two below
equations:

ρ∂tu+ ρ (2Ω0)× u+ ρu · ∇u = −∇p∗ + ν∆u+ (∇× b)× b , (11.1)

∂tρ+∇ · (ρu) = 0 . (11.2)
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The equations (10) and (11.1) are coincident where we consider the variable
density in an independent equation as the so called equation of continuity
beside the Eq. (11.1).

Interestingly, the equations (11.1) and (11.2) are identical mathemati-
cally with the so called Landau-Fluid model in plasmas (Passot and Sulem,
2003; 2004; Goswami et al., 2005). In reality the Landau-Fluid model is
a version of Navier-Stokes in compressible fluid in which the equation of
continuity is written in a separate equation and it is natural to write the
equation of continuity separately as a pure equation.

For geostrophic flows in which describe the balance between Coriolis force
and pressure, here included to the Lorentz force (see e.g. Greenspan, 1968)
we have:

2ρΩ0 × u = −∇p∗ . (12)

The equation (9.4) is not valid for compressible fluid (Batchelor 1967,
p. 75) whereas the Eq. (9.5) is valid as the absence of free monopoles. Then
by considering Eq. (12) for compressible fluid ultimately we find out:

∂tu+ (∇× u)× u = ν∆u+ (∇× b)× b , (13.1)

∂tρ+∇ · (ρu) = 0 , (13.2)

∂tb = ∇× (u× b) + η∆b , (13.3)

∇ · b = 0 . (13.4)

In absence of terms related to viscosity ν∆u and magnetic diffusivity η∆b,
the equations in (13.1–13.4) mathematically are the same equations of linear
MHD.

Applying ∇× on the Eq. (13.1) we deduce:

∂t (∇× u) +∇× [(∇× u)× u] = ν∆(∇× u) +∇× (∇× b)× b . (14)

We know that ζ = ∇× u and then the Eq. (14) is written as follows:

∂tζ+∇× (ζ× u) = ν∆ζ+∇× [(∇× b)× b] . (15)
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Also in torsional MC waves, the magnetic field of Alfvén wave is a vortex
aligned to the inertial vortex ξ so that torsional Alfvén waves are derived by
vortex ξ (Eq. (1)). The perturbation b is a circularly clockwise or counter
clockwise polarized magnetic vortex which mimics left-hand and right hand
circularly polarized Alfvén waves in the plasma physics under the tension
of ambient magnetic field. Then we can consider a scale coefficient ks as:

b = ksζ . (16)

Rescaling the dimensions until to obtain ks = 1 and substituting Eq. (17)
into the Eq. (16) it is deduced:

∂tb+∇× (b× u) = ν∆b+∇× ((∇× b)× b) . (17)

If we neglect the kinetic viscosity, the equation is identical mathematically
with the induction equation with Hall-effect (Passot and Sulem, 2003; 2004)
which is derived by Faraday’s law in Maxwell equations.

But here from magnetic induction Eq. (13.3) and Eq. (17) we obtain:

η∆b = ν∆b+∇× ((∇× b)× b) . (18)

Then we find out that the term (η − ν)∆b in the Eq. (18) plays mathe-
matically the role of the Hall term ∇ × ((∇× b)× b) in the outer core of
the Earth. Then magneto-hydrodynamics in Earth’s outer core produces
nonlinearity as well as the Hall term in plasma physics.

In linear MHD, we have a suit of equations included to the continuity,
force, equation of state, Ampére’s law, Faraday’s law, Ohm’s law which the
Ohm’s law in one dimensional mode is written by ∂tb − ∇ × (u× b) = 0.
In generalized Ohm’s law it is added a Hall-term ∇× ((∇× b)× b) to the
right side of the Ohm’s law which it causes linearity transferred to the non-
linearity and it is appeared instabilities reasonable to grow exponentially
the small amplitude perturbations in the plane waves. We understand that
via liquid metal MHD we arrive to similar term in the equations respon-
sible to create nonlinearity of Alfvén waves in the earth outer core. In
long-wave, weakly nonlinear scaling regime from one-dimensional magneto-
hydrodynamics (MHD) equations in the presence of Hall Effect, by reductive
perturbation theory, applying slow variables it is derived DNLS equation.
The DNLS equation was first derived by Rogister (1971), who used kinetic
theory. Its two-fluid version was subsequently derived by Mjølhus (1976)
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and Mio et al. (1976). In vanishing boundary condition (parallel propa-
gation), the DNLS equation conveniently is written as one single equation
(Spangler et al., 1985; Kennel et al., 1988; Mjølhus and Hada, 1997; Rud-
erman, 2002) that:

∂τ b− iµ ∂ξξb+ α∂ξ
(
|b|2 b

)
= 0 , (19)

where µ = ± 1
2 corresponds to left (−) and right-hand (+) polarized mode

and α = 1
4 (1− β)−1 (β is the ratio of the kinetic to the magnetic pressure).

Of course we need to notice that here the parameters are being in normal-
ized mode.

By the way if we repeat expansion of the parameters in the manner of
reductive perturbation theory, the equations (13.1, 13.2, 13.3, and 13.4) re-
sult such a derivative nonlinear Schrödinger equation in similar way of the
plasma physics with difference that the coefficients here are related to the
kinetic viscosity ν and magnetic diffusivity η.

Basic model equations for weakly nonlinear dispersive MHD waves in
plasma were derived using reductive perturbation theory (Washimi and
Taniuti, 1966; Kakutani et al., 1968; Taniuti and Wei, 1968; Taniuti and
Yajima, 1969) applying slow variables ξ and τ produced by small parameter
ε used for mathematical expansion series as:

ξ = ε (x− vA t) , (20)

τ = ε2 t . (21)

In simulation of geodynamo (Aubert et al., 2017; Aubert, 2018; Schaeffer,
2015) the control parameters follow a unidimensional path (Aubert et al.,
2017) in parameter space ε to connect conditions of previous coupled Earth
(CE) model (Aubert et al., 2013) to those of Earth’s core. A single variable
ε̃ controls four parameters through the following rules:




RaF = εRaF (CE) ,

E = εE (CE) ,

P r = 1 ,

Pm =
√
ε Pm (CE) .

(22)
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As noted by Aubert and Finlay (2019) that:

“We have shown ( Aubert et al., 2017) that parameters, that realistically de-
scribe Earth’s core conditions, can be obtained by setting ε = 10−7, which de-
fines the end of the path. Our main model cases are defined in refs. (Aubert
et al., 2017; Aubert, 2018) and in Supplementary Table 1 by the values
ε̃ = 10−2, 3.33 × 10−3, 10−3 and 3.33 × 10−4, respectively corresponding to
29%, 36%, 43% and 50% of the path (the Midpath model)”.

By MHD equations in geodynamo simulations (Aubert et al., 2017; Aubert,
2018), real variables time t and space x parallel to the magnetic field are
transferable by small parameter ε to slow variables τ and ξ so that here
we find a relation between small parameter ε in reductive perturbation ex-
pansion and space path parameter ε in the numerical simulation of the
geodynamo. If we use ε̃ instead space path parameter ε to discriminate
with small parameter ε in the reductive perturbation expansion (space path
parameter: ε̃ → ε), this relation is:

ε2 =
4
√
ε̃ . (23)

Then for Eq. (21), the Alfvén time τA is rescaled by 4
√
ε̃ so that:

τA (ε̃) = τA
(
ε̃ = 10−7

)
× 4

√
ε̃ |τA (ε̃ = 1) = 106 . (24)

Writing in the log form (X = − log (τA) , Y = log (ε̃)) yields to:

log (τA) = 2 + log (ε̃) . (25)

Substituting numerical results (Aubert and Finlay, 2019) in this logarithmic
equation we obtain a straight line as observable in the Fig. 1 and then ex-
perimental reports are verifying Eq. (23).

Then the authors of the simulation of geodynamo (Aubert et al., 2017;
Aubert, 2018; Schaeffer et al., 2017; etc.) unaware have applied the trans-
formation used in the reductive perturbation theory with small parameter
of the expansion as rescaling factor ε = 8

√
ε̃. Then we can use the space path

parameter in the manner of the slow variables used in the reductive per-
turbation theory to derive nonlinear Schrödinger equation for Alfvén wave
in the liquid metal core as well as the derivation of nonlinear Schrödinger
equation for plasma on the expansion of the parameters via small parameter

140



Contributions to Geophysics and Geodesy Vol. 52/1, 2022 (127–155)

Fig. 1. The correlation of the space path parameter with the small parameter in the
reductive perturbation theory.

εin reductive perturbation theory. Then we find out that linear extrapola-
tion of the diagrams in the simulations to the end-path model is an error
for nonlinearity of the MHD model in the Earth’s core.

The Coriolis driven inertial waves are intrinsically stable (Batchelor,
1967; Tritton, 1987). Then instability of the MC geostrophic waves is con-
trolled by instability of the magnetostrophic mode.

We see morphological identity between the circularly polarized Alfvén
waves in the plasma physics and circularly polarized torsional Alfvén waves
in the Earth’s core and then instability of the geostrophic torsional Alfvén
waves is identical with the instability of the circularly polarized Alfvén waves
in plasma physics.

Hall-MHD model for a carrier plane wave of small amplitude b0 (e.g.,
Wong and Goldstein, 1986; Kennel et al., 1988) shows that for right-hand
polarization, the instability is modulational for β>1 and of decay type for
β < 1. For left-hand polarization, the wave is stable for β > 1, while mod-
ulational and decay instabilities coexist for β < 1. Of course for β < 1 the
decay instability of the left-hand polarized Alfvén wave is weak.

Nonlinearity of the geostrophic torsional waves results instability of the
plane waves, whether modulational or decay and instabilities of the torsional
waves is reasonable for Alfvénic rouge waves and large turbulences as the
intermediate for occurrences of the geomagnetic jerks and relevant LODs.

The compressible perturbations induced in straight untwisted and non-
rotating magnetic flux tubes by weakly-nonlinear long-wavelength torsional
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waves have been discussed previously by Vasheghani Farahani et al. (2011).
Interestingly they have discussed the perturbations induced by standing
torsional waves and standing torsional waves induce growing compressible
perturbations, similarly to standing shear Alfvén waves (Tikhonchuk et al.,
1995; Verwichte et al., 1999; Litwin and Rosner, 1998) and standing kink
modes of coronal loops (Terradas and Ofman, 2004).

The perturbations in the MC (& Rossby) plane waves can be naturally
provided internally and externally. The internal small amplitude pertur-
bation is originated by different ways such as the self-focusing (Zakharov
and Shabat, 1972; Hasegawa, 1970) and wave steepening (Cohen and Kul-
srud, 1974) and externally interplanetary tiny effects enable to provide small
amplitude perturbations in the torsional Alfvén waves in the Earth’s core,
reasonable to derive the geomagnetic jerks and relevant LODs.

Observationally modulational instability is matched for MC Rossby wave
and decay for MC wave which is verifying morphological identity of circu-
larly polarized Alfvén waves in the plasma physics with circularly polarized
torsional Alfvén waves in the Earth’s core. We see here that 6-yr torsional
Alfvén wave is an intermediate media to provide the external driven Alfvénic
perturbations via modulational instability and 8.6-yr torsional Alfvén wave
has decay instability to provide the Alfvénic perturbations which in nonlin-
earity of the outer core can generate high amplitude fluid turbulences and
then while the 6-yr torsional wave amplitude is in the low amplitude mode,
the jerks are possible to be derived by decay of the 8.6-yr torsional wave.

Of course, the 6-yr periodicity of magnetic field secular variation is
matched also with the Sun magnetic field fluctuation at Jupiter position
(Lutephy, 2018). But this coincidence seems to be accidental, where the
6-yr signals are sourced by Alfvén wave. Interplanetary electromagnetic in-
ductions are very small at the earth position and then in usual condition
these tiny effects are neglected but on the modulational and decay insta-
bilities of geostrophic MC waves, the small perturbations can grow up to a
rogue wave or high amplitude turbulences. This looks like the rouge waves
in the oceans (Benjamin and Feir, 1967; Onorato et al., 2013, etc.) and
in the optical fiber (Tai et al., 1986; Agrawal, 2013; etc.). Where a small
perturbation of the torsional wave in the liquid metal core could to grow
exponentially or decay, then the interplanetary tiny electromagnetic effects
are not underestimated for the source of geomagnetic jerks. When the inter-
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planetary tiny effects focus on the geostrophic 6&9 MC (& Rossby) waves
in the Earth’s core, the instability would cause to transfer tiny perturba-
tions in these waves to the large turbulences which would be observable
ultimately in the format of the geomagnetic acceleration impulses which is
called geomagnetic jerks. In low amplitudes of the geostrophic 8.6-yr MC
wave, the wave is firm upon the perturbations but in extremes of the 8.6-yr
MC wave, like the tall buildings which the wind can destroy it, the de-
cay is appeared easier which is verified observationally by Duan and Huang
(2020) with occurrences of the jerks in the extremes of 8.6-yr magnetic sec-
ular variation. Then we find here that occurrences of the external driven
geomagnetic jerks is controlled by 6-yr torsional Alfvén wave and also con-
trolled by extremes of the 8.6-yr torsional Alfvén wave. Then the amplitude
of a typically geomagnetic jerk should be controlled by sinusoidal term of
6-yr geomagnetic secular variation, verified previously by Lutephy (2018)
and of the extremes of 8.6-yr (∼9) geomagnetic secular variation discovered
by Duan and Huang (2020). Duan and Huang in a figure has shown the
correlation of some geomagnetic jerks to the extremes of the 8.6 year pe-
riodic secular variation of the geomagnetic jerks in which in this paper we
have correlated it to a torsional oscillatory Alfvén wave.

Via looking in the Jovian alignments (Lutephy, 2018), we find out that
the Jovian alignments does reveal the jerks unless where the amplitude of
6-yr geomagnetic secular variation is very low or jerks are revealed at the
extremes of 8.6-yr (∼ 9) secular variation. In reality the modulation and
decay instabilities of these 6&9 year periodic Alfvén waves are an interme-
diate environment to transfer tiny external interplanetary inductions to the
large turbulences which ultimately its signature is observable as the geomag-
netic jerks. In reality the amplitude of the external driven perturbations
is related to the amplitude of the interplanetary electromagnetic inductions
and also to the amplitude of the oscillating Alfvén wave. Then growth rate
of the modulation instabilities can be signed by the intensity of the elec-
tromagnetic inductions and amplitude of the oscillating Alfvén waves. On
the arguments in the paper (Lutephy, 2018), the Eq. (7) does show theo-
retical correlation of the amplitude of external driven geomagnetic jerks to
the phase of Alfvén waves α and length of the relevant Jovian alignments
L, that is, the equation O3 ∝ β sin (α) /L2. We see in Fig. 2, perfect pro-
portionality between amplitude of 6-yr geomagnetic secular variation and

143



Lutephy M. et al.: Clockwise and counter clockwise 6& 9 year geostrophic . . . (127–155)

Fig. 2. Geomagnetic jerks reported dates one related to Jovian alignments.

amplitude of the jerks O3 externally driven by relevant Jovian alignments
(Lutephy, 2018) and also with inverse square decrement by length of Jovian
alignments. Of course we can use the squared geomagnetic acceleration,
that is:

Ej ∝ β2 sin2 (α) /L4 . (26)

As we see in the below table (Table 1), the Jovian alignments occurred in
lower phases of 6 year torsional Alfvén wave doesn’t show any relevant ge-
omagnetic jerks completely verifying the mechanism proposed here.

Generally the proportionality of the geomagnetic jerks energy to the
phase of 6-yr Alfvén wave is experienced in the Fig. 3 (Nevanlinna, 2004;
Balasis et al., 2016; Qamili et al., 2013; Duka et al., 2012; Pinheiro and
Travassos, 2010; Alexandrescu et al., 1996; De Michelis et al., 2005; Ducruix
et al., 1983; Chambodut and Mandea, 2005; Cafarella and Meloni, 1995;
Macmillan, 1996; Brown et al., 2013; Chulliat and Maus, 2014).

Our prediction about a geomagnetic jerk in the year 2017 (Lutephy, 2018)
has been verified and reported previously so that SWARM satellite data
(Hammer, 2018) showed a jerk occurred in 2017. As noted in the paper
(Lutephy, 2018):
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Table 1. Jovian alignments with low phase in 6-yr TAW with no report for jerks.

Jovian Alignments Dates Phase (degrees) L (AU) Reports

Saturn-Jupiter-Uranus 1922.08.02 8◦ 28 No

Saturn-Jupiter-Neptune 1904.05.01 6◦ 39 No

Saturn-Jupiter-Neptune 1933.11.30 10◦ 39 No

Jupiter-Saturn-Neptune 1915.12.18 15◦ 35 No

Jupiter-Saturn-Neptune 1952.08.06 19◦ 35 No

Jupiter-Sun-Saturn 2011.02.18 2◦ 15 No

Jupiter-Sun-Uranus 1934.08.24 12◦ 25 No

Jupiter-Sun-Neptune 1939.05.12 26◦ 35 No

Jupiter-Sun-Neptune 1952.02.01 0◦ 35 No

Jupiter-Sun-Neptune 2015.11.03 39◦ 35 No

“Eq. (7) above and for alignment at 2017.07.07, the ideal formula shows
11 nT/yr2”

Alfvénic perturbations produce hydromantic turbulences and geomagnetic
jerks are signature of core fluids in the CMB. Of course for similar events,

Fig. 3. Correlation of the energy of external driven geomagnetic jerks to the phase of 6-yr
Alfvn wave.
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the quality and quantity of the turbulences can be different. For example,
the number of the jerks for similar Jovian alignments can be different or
the position of occurrences in the Earth can be different and the scales too.
Then uncertainty is expected ever in the geomagnetic jerks recurrences.
Also we need to notice that the coefficient β in the Eq. (26) is different for
different planetary alignments.

On the observations, the secular variations occur in different scales such
as the 60-yr timescale inferred from the analysis of the decadal length of day
changes since the first half of the 19th century (Jordi et al., 1994) and of the
geomagnetic secular variation after 1900 (Braginsky, 1984) and 300-yr sec-
ular variation coincident with timescale of observed wave-like geomagnetic
secular variation signals (Finlay and Jackson, 2003).

We see that at the year 1995, the 6-yr and 8.6-yr geomagnetic secular
variations are in their maximum amplitude but no jerks observed and then
despite the proposed theory by Duan and Huang (2020), the secular vari-
ations are not directly the source of geomagnetic jerks and the LODs, but
the nonlinear media is intermediate to derive the perturbations by external
and internal magneto hydrodynamic effects. In fact it was predicted by
Duan and Huang for a jerk occurrence in the year 2020 but any jerk was
not revealed. By the way where there is no provider for perturbations in
the background geostrophic torsional Alfvén waves in the outer core, there
is no geomagnetic jerks observable. And jerk in the 1991 is simultaneous
with minimum amplitude of the 6-yr geomagnetic secular variation crossed
with maximum amplitude of 8.6-yr geomagnetic secular variation and this
reality verifies that the 1991 jerk is a decay driven event in which confirms
the decay instability of the 8.6-yr torsional wave.

On this mechanism that the torsional waves are intermediate by modula-
tional and decay instabilities for jerks generations, we answered to unsolved
questions mentioned by Duan and Huang (2020) such as a question that:

“Here, a scientific question arises, i.e., whether the amplitude increasing of
the 8.6-year oscillation is related to the physical sources which can cause the
jerks?”

In long-wave modulations, the derivative in nonlinear term of the DNLS
can be simply replaced by ik0 (k0 being the wave number for the carrier
wave) and then DNLS is transferred to the nonlinear Schrödinger equation
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(NLSE). Also the slow modulation of an Alfvén wave envelope with small
(but finite) amplitude is obtained by a standard multiple-scale analysis in
general nonlinearity, defining the slow variable and expanding parameters
(Champeaux et al., 1997) which results NLSE. NLSE is written in dimen-
sional form as follows:

i ∂tb+
1

2
P ∂ξξb+Q |b|2 b = 0 . (27)

A small perturbation of the wave’s amplitude is considered (Ali Shan, 2018)
as:

b = [b0 + δb (η)] e−i∆τ , (28)

where η = (KMIξ − ωMI τ) is the phase of the modulation with KMI � k
and ωMI �ω are respectively the wavenumber and frequency of the modu-
lation, b0is the constant (real) amplitude of background plane wave of the
NLSE, δb�b0 is the small amplitude perturbation, and ∆ = −Qb20 is non-
linear frequency shift.

Mathematically for an assumed perturbation embedding in the nonlinear
Schrödinger equation it is derived typical wave solutions and a so called type
is breather solution. Breather is a nonlinear wave in which energy concen-
trates in a localized and oscillatory fashion and most breathers are localized
in space and oscillate. The instability condition depends on whether sen-
tence PQ in the Eq. (27) is positive or negative (Hasegawa 1975, 1989;
Remoissenet, 1994). Corresponding to PQ > 0, the instability induced
from small perturbation of a plane wave can lead to an exponential growth
of nonlinear structures of high amplitudes such Peregrine soliton (rogue
waves), Akhmediev breather (AB) and the Kuznetsov-Ma breather (KM)
(Akhmedieva et al.,1985; Kibler et al., 2012, Chin et al., 2016; El-Tantawy
et al., 2017; Peregrine, 1983):

b (ξ, τ) = b0
[
1 + F

]
eiP τ , (29)

where b0 =
√
P/Q, R is free real number and:

F =
2(1−2R) cos

[√
8R(2R−1)Pτ

]
− i

√
8R(2R−1) sin

[√
8R(2R−1)Pτ

]

√
2R cosh

(√
4 (2R−1)ξ

)
− cos

[√
8R (2R−1)Pτ

] .
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For 0.5<R<∞, the solution reduces to the Kuznetsov-Ma (KM) breather.
This means that the first-order perturbation of the background plane Alfvén
wave does generate a rogue Alfvén wave. Plane Alfvén wave is periodic
about the 6-yr (Tplane = 6-yr) and then the Kuznetsov-Ma breather is peri-
odic in time only with temporal period as:

TKM =
Tplane = 6yr√
8R (2R− 1)

. (30)

In comparison with reported amplitude for Kuznetsov-Ma breather in the
fiber optics (Kibler et al., 2012) if we assume approximately that the max-
imum amplitude of the Kuznetsov-Ma breather here to be 4 times larger
than its carrier wave amplitude, then we obtain R ∼0.522 and substituting
it into the Eq. (30) it is deduced that:

TKM ≈ 14yr . (31)

Interestingly we find out 14-yr periodic geomagnetic jerk reports, that
is, the geomagnetic jerks occurred at the years 1902 (Alexandrescu et al.,
1995); 1916 (Qamili et al., 2013); 1930 (Alexandrescu et al., 1997); 1944
(Alexandrescu et al., 1996); 1958 (Mandea et al., 2000; De Michelis et al.,
2005); 1972 (Qamili et al., 2013; Chambodut and Mandea, 2005); 1986
(Mandea et al., 2000; De Michelis et al., 2005); 2000 (Mandea et al., 2000);
2014 (Torta et al., 2015; Kotzé, 2017).

The geomagnetic jerks at the dates 1972 and 2014 coincide in the series
of 14-yr periodic jerks derived by perturbation of 6-yr Alfvén wave. Then
we answer to the question noted by Duan and Huang (2020) that:

“Interestingly, Fig. 4 shows that almost all the above jerk timings coincide
with the extremes of 8.6-yr signal very well within ∼1 year (or less). There
are nine jerk epochs leading the extremes of the 8.6-year signal < 1 year,
except the 1972 jerk and 2014 (Torta et al.,2015; Kotzé, 2017). Here, the
question that why these two jerks did not occur at the corresponding ex-
tremes of the 8.6-year signal are worthy to be discussed later.”

We find here that the geomagnetic jerk at the year 2014 despite inter-
pretations by Aubert and Finlay (2019) it is not a sudden buoyancy con-
centrated QG Alfvén wave which rise up along the 25 years but it is exact
recurrence of the Kuznetsov-Ma breather which is done ever consequently
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and will be done also at the year 2028. What they have found it is false
alarm of the numerical dynamo.

5. Conclusions

We find that the clockwise and counter clockwise torsional MC (& Rossby)
waves are the source of 6&9 year geomagnetic secular variations. We find
a correlation between the space path parameter ε in numerical simulation
of the geodynamo and small parameter ε in reductive perturbation theory
which yields to the derivative nonlinear Schrödinger (DNLS) equation in
the core dynamo to describe long torsional Alfvén waves under the ambient
magnetic field. We find that the oscillatory standing geostrophic MC (&
Rossby) waves in the core are monitoring the geomagnetic jerks and relevant
LODs via the perturbation theory. Modulational and decay instabilities of
the torsional Alfvén waves does transfer small perturbations to the rogue
waves and intense turbulences, reasonable for appearance of the geomagnetic
jerks and relevant LODs. Then we have found a mechanism in which the
tiny interplanetary electromagnetic effects can produce geomagnetic jerks
and relevant LODs via the perturbation theory and nonlinearity. Also we
find that on the modulational instability, the plane geostrophic MC Rossby
wave produces internally the perturbation wave-packet impulses such as the
Kuznetsov-Ma breather, revealing 14-yr periodic geomagnetic jerks. We find
also the mechanism of the variable trend of the intradecadal geomagnetic
secular variations via competition between the Lorentz and Coriolis forces.
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