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Implementation of extensometer
calibration and decimation filtering on
Campbell Scientific CR10X datalogger

M. Bednárik, L. Brimich
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : The quartz tube extensometer and associated electronics at the Vyhne
tidal station operate in very unfriendly conditions of 100% humidity, which causes corro-
sion of metal parts (suspensions, wirings etc.), often leading to disturbances or complete
dropouts of measurements.

Response of the instrument to the regular calibration pulses serves not only proper
scaling of the output and easy orientation in the data stream but also the diagnostics of
health of the system and the discrimination of disturbed (thus not suitable for geophysical
interpretation) portions of the signal.

On the other hand, the calibration pulses themselves disturb in some extent the stan-
dard measurements, too. To minimize the extent of influence of the calibration switched
on on standard data (and calibration switched off on calibration data) is, when one has to
confine himself to the meager instruction set of the Campbell Scientific CR10X datalogger,
an interesting engineering task.
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1. Introduction

The quartz tube extensometer at the Vyhne tidal station (Fig. 1) is cali-
brated by means of a magnetostrictive coil, which displaces the whole tube
when the calibration current flows through it. Details on the configuration
of the station can be found in Dudášová (1998), the process of calibration
is explained e.g. in Mentes (1993). The response of the instrument to the
rectangular calibration current pulse shows transients (Fig. 2), which have

1 Dúbravská cesta 9, 845 28 Bratislava, Slovak Republic
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Fig. 1. Scheme of the extensometric equipment in Vyhne.

Fig. 2. Transients in extensometric signal (sampling period 1s) in response to 5s long
rectangular calibration current pulse (gray rectangle). The record was made in Vyhne
on November 17, 2005 just for the purpose of measuring the duration of transients. The
standard duration of current pulse is 1 minute.

to be taken into account: the signal – either calibration response or stan-
dard extensometric signal – should not be sampled before the transients are
effectively over. The usual sampling period of extensometric data for tidal
analysis ranges from 10 minutes to 1 hour. In Vyhne, we use 10-minute
period.

A typical sampling period of calibration data is 12 or 24 hours – the
calibration period then corresponds to the dominant tidal waveform periods
and the pulses provide nice frame ticks for easier overview – completely
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indispensable in the times of analogue recordings, but still keeping a lot
of importance in the age of digital data. An example of an unfiltered 24
hours long record of extensometric data from Vyhne with sampling period
10 minutes, including the calibration pulses is given in Fig. 3.

Fig. 3. Extensometric record (sampling period 10 minutes) made in Vyhne on November
29, 2005.

2. Time multiplex

Time multiplex is in our context a bit lofty terminus technicus for quite a
trivial, nevertheless very advisable for those who do not use it yet, a “trick”:

If there are – in time domain – gaps in your data, then you can get other
data within these gaps.

For instance, the calibration period 720 minutes is an integer multiple
of the standard data period 10 minutes. One approach to it could be just
to sample every 10 minutes and at each 72-nd sample to turn on and off
the calibration current to get the calibration sample. Like this, however, we
would, strictly speaking, loose every 72-nd sample of standard data stream
(Fig. 4). Of course, we could “reconstruct” it by interpolation of the neigh-
bouring samples, but why to do it when there is a cleaner way to go?

If we shift the sampling of the calibration data by the half of the standard
data sampling period, we can have both data streams undisturbed (Fig. 5).
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Fig. 4. Bad solution: Calibration samples (white bars) without time multiplex.

Fig. 5. Good solution: Calibration in time multiplex with standard samples.

3. Decimation

It gets a little bit more complicated if we want to improve the quality
of our data by means of decimation i.e. first taking input samples with
high rate and then downsampling it - at once or in more stages – to the low
output sampling rate. Let us assume that by sampling with period T1 we do
not violate the Nyquist criterion, i.e. the spectrum of the analogue signal
to be sampled has zero content above Nyquist frequency ωN1 = ω1/2 =
π/T1. If we want to decimate this - once already sampled - signal down
to a longer sampling period T2, we have to filter the digital data with a
digital lowpass filter whose corner frequency should be lower or equal to
ωN2, ωN2 = ω2/2 = π/T2. For the digital data sampled with the period T1,
we use the amplitude frequency plot with normalized frequency θ = ωT1.
The highest corner frequency ωN2 = π/T2 of the filter assuring non-violation
of the Nyquist criterion is thus projected to θN2 = π T1/T2. The amplitude
frequency response of an ideal lowpass decimation filter (Ondráček, 2002,
p. 123) is then shown in Fig. 6. In general, the higher is the decimation
ratio T2/T1, the harder it is to design the filter. For high decimation ratios,
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the decimation is usually performed in a cascade of stages.
The main problem with (whether time-multiplexed or not) calibration

pulses is that they limit the length of time interval where the input samples
for the decimation can be collected: the filtered sample must not be com-
puted of a mixture of standard and calibration input samples, but only of
standard data input samples for each standard data sample or calibration
data input samples for each calibration data sample (Fig. 7). It is true
that in our case, the calibration sample occurs 72 times less frequently than
standard sample - we could handle the standard samples neighbouring to
the calibration sample specially and differently to other standard samples.
We think, however, that in favour of the homogeneity of the data it is much
wiser to compute all the standard samples always the same way. The dura-
tion of the calibration current switched on should not exceed a few minutes
in order not to overheat the magnetostrictive coil. To have at least tens
of input samples available for filtering, the period T1 should be in order of
seconds. Then, strictly and formally, with the output sampling period T2 of
12 hours, we have a really big decimation ratio for which it is impossible to
find a proper anti-aliasing decimation filter with tens of coefficients length.2

In standard data alone, sampled with output rate 10 minutes, in order
to leave some time for the calibration pulse, the interval available for the
collection of input samples for standard sample is ca. 8 minutes long. Should
we take input sample every second, we would have ca. 480 samples available,
requiring the decimation filter of the same length for still very high 600:1
decimation ratio. Even with this filter length, the highest ratio for which
we are able to find one-stage truly anti-alias decimation filter is about 60:1.

Shortly, the need to take calibration samples forces us to abandon com-

2 The calibration data is, in fact – with regard to its interpretation – not an independent
data stream: the height of the calibration pulse can only be determined when the
neighbouring standard data samples are taken into account, as well. Merging together
standard data sampled each 10 minutes and calibration data in time multiplex with it as
described in section 2, we get each 12 hours a 3-sample rag of data with “instantaneous”
sampling period 5 minutes (Fig. 3 and 4) – which is a lot anyway.
We could ask for homogeneity – the same way of computation of both standard a
calibration output data – within these rags of merged data, too. This would lead,
however, to the same length of intervals where the input samples of the two types of
data are colected (ca. 4 minutes), which is technically unbearable (overheating of coil
by calibration current) and does not correspond to the higher importance of standard
data.
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Fig. 6. Amplitude frequency response of an ideal lowpass filter.

Fig. 7. Input samples for computing the calibration and standard samples (sampling
period T1 = 30 s).

pletely the aspirations to a downsampling in accordance with the Nyquist
criterion. Fortunately, at as a quiet site as Vyhne and with the analogue
input properly conditioned, the high frequencies have quite low amplitudes,
except for occasional seisms. And, even if a decimation filter is too far from
being anti-alias one, it is still true that the narrower (in frequency domain)
the filter, the better. And surely better than no filter at all.
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4. Suggestions for decimation filter design

The input signal x (tm) is sampled at times tm = t[m] = mT1, where
m is integer. For brevity, x (tm) is denoted as x[m]. The filtered output
signal y[m] is obtained by convolution of the input signal x[m] with the
impulse response h[n] of the filter – in other words, with the sequence of
filter coefficients:

y[m] =
∑

n

h[n] x[m− n]. (1)

By filtering, we would like to improve the signal-to-noise ratio of the sig-
nal without any undesired side effects (e.g. phase distortion). Therefore,
we restrict our choice to the cathegory of symmetric (h[n] = h[−n]) finite
(h[n] = 0 for n /∈ {− (L− 1) /2, ..., (L− 1) /2}, L ∈ N is the filter length)
impulse response (FIR) filters3, whose frequency response

H
(
ejθ
)

=
∞∑

n=−∞
h[n]e−jnθ (2)

is real, i.e. its continuous phase frequency response (Ondráček, 2002, pp. 115,
160) is zero.
It is obvious that the value of the filtered output sample

y[m] =
(L−1)/2∑

n=−(L−1)/2

h[n] x[m− n] (3)

is influenced by input samples with n < 0, i.e. input samples “from the
future” (if we identify “present” with the time m) – therefore, such a filter
is called non-causal. Closely related problem is the time shift of the output
sample: to compute y[m], one has to wait until x[m+ (L− 1) /2] occurs.

With the non-causality, there is not too much to do but simply to bear it.
As far as the signal to be filtered is smooth, without abrupt steps, as it is the
case with tidal extensometric signal, it is not a serious practical problem.
The time shift, however, has to be properly managed: although y[m] can
not be output before the time m + (L− 1) /2, it can and must be output

3 Another advantages of FIR filters are stability and low sensitivity to the inaccuracies
in entering the coefficient values.
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Fig. 8. Filter coefficients h[n] of input samples in the vicinity of the filtered output
sample. Left: good example, right: bad example (moving average computed only of
previous input samples and output at the time of last input sample).

with the right time m. This may seem trivial, but bad timing of the filtered
(averaged) output (Fig. 8 right) still surprisingly often occurs in practice.
At each time we want to get the filtered sample, we are allowed to reset the
“sample counter” m to zero, and, taking into account the symmetry of the
desired filter, we can write:

y[0] =
(L−1)/2∑

n=−(L−1)/2

h[n] x[−n] =
(L−1)/2∑

n=−(L−1)/2

h[−n] x[−n] =

=
(L−1)/2∑

n=−(L−1)/2

h[n] x[n]. (4)

The rule “the narrower the filter, the better” in the previous section is a bit
simplified. The plots of the amplitude frequency response reveal that with
any filter design method, narrowing the passband of the filter has got its cost
in the increase of ripples in the stopband. A more adequately formulated
task would be then to find the filter with the narrowest possible passband,
whose stopband ripples are lower than an acceptable level.

An overview of the basic filter design methods can be found in Ondráček
(2002) and Vích and Smékal (2000). Those interested in more rigorous filter
design can find an overview of relationships between width and shape para-
meters and minimum stopband attenuation for various windows in Sharma
et al. (2004). We will give here an example of FIR filter design proce-
dure that leads to satisfactory results. It is based on weighted least-squares
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polynomial fitting, i.e. finding the values of polynomial coefficients ak min-
imizing the sum E of weighted squares of residuals:

E =
(L−1)/2∑

n=−(L−1)/2

w[n]

(
K∑

k=0

akt[n]k − x[n]

)2

, (5)

where L is the length of the filter and K is the order of the approximating
polynomial

PK [n] =
K∑

k=0

ak t[n]k.

A weighting formula very suitable for our purpose (for narrow pass- and
transition band, the side lobes have to be relatively small) is the one giving
the coefficients of the Kaiser window (Ondráček, 2002, p. 188, gives the
formula for another range of n):

w[n] =

I0

(
β

√
1−

(
2n
L−1

)2
)

I0 (β)
, n ∈ {− (L− 1) /2, ..., (L− 1) /2}, (6)

where

I0 (x) =
∞∑

k=0

(
1
k!

(
x

2

)k)2

(7)

is the modified Bessel function of order 0.
As for t[0] = 0 (time we want to take the filtered sample in), PK [0] = a0,

we are interested only in finding the value of this one coefficient a0, which
is equal to the sought filtered output sample y[0]. In the case of K = 0,

a0 =
(L−1)/2∑

n=−(L−1)/2

w[n] x[n]

/ (L−1)/2∑

n=−(L−1)/2

w[n], (8)

thus the filter coefficients h[n] are equal to the normalized Kaiser window
weights:

h[n] = w[n]

/ (L−1)/2∑

n=−(L−1)/2

w[n]. (9)
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The classical windowing method – multiplication of the ideal filter impulse
response by the window sequence (in time domain) - gives in this case of
very narrow (given by the high decimation ratio) band lowpass filter almost
the same result. The amplitude frequency response of normalized Kaiser
window for β =8 and filter length L =23 is shown in Fig. 9.

The formulae for computing filter coefficients for the 2-nd and 4-th order
polynomial fits are not too hard to find.4 For K = 2:

h[n] =
w[n]

(
S4 − S2t[n]2

)

S0S4 − S2
2

. (10)

For K = 4:

h[n] =
w[n]

(
S4S8 − S2

6 + (S4S6 − S2S8) t[n]2 +
(
S2S6 − S2

4
)
t[n]4

)

S3
4 − 2S2S4S6 + S0S2

6 − S0S4S8 + S2
2S8

, (11)

where

Sl =
(L−1)/2∑

n=−(L−1)/2

w[n] t[n]l, t[n] = nT1, n ∈ {− (L− 1) /2, ..., (L − 1) /2}.

The respective amplitude frequency response for the same Kaiser weighting
and the same filter length are shown in Figs 10 and 11. With increasing
K, the filter gets wider and flatter in the passband, only slightly steeper in
the transition, but more ripply in the stopband. Even without using the
“frequency domain vocabulary”, we can say that it is not desirable to go to
very high orders, as with increasing order, the fitting polynomial is “more
able” to reproduce the raw signal x[n], which is not the aim of our filtering.
For comparison, we include the plot of amplitude frequency response of
the moving average filter of the same length as in previous examples to
discourage of its use in spite of its very easy implementation (Fig. 12).

5. Implementation

We will split this section into more parts, each one covering one particular
feature implemented in the *.csi program code as well as some related “hard-
ware solutions”. With regard to the compatibility, we use the instruction
4 The sofware Mathematica can provide a lot of help both in derivation of the formulae

and in computing the actual values of impulse response sequences.
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Fig. 9. Impulse response and amplitude frequency response of 0-th order polynomial
fitting filter with Kaiser weighting (β = 8, filter length L = 23).

Fig. 10. Impulse response and amplitude frequency response of 2-nd order polynomial
fitting filter with Kaiser weighting (β = 8, filter length L = 23)

Fig. 11. Impulse response and amplitude frequency response of 4-th order polynomial
fitting filter with Kaiser weighting (β = 8, filter length L = 23)
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Fig. 12. Impulse response and amplitude frequency response of the moving average filter
(filter length L = 23).

set of older datalogger type CR10, which is completely understood (unlike
the opposite way!) by CR10X datalogger. We will refer to the instructions
by their numbers, the interested reader can use the Edlog program editor
provided by Campbell Scientific to see what they mean.

Switching on and off the calibration current

For this purpose, the digital I/O ports C1 to C8 of the CR10X can be
used. They can be configured as outputs and set high (5V with no load)
or low (0V) by some program instructions and commands to be mentioned
later. These ports, however, have a limited drive capability (1.5 mA at
3.5V) (CR10X Measurement and Control Module, 2000, p. 14-6), whereas
the current to the magnetostrictive coil during the calibration shall be ca.
60 mA and strictly constant. Therefore, additional circuitry is needed to
generate and switch on and off the calibration current. In our case, some
components of previous timing and calibration system were used. Of the
eight control ports, we only use the port C1 (Fig. 13). If one wants to set
only one port high or low, then it is more elegant to do by means of instruc-
tions 83, 86, 88, 89, 91, 92 rather than by the “full form” instruction 20.
The following piece of program switches the calibration on in due time:

17: Do (P86)
1: 4 Call Subroutine 4 ; GIVES MINUTES MODULO CALIBRATION PERIOD

18: If (X<=>F) (P89)
1: 13 X Loc [ modmin ]
2: 1 =
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Fig. 13. Simple circuitry for switching on and off the calibration current.

3: 4 F ; IN WHICH MINUTE TO SWITCH ON CALIBRATION
4: 30 Then Do

19: If (X<=>F) (P89)
1: 12 X Loc [ sec ]
2: 1 =
3: 0 F ; IN WHICH SECOND TO SWITCH ON CALIBRATION
4: 41 Set Port 1 High ; SWITCHES CALIBRATION ON

20: End (P95)

After the last calibration input sample was taken, the program calls the
output subroutine, which is (in favour of brevity of program) common for
both standard and calibration output. Within this subroutine, however, it
has to be found out, whether standard or calibration sample is to be output.
This can be done easily – we can read the state of the control port as any
other flag: During the calibration, it is high, during standard sampling, low.
To terminate the calibration pulse, the port has to be set low.

41: Do (P86)
1: 10 Set Output Flag High (Flag 0)

42: If Flag/Port (P91)
1: 51 Do if Port 1 is Low
2: 30 Then Do

43: Set Active Storage Area (P80)
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1: 1 Final Storage Area 1
2: 1 Array ID ; “1” LABELS THE STANDARD SAMPLE

44: Else (P94)

45: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
2: 2 Array ID ; “2” LABELS THE CALIBRATION SAMPLE

46: Do (P86)
1: 51 Set Port 1 Low

47: End (P95)

Taking input samples

The CR10(X) datalogger programming language is not very suitable for
writing very complex programs implementing many stages of decimation.
We decided to implement only one-stage decimation subroutine which is,
again, common for standard and calibration data. In both cases, the num-
ber of input samples needed to compute one output sample is the same:
59. The input samples for a standard output sample are collected each 8 s,
for a calibration output sample each second. The length of the standard
input sampling interval is then 8 minutes, length of calibration input sam-
pling interval is 1 minute. Both the input sampling intervals are centered
around the respective output samples and the calibration output sample
is exactly in the middle between two adjacent standard output samples
(Fig. 5), therefore, the two kinds of input sampling intervals do not collide.
If the calibration current is switched on immediately after the last standard
input sample of the current interval is taken (at 4-th minute 0 s of the stan-
dard calibration period, as in the first program fragment above), then there
is also enough time (30 s) for transients to vanish.

With the available instruction set, the regular way to find out whether
the current minute is within the standard input sampling interval is to use
two If instructions:
4: Do (P86)
1: 1 Call Subroutine 1 ; GIVES MINUTES MODULO SAMPLING PERIOD

5: If (X<=>F) (P89)

1: 13 X Loc [ modmin ]
2: 3 >=
3: 6 F ; BEGIN OF 8’ INPUT SAMPLING INTERVAL
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4: 30 Then Do

6: Z=X (P31)
1: 13 X Loc [ modmin ]
2: 17 Z Loc [ testmin ]

7: Do (P86)
1: 2 Call Subroutine 2 ; ADD NEW INPUT SAMPLE
8: Else (P94)

9: If (X<=>F) (P89)
1: 13 X Loc [ modmin ]
2: 4 <
3: 4 F ; END OF 8’ INPUT SAMPLING INTERVAL
4: 30 Then Do

10: Z=X (P31)
1: 13 X Loc [ modmin ]
2: 17 Z Loc [ testmin ]

11: Do (P86)
1: 2 Call Subroutine 2 ; ADD NEW INPUT SAMPLE

12: End (P95)

13: End (P95)

We could, however, easily construct a polynomial which would give zero
value only if the current minute is within the input sampling interval. Then
only one If instruction 89 would be needed to make the decision. The
problem is the maximum polynomial order of 5 allowed by instruction 55
Polynomial. This solution is then elegant only for short input sampling in-
tervals and in any case, applicable only where the longer execution time of
instruction 55 is not critical.

The subsequent calls of subroutine 2:
7: Beginning of Subroutine (P85)

1: 2 Subroutine 2

8: If Flag/Port (P91)
1: 41 Do if Port 1 is High
2: 30 Then Do

9: Z=X MOD F (P46)
1: 12 X Loc [ sec ] ; SECONDS
2: 1 F ; CALIBRATION INPUT SAMPLING PERIOD IN SECONDS
3: 14 Z Loc [ modsec ] ; TIME MODULO INPUT SAMPLING PERIOD
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10: Else (P94)

11: Z=X MOD F (P46)
1: 12 X Loc [ sec ] ; SECONDS
2: 8 F ; NORMAL INPUT SAMPLING PERIOD IN SECONDS
3: 14 Z Loc [ modsec ] ; TIME MODULO INPUT SAMPLING PERIOD

12: End (P95)

. . .
generate altogether 60 samples, of which the first one has to be discarded.
This can be done easily: the length of the “shift register” defined by the
instruction 54 Block Move (contained in the subroutine 2) shall be 59 and
the number of times this instruction is executed is 60.

Filtering

The filtering is implemented in two steps: first multiplication of the shift
register members by filter coefficients with the help of instruction 53 Scaling
Array and computation of Spatial Average (instruction 51). Attention, if
the normalized coefficients (whose sum is equal to one) are entered, then
the resulting spatial average shall be multiplied by the number of samples
(swath) coming into it. Yet better solution is to enter the filter coefficients
into instructions 53 already pre-multiplied by the swath, because this way,
we increase the accuracy, which is very welcome in the outermost coefficients
with very small values. In long filters, entering all the filter coefficients va-
lues into the instructions 53 is very tedious work demanding maximal con-
centration. This is one of the reasons why the same filter coefficients are
used both for standard and calibration input samples.5

Output of sample

The output sample must be output with the right time, on the other
hand, it can not be output before the last input sample needed for its com-
putation arrives (Fig. 8 left) . Therefore, one can not take full advantage
of the instruction 77 Real Time, which outputs the time at the moment it

5 We computed the values of filter coefficients according to the equation (8) (0-th order fit
with Kaiser weighting for β = 8). The shape of the impulse response and of amplitude
frequency response for L = 59 are very similar to the ones for L = 23 in Fig. 9.

388



Contributions to Geophysics and Geodesy Vol. 35/4, 2005

is executed. One must not forget to store the time corresponding to the
output sample in a separate output location(s) and, at the moment of the
output of sample, combine it with instruction 77:

48: Real Time (P77)
1: 100 Day (midnight = 0000)

49: Real Time (P77)
1: 1000 Year

50: Sample (P70)
1: 1 Reps
2: 10 Loc [ hour ] ; SAMPLES HOURS

51: Sample (P70)
1: 1 Reps
2: 18 Loc [ savemin ] ; SAMPLES MINUTES

52: Resolution (P78)
1: 1 High Resolution

53: Sample (P70)
1: 1 Reps
2: 19 Loc [ avextense ]

55: Serial Out (P96)
1: 71 SM192/SM716/CSM1

56: End (P95); OF SUBROUTINE 3

6. Conclusions

The main outcome of the work presented in this paper is the program
controlling the data acquisition of standard and calibration extensometric
data. We are aware that in the present form, it is best suited to meet the
needs of those who visit their dataloggers to collect data manually only once
upon a few weeks. We ourselves hope to leave this category of users soon.
Nevertheless we felt that our experience is worth to be shared – to bring some
benefit to the beginners in Campbell Scientific datalogger programming and
possibly, to incite some feedback from the advanced users, of which we too
can profit.

The copy of our *.csi program is freely available on demand.
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