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Magnetometric problem for a 2-D body
of polygonal cross-section buried in the
unbounded magnetic halfspace

M. Hvoždara, A. Kaplíková
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : We present the exact boundary integral formulae for calculation of the
magnetic anomaly due to a two dimensional body whose permeability is µT and its cross-
section is bounded by the closed general polygonal contour. This body is buried in a
wide-spreaded halfspace (e.g. lava field) of magnetic permeability µ1. The upper half-
space is non-magnetic, its permeability is µ0. The boundary integral technique for this
problem requires the application of two-term logarithmic potential. Numerical calcula-
tions on the basis of derived formulae revealed that the surface anomaly ∆T reflects the
“topography” mainly of the upper boundary of the perturbing body. The derived al-
gorithm and numerical program enables the calculation of a lot of interesting models:
magnetic intrusions, polygonal valleys, polygonal mine galleries, etc.

Key words: magnetometric models, the boundary integral technique, mag-
netometric profile measurements

1. Formulation and the B. I. E. solution

Solution of the forward magnetometric problem for two or three dimen-
sional isolated bodies belongs to the “classical geophysics”, e.g. Grant and
West (1965); Logachev and Zacharov (1979). The exact analytical solutions
by means of separation of variables in Laplace’s or Poisson’s equations were
performed for “smooth bodies”: sphere, cylinder, ellipsoid, using the sepa-
rability of these partial differential equations (Moon and Spencer, 1971).
If the body is of more general shape (e.g. polyhedron), the solution is
performed on the basis of Poisson theorem by the assumption of uniform
magnetization inside the body. More detailed analyses revealed that the
uniform magnetization holds true only for bodies, which are bounded by
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a smooth, quadratic surfaces (sphere, cylinder, ellipsoidal cylinder). There
was revealed that the uniformity of magnetization is violated mainly near
the corners of polyhedral bodies. The exact solution for polyhedral bodies
can be performed using the methods of finite differences, finite elements or
boundary equations. The last method mentioned seems to be more effec-
tive in comparison to the previous two, since the numerical calculations are
concentrated mainly to the boundary surface.

The theory of boundary integral calculations of magnetometric anomalies
due to 3D and 2D bodies bounded by a piecewise smooth (Lyapunov’s)
surface S and situated in unbounded nonmagnetic medium was presented in
the earlier paper (Hvoždara, 1983). There was done also a quite satisfactory
comparison with a classical method based on the Poisson’s theorem. We
generalize the presented analysis to more complicated case, when the 2D
body of permeability µT , bounded by a polygon L is buried in the halfspace
“1” z ≥ 0 of permeability µ1 and the upper halfspace “0”, z < 0 is non-
magnetic, so its permeability is µ0 = 4π × 10−7 Henry/m. This model is
the shape generalization of the previous case, which was solved analytically
in bipolar co-ordinates for the circular cylinder (Hvoždara and Kaplíková,
2005).

In the presented paper we suppose that the 2D body is bounded by the
closed polygon with N+1 vertices in the plane (x, z), see Fig. 1. We denote
the vertices as Ak, k = 1, 2, . . . , N + 1, where N ≥ 3 and the first vertex A1

is identical with the last one AN+1 ≡ A1. These vertices are connected by
the line segments Tk, their number is N and the lengths are Tk:

Tk =
[
(xk+1 − xk)2 + (zk+1 − zk)2

]1/2
. (1)

The theory of stationary magnetic field (Stratton, 1941) enables us to
calculate the magnetic field by means of magnetic potential U(x, z):

H = − gradU. (2)

The unperturbed magnetic field potential in the upper halfspace is as

V0(x, z) = −H0(x cosα+ z sinα), (3)

where H0 = |B0|/µ0 is its intensity and B0 is the induction vector of am-
bient geomagnetic field (unperturbed), its absolute value is B0, for Slovak
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Fig. 1. Scheme for the two dimensional perturbing body embedded in the magnetic
halfspace with oblique ambient magnetic field B0.

territory about 47 000 nanoTeslas (nT) and α is the inclination angle. The
deeper generalization of our treatment given in Hvoždara (1983) for simpler
case (magnetic body in non-magnetic ambient medium) now leads to the
formulae of potentials in three media as follows:

U0(r) = V0(r) +
1

2π

∫

L

f(r′)
∂

∂n′
g0(r, r′) d `′, P (r) ∈ “0”. (4a)

U1(r) = V1(r) +
1

2π

∫

L

f(r′)
∂

∂n′
g1(r, r′) d `′, P (r) ∈ “1”. (4b)

UT (r) =
µ1

µT



V1(r)− v0 +

1
2π

∫

L

f(r′)
∂

∂n′
g1(r, r′) d `′



+

+ (1− µ1/µT )v0, P (r) ∈ Int(L), (4c)
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where v0 is the mean value of exciting potential V1(r) on the boundary
contour L:

v0 =
1
|L|

∫

L

V1(r) d `. (5)

In formulae (4a)–(4c) the calculation point r ≡ (x, z) is outside L and the
point r′ ≡ (x′, z′) lies on the L, it is the running integration point. The
unperturbed potential is given by (3) and its continuation inside “1” is:

V1(r) = V1(x, z) = −xH0x − z DH0z, (6)

where D = µ0/µ1 as was derived in (Hvoždara and Kaplíková, 2005). The
function f(r), which occurs in (4a–c) is the modified double layer density
distributed along the curve L, which is simply related to the potential UT (r)
on L:

f(r) = (1− µ1/µT )UT (r) + v0, P (r) ∈ L. (7)

This density must be calculated by means of the boundary integral equation
(B. I. E.):

f(r) = 2β [V1(r)− v0] +
β

π

∫

L

\ f(r′)
∂

∂n′
g1(r, r′) d `′,

β = (1− µT/µ1)/(1 + µT /µ1), P (r) ∈ L. (8)

The backslash on the integral in (8) denotes the integration in the principal
value sense.

2. Greens functions of our problem

In formulae given above, there occur normal derivatives of Green’s func-
tions g0(r, r′), g1(r, r′). In what follows the basic singular part in these
functions is logarithm of expression |r− r′|−1 = [(x− x′)2 + (z − z′)2]−1/2.
Its normal derivative is calculated by means of formula:

∂

∂n′
ln |r− r′|−1 =

n′ · (r− r′)
|r− r′|2 =

n′x · (x− x′) + n′z · (z − z′)
|r− r′|2 , (9)
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where n′ ≡ (n′x, n
′
z) is outer normal on the contour line L, which is in

our case composed of N segments Tk. The function g0(r, r′) relates to
the halfspace “0”, where it satisfies Laplace equation, the function g1(r, r′)
in lower halfspace satisfies Poisson equation, because there is situated the
perturbing body “2”. On the boundary z = 0 there are prescribed boundary
conditions corresponding to potentials of magnetic intensity. Then we have
to solve known two-dimensional equations:

∇2g0(r, r′) = 0, (10)

∇2g1(r, r′) = −2πδ(x− x′)δ(z − z′), (11)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂z2 is 2D Laplace operator. The boundary con-
ditions on plane z = 0 are:

g0|z=0 = g1|z=0 , (12)

[∂g0/∂z]z=0 = (µ1/µ0) [∂g1/∂z]z=0 . (13)

In the Poisson equation (11) we have on the right side the two-dimensional
Dirac’s function δ(r−r′) = δ(x−x′)δ(z−z′), where the point of singularity
(x′, z′) is on the boundary line L of the perturbing body. The theory of
classical potential shows that this singularity holds true for potential of
y-directed line source:

ln |r− r′|−1 = ln
[
(x− x′)2 + (z − z′)2

]−1/2
, (14)

as a fundamental solution of 2D Poisson equation

∇2 ln |r− r′|−1 = −2πδ(r− r′). (15)

Hence, this logarithmic potential is the basic part of g1(r, r′) and it must
contain some harmonic part too, in order to satisfy the boundary conditions
(12), (13). The function g0(r, r′) will contain only this logarithmic potential
(multiplied by constant F0), but it is harmonic function in the region “0”
because point (x′, z′) ∈ L. Using the known “mirror method” we shall
suppose functions g0(r− r′) and g1(r− r′) in the form:

g0(r, r′) = F0 ln
[
(x− x′)2 + (z − z′)2

]−1/2
(16)
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g1(r, r′) = ln
[
(x− x′)2 + (z − z′)2

]−1/2
+

+ F1 ln
[
(x− x′)2 + (z + z′)2

]−1/2
. (17)

One can easily find that gradients of these functions vanish for points (x, z)
at large distances from the source point (x′, z′), which guarantees zero values
of the magnetic field intensity due to the perturbing body. Coefficients
F0 and F1 must be determined from boundary conditions at z = 0. The
equations (12) and (13) then give:

F0 = 1 + F1, F0 = (µ1/µ0)(1− F1),

which result into:

F0 =
2(µ0/µ1)
1 + µ0/µ1

=
2

1 + µ1/µ0
, (18)

F1 = F0 − 1 = (1− µ1/µ0)/(1 + µ1/µ0). (19)

So, the necessary Green’s functions for our problem are:

g0(r, r′) = F0 ln |r− r′|−1, (20)

g1(r, r′) = ln |r− r′|−1 + F1 ln |r∗ − r′|−1, (21)

where r∗ ≡ (x,−z) is the mirror point to the point (x, z), so it is:

|r∗ − r′|−1 =
[
(x− x′)2 + (z + z′)2

]−1/2
. (22)

Now we have prepared the Green’s functions as kernels of integral solution
expressed by 4a–c.

3. Algorithm for numerical calculations

In numerical calculations we can use most of the experience from solu-
tions of the B. I. E. in more simple case (Hvoždara, 1983, 1986), where the
Green’s function was only ln |r− r′|−1. The key step for numerical solution
of the B. I. E. is necessary to have the formulae for the normal derivatives
of both terms in g1(r, r′) given by (17). For the first part we have expres-
sion given by (9) and we need to integrate it along the elementary segments
∆s`, which compose at collocation method of solution of B. I. E. the whole
contour L. According to the explanations from (Hvoždara, 1983) we have:
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∫

∆s`

∂

∂n′
ln
[
(x− x′)2 + (z − z′)2

]−1/2
=
∫

∆s`

n′ · (r− r′)
|r− r′|2 d `′ = ω(Pj , Q`), (23)

where ω(Pj , Q`) is the plane angle of view subtended from the point Pj
onto segment ∆s` with the central point Q` and outer normal n′, while this
angle must be multiplied by the signum of the scalar product of vectors n′

and (r− r′). By means of cosine theorem applied to the triangle scheme in
Fig. 2 there is

Pj(x, z)

γ1`

r2`

r1`

n′

Q` ≡ (x′, z′)∆s̀

Fig. 2. Explanation sketch of the calculation of the plane angle of view onto a linear
segment.

∆s` =
[
r2

1` + r2
2` − 2r1`r2` cosγj`

]1/2
,

so the value of cosine for γj` is

cosγj` =
[
r2

1` + r2
2` − (∆s`)2

]
/2r1`r2`, (24)

and for ω(Pj , Q`) we have:

ω(Pj , Q`) = γj` sign
[
n′ · (r− r′)] . (25)

For the normal derivative of the second logarithmic part in g1(r, r′) we use
similar treatment, so we can write

ω∗(P ∗j , Q`) =
∫

∆s`

n′ · (r∗j − r′)
|r∗j − r′|2

d `′ =
∫

∆s`

n′x(xj − x′) + n′z(−zj − z′)
(xj − x′)2 + (zj + z′)2 d `′ =

= γ∗j` · sign
[
n′ · (r∗ − r′)

]
. (26)
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The geometrical sense of the angle γ∗j` is identical with the plane angle
of view from the point P ∗ ≡ (x,−z) onto segment ∆s` around the point
Q` ∈ L. As it was mentioned above, for the collocation solution of the B.
I. E. we divide each segment Tk into smaller pieces of equal length ∆s`,
their number let be mk and the sum of mk is equal M . For practical use
we suggest 5 ≤ mk ≤ 20, according to the length Tk. So we must keep

N∑

k=1

mk = M, (27)

where the total number of ∆s` should be 50–100 according to total length
L. The numbers mk must be optional for purposes of the accuracy tests of
solution of the B. I. E. (8). As we already mentioned, this method supposes
the piecewise constant approximation of the unknown function f(P ) - its
value is equal to the centred one f(Q`) in the whole segment ∆`j . Then we
can write the B. I. E. (8) in the form

f(Pj) = 2β [V1(Pj)− v0] +
β

π

M∑

`=1

∗
f(Q`) u(Pj, Q`), (28)

where the asterisk over the summation sign denotes omission of the contri-
bution from ln |r−r′|−1 on the segment ∆s`, where Pj ≡ Q`, in accordance
with the rules of principal value integration. In a view to the formula (23)
it also reflects that in this situation the normal vector n′ is perpendicular
to the vector (rj − r′) for the points Q(r′) ∈ Tk, P (r) ∈ Tk, which simpli-
fies numerical calculations, because there will not occur any singular terms.
The weighting factor u(Pj , Q`) are denoted by the integral:

u(Pj , Q`) =
∫

∆s`

∂

∂n′
g1(r, r′) d `′, (29)

where are included both angles of view γj`, γ∗j` onto the segment ∆s`. The
equation (28) tells us that into value f(Pj) there are incorporated contribu-
tions from all f(Q`) (with some weighting factors) at segments ∆s` forming
L.

The geometrical relations, which occur at numerical calculations we il-
lustrate on the example of segment T3 depicted in Fig. 3. This segment
connects points A3 and A4 where we generated 6 subsegments (pieces) with
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Fig. 3. Subdivision of the vector T 3 into five subsegments.

centres Q3,0 −Q3,5. The normal vector for the whole segment T3 is n′3 and
its Carthesian components we calculate from equations n′3×T3/T3 = 1 and
n′3 · T3 = 0, which reflect the mutual orthogonality of vectors T3 and n′3.
Then it is clear that n′3 is constant unit vector for the whole segment T3, its
components can be calculated from the co-ordinates of the terminal points
A3, A4. The length of the vector T3 = A3A4 is given by the formula (1):

T3 =
[
(x′4 − x′3)2 + (z′4 − z′3)2

]1/2
, (30)

because the vector T3 is:

T3 = (x′4 − x′3)ex + (z′4 − z′3)ez . (31)

As we already noted there must hold vector relations: n′3 × T3/T3 = 1 and
n′3 · T3 = 0, since the angle between n′3 and T3 is π/2. Then we can easily
find Carthesian components of n′3:

n′x = −z
′
4 − z′3
T3

, n′z = +
x′4 − x′3
T3

. (32)

Similar treatment we apply for all segments Tk. We see, that as soon as
we have defined contour polygon L of the perturbing body, we can easily
determine normal vectors on all segments Tk . These values we must use
for calculations of weighting factors for discretized B. I. E. On the basis of
treatment given in Hvoždara (1983) we know that the most important term
in the weighting factor is ω(Pj , Q`) = γ`j · sign [n′` · (rj − r′`)]. For the case
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of convex contour line L as shown in Fig. 1 all these values will be negative
or zero, because sign[n′` ·(r′j−r′`)] < 0, since angles between n′` and (r′j−r′`)
are obtuse, the zero value is for the case when P (rj) an Q(r`) belong to the
same straight line segment.

There is also necessary to note, that for contour integral of plane angle
of view there holds true a very important formula – the Gaussian integral
(Tichonov and Samarskij, 1966):

∮

L

n′ · (r− r′)
|r− r′|2 d `′ =

��

@@

0, for P (r) ∈ Ext(L)

−π, for P (r) ∈ L
−2π, for P (r) ∈ Int(L) .

(33)

The case P (r) ∈ L of this formula provides us very good check of accuracy
of calculation of ω(Pj , Q`), because at calculation of weighting factors of the
B. I. E. (9) we must attain the control value:

M∑

`=1

ω(Pj , Q`)
.= −π, (34)

with accuracy better than 1%, otherwise we did not introduce fine enough
subdivision of the contour L, or in our program code we have another errors.
The second term in g1(r − r′) is function ln |r∗ − r′|−1 which is harmonic
function and from the Gaussian integral (33) follows its check value:

M∑

`=1

ω∗(P ∗j , Q`)
.= 0, (35)

because for ln |r∗−r′|−1 the point of view P ∗ ≡ (x,−z) lies in Ext(L). The
discretized form of B. I. E. (9) can be written in a classical system of M
linear equations:

M∑

`=1

C`j ·X` = bj , j = 1, 2, . . . ,M, (36)

where bj = 2β[V1(Pj)− v0], (37)

are elements of the right side vector (they represent the values of the exciting
potentials) on elements ∆`j . Elements of the matrix of the system (36) are:
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C`j = δ`j − βπ−1 · u(Pj , Q`), (38)

where δ`j is Kronecker’s symbol (δ`j = 1 if ` = j and δ`j = 0 for ` 6= j).
Values of (till) unknown function f(Q) collocated for centres of intervals ∆s`
are represented in elements of solution vector X` = f(Q`). The system of
equations (36) expresses that in each value f(Qj) are included contributions
from all M elements of the contour polygon. It is necessary to stress that
subdivision onto elements ∆s` must be dense enough, because the theory
of potential requires the continuity of f(Q) along L, which means that the
changes of neighbouring values f(Q`) should not be greater than 5–10%.
If this condition of “quasi continuity” is violated on some segment Tk we
must increase the number of subdivisions. Another check of accuracy is the
comparison of values of f(Q`) for gradually increased number of subdivision
(M), e.g. M = 50, 80, 120, 160 which is easily possible to perform on
contemporary PC-computers. As soon as the solution of (36) is performed
with satisfactory accuracy, we can calculate the approximations of potentials
by means of formulae (4a–c). From the practical needs there are more
necessary values of the intensity, especially of its anomalous part.

4. Calculation of the intensity of magnetic field outside of
perturbing body

According to the formula (2) there is necessary to calculate gradients of
the integral parts of potentials (4a–c) and derivatives we must perform with
respect to the co-ordinates x, z (undashed) of the point P . This derivation
must be applied at first to the kernel function

w(P,Q) =
∂

∂n′
ln

1
|r− r′| =

n′x(x− x′) + n′z(z − z′)
|r− r′|2 . (39)

We can easily find that there is

∂

∂x
w(P,Q) =

n′x
|r− r′|2

[
1− 2(x− x′)2

|r− r′|2

]
− 2n′z(x− x′)(z − z′)

|r− r′|4 , (40)

∂

∂z
w(P,Q) =

−2n′x(x− x′)(z − z′)
|r− r′|4 +

n′z
|r− r′|2

[
1− 2(z − z′)2

|r− r′|2

]
. (41)
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These weighting functions must be used for the calculation of the com-
ponents of magnetic field in region “0”, where the Green’s function is
F0 ln |r − r′|−1. We were not successful to find some reliable analytical
formula of integration of expressions (40), (41) for the general slope of ∆s`,
so we satisfied with difference approximations of derivatives (negative), cal-
culated from values of U ∗0 (P ), in the dense enough network of points x, z
outside of the perturbing body. In the points very distant from the per-
turbing body we can use the collocated approximations of the intensity. As
a measure of distance we can use the length D ≈ 3

√
S, from the centre of

the body, S is the size of Int(S). Then we have:

∆H∗0x(x, z) =̇−F0

2π

M∑

`=1

f(Q`)

{
n′x`

|r− r′`|2

[
1− 2(x− x′`)2

|r− r′`|2

]
−

− 2n′z`(x− x′`)(z − z′`)
|r− r′`|4

}
∆s′`, (42)

where (x, z) are co-ordinates of the calculation point P in the region “0” at
the distance greater than D.

∆H∗0z(x, z) =̇−F0

2π

M∑

`=1

f(Q`)

{
n′z`

|r− r′`|2

[
1− 2(z − z′`)2

|r− r′|2

]
−

− 2n′x`(x− x′`)(z − z′`)
|r− r′`|2

}
∆s′`. (43)

In these formulae we substitute |r− r′`|2 = (x− x′`)2 + (z − z′`)2.
In the region “1” outside of perturbing body we have Green’s function

g1(r, r′) = ln |r − r′|−1 + F1 ln |r∗ − r′|−1, so the expressions of ∆H1x and
∆H1z will be more complicated in comparison to (42) and (43). For this
reason we write their abbreviated expressions:

∆H∗1x(x, z) =
−1
2π

M∑

`=1

f(Q`)
∂

∂x

[
∂

∂n′
g1(r, r′)

]
∆s′` , (44)

∆H∗1z(x, z) =
−1
2π

M∑

`=1

f(Q`)
∂

∂z

[
∂

∂n′
g1(r, r′)

]
∆s′` , (45)
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while the more detailed expressions of these derivatives are similar to (42)
and (43).

5. Numerical calculation and discussion

Our numerical calculations we have performed for the calculation of the
anomalous magnetic fields ∆H0,1 for 2D bodies of two polygonal types:
a) unequilateral 10 vertices polygon,
b) the trapezoid (the valley or gallery).
The calculations were programed in the Fortran77 language. The perturbing
potential was calculated for 5–8 levels zm(m = 1, . . . , 8) and on each level
there was calculated potential U ∗0 (x, z) or U∗1 (x, z) with constant step ∆x,
i.e. for xn = x0 + n ·∆x+ ∆x/2, n = 0, Jmax. In a view of better accuracy
the potential was calculated for the two neighbouring levels to z = zm, i.e.
for the level zm−∆z and zm+∆z. Then we have necessary approximations
for x and z derivatives according to the rules of difference calculus:

(∂Ψ/∂x)≈ (1/2) [Ψ(x+ ∆x/2, z −∆z)− Ψ(x−∆x/2, z −∆z)+

+ Ψ(x+ ∆x/2, z+ ∆z)−Ψ(x−∆x/2, z+ ∆z)] /∆x , (46)

(∂Ψ/∂z)≈ (1/4) [Ψ(x−∆x/2, z + ∆z)− Ψ(x−∆x/2, z −∆z)+

+ Ψ(x+ ∆x/2, z+ ∆z)−Ψ(x+ ∆x/2, z−∆z)] /∆z . (47)

The grid of calculation points around the point x, z is sketched in the Fig. 4.
It is clear that steps ∆x and ∆z must be adopted to the horizontal (Lx)
and vertical (Lz) dimensions of the body: ∆x ≤ Lx/10 and ∆z ≤ Lz/10. By
means of application of these difference formulae onto anomalous potentials
U∗0 (x, z) or U1(x, z), we calculate components of anomalous intensity ∆H0,1

and by addition of the unperturbed magnetic field and multiplication with
permeability we obtain the resulting magnetic induction

B0,1 = µ0,1H0,1 . (48)

Then we calculate the values of the total magnetic field

∆T = |B0,1| − |Bn| , (49)
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(x − ∆x/2, z − ∆z) (x + ∆x/2, z − ∆z)

(x − ∆x/2, z + ∆z) (x + ∆x/2, z + ∆z)

z − ∆z

z + ∆z

(x, z)

Fig. 4. Rectangular grid pattern for approximative calculations of x,z derivatives of
magnetic potential.

as well as the anomaly of inclination

∆I = arctg(Bz/Bx)− I0 , (50)

where Bn is the vector of normal induction and I0 its inclination. In our
numerical calculations we adopted the susceptibility of rocks in lava field
(halfspace “1”) to be κ1 = 0.01 SI and two values of susceptibility κ2 for
perturbing body κ2 = 0.05 SI (increased susceptibility) or κ2 = 0.001 SI (low
susceptibility) so we have µ1 = µ0(1 + κ1), µT = µ0(1 + κ2). The results of
the numerical calculations we plotted in curves of ∆T and ∆I , together with
the cross-sections of the body. The dimensions of the body “2” were normed
to lengths d∗, h∗ (given in meters in figures), the horizontal co-ordinate x
was normed to d∗, while h∗ = 1

2 [(zk)max + (zk)min], d∗ = Max (h∗, x), where
x = (xk)max − (xk)min. The form of the body was normed to the common
scale d∗, in order to have the undeformed shape of polygon L.

As a first model we calculated the effect of the 2D body with circum-
ference given as 10-corner polygon depicted in the bottom of Figs 5a, b.
The lower boundary of this polygon is in the depth 1200 m, the span in
x direction is 1800 m. The broken top boundary of the polygon lies in
depths 300 to 400 m. The magnetic effect ∆T and ∆I we calculated for
levels z/h∗ = −0.08,−0.04, 0.0, 0.04, 0.08, 0.12, which are identical with le-
vels z = −60,−30, 0, 30, 60, 90m. The profile curves ∆T plotted in Fig. 5a
quite expressively reflect the relief of the upper boundary, while the va-
lues of ∆T reach about 400 nT in region x < 0 (incident part), where the
anomalous magnetic field increases the primary field. From this maximum
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Fig. 5a. Profile anomalies of ∆T and ∆I for the polygonal (10-vertex) body with increased
permeability µT = µ0(1 + κ2). The permeability of surrounding halfspace is µ1 = µ0(1 +
κ1).
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Fig. 5b. The same as Fig. 5a, but the body has decreased permeability.
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Fig. 6a. Profile anomalies of ∆T and ∆I for the trapezoidal body with increased perme-
ability µT = µ0(1 + κ2). The permeability of surrounding halfspace is µ1 = µ0(1 + κ1).

369
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Fig. 6b. The same as Fig. 6a, but the body has decreased permeability (e.g. non-magnetic
gallery).
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values ∆T decrease to minimal values in the “leeward” side ∆T ≈ −50 nT,
which is due to the opposite direction of the perturbing magnetic field to
the normal one. The Fig. 5b shows the opposite anomalies for the prism
with low susceptibility κ2 = 0.001. The course of curves is nearly mirrored
in comparison to the curves in Fig. 5a, but their extremes are lower. These
general properties of magnetic anomalies ∆T above the 2D prism are known
e.g. (Logachev and Zacharov, 1979; Telford et al., 1976), but our results
for more complicated cross-sections explain some irregularities due to the
non-planar shape of L, namely when they are closer to the surface. Similar
calculations we performed for trapezoidal 2D body, located more close to
the surface, results are presented in Figs 6a, b.

This trapezoidal model we chose as the general 4-corner polygon, situated
near the surface of the earth, with the dimensions of few meters. The curves
in Fig. 6a represent the effect of shallow magnetic intrusion, while Fig. 6b
approximates the effect of a non-magnetic cavity, e.g. gallery. We can see
that this shallow body creates magnetic anomalies of few nanoTeslas, which
are measurable by the proton magnetometer.

Very interesting feature of all inclination anomalies (about ±20 angle
minutes) given in Figs 5–6 is the shift of this curves in region z < 0 (over
halfspace) as compared with the curves ∆I inside the halfspace. The reason
of this effect lies in (small) higher susceptibility of the halfspace κ1 = 0.01 SI
and the higher or lower susceptibility κ2 gives further anomaly.
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