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Analytical model of the surface
displacement and gravity changes due to
the point source of the heat in the
viscoelastic halfspace with topography

L. Brimich
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : In the paper a method for including topographic effects in a thermo-
viscoelastic model was described. An approximate methodology for the consideration of
topography in the computation of thermo-viscoelastic displacement and gravity changes
was used. On that way we allow to obtain a relatively general and simple solution useful
for solving the inverse problem.
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1. Introduction

A magma intrusion in the Earth’s crust will cause effects (for example
deformation and gravity changes) related to its mass as well to the pressuri-
zation of the chamber due to overfilling or temperature changes. The source
of deformation is hypothesized as a hydrostatic pressure source, embedded
in a homogeneous elastic half-space. The pressure source is considered as a
strain nucleus, i.e., a point like a source with radial expansion, that is simi-
lar to the inflation of a spherical cavity. A finite source can be satisfactorily
approximated by a point source, provided that the source dimensions are
small with respect to source depth.

The theory of the thermoelastic phenomena shows that thermo-elastic
stresses and deformations can arise in an elastic continuum if an inhomo-
geneous temperature field exists in the media (see e. g., Nowacki, 1962).

1 Dúbravská cesta 9, 845 28 Bratislava, Slovak Republic; e-mail: geofbrim@savba.sk

331



Brimich L.: Analytical model of the surface displacement. . . , (331–343)

That is the reason, Hvoždara and Rosa (1979, 1980) carried out a theo-
retical analysis of thermo-elastic deformations of a homogeneous half-space
due to a point or linear source of heat, located at a particular depth in
the half-space. They proved that thermo-elastic stresses are on expansive
type and that they considerably disturb the normal lithostatic stress, spe-
cially near the surface of the half-space. Hvoždara and Brimich (1991)
presented basic formulae and the results of numerical calculations for the
simplified mathematical models of two important effects due to magmatic
bodies in the Earth’s lithosphere: a) static thermoelastic deformations, b)
static elastic deformations due to upward pressure. The thermo-viscoelastic
deformation field due to a source of heat of prismatic shape embedded in
a viscoelastic half-space and the formulae for the gravity changes due to
the volume dilatation connected with the deformation field are derived in
Brimich (2000). Folch et al. (2000) obtained and compared analytical and
numerical solutions for ground displacement caused by an overpressurized
magma chamber placed in a linear viscoelastic media composed by a layer
over a half-space. Different parameters such as size, depth or shape of the
chamber, crustal rheologies or topography are considered and discussed.
The effect of the topography is also considered. Fernández et al. (2001)
presented a method extension of a deformation model previously developed
to compute effects due to volcanic loading in elastic-gravitational layered
media (Rundle, 1982, 1983; Fernández and Rundle, 1994; Fernández et
al., 1997), for the computation of time-dependent deformation, potential
and gravity changes due to magmatic intrusions in a layered viscoelastic
medium. They assumed a plane Earth geometry consists of welded elastic
and viscoelastic layers overlying a viscoelastic half-space. They found that,
in line with prior results obtained by other authors (see e.g., Bonafede et
al., 1986), introducing viscoelastic properties in all or part of the medium
can extend the displacements and gravity changes considerably, and there-
fore lower pressure increases are required to model given observed effects.
The approximation of Earth’s surface as flat and use half-space solutions
can lead to erroneous interpretation of the deformation data (see e.g., Cayol
and Cornet, 1998; Williams and Wadge, 1998, 2000; Folch et al., 2000).
Williams and Wadge (1998, 2000) and Cayol and Cornet (1998) pointed
that topography has a significant effect on predicted surface deformation by
elastic models in regions of significant relief. We used the methodology de-
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scribed in Williams and Wadge (1998) to introduce the topographic effects
in the thermo-elastic and thermo-viscoelastic models we still get analyti-
cal solutions. The advantage of this assumption is something very clear, it
allows to obtain a relatively general and simple solution useful for solving
the inverse problem (see e.g., Michalewicz, 1994; Yu, 1995; Yu et al., 1998;
Tiampo et al., 2000).

2. Thermo-viscoelastic deformation model

Elastic and thermoelastic models have allowed an explanation of the mea-
sured geodetic data in many volcanic regions, particularly when movements
occur on relatively short timescales. The time evolution of heating of the
halfspace (lithosphere) and associated deformation with it can be mathe-
matically calculated by means of the theory of thermo-viscoelastic defor-
mation. We consider a non-steady point source of heat located at depth
ζ in the viscoelastic halfspace z > 0. For the uncoupled thermoviscoelastic
problem, the temperature disturbance field T (x, y, z, t) due to this source
must obey the equation (Nowacki, 1962):

λT∆2T + wδ(x)δ(y)δ(z− ζ)H(t) = cpρ
∂T

∂ t
, (1)

where λT is heat conductivity, cp is specific heat under constant pressure, ρ
is the material density, w is the power of heat source, δ is the Dirac function,
H(t) is Heavside’s unit step function:
H(t) = 0 for t < 0,
H(t) = 1 for t > 0.
If the surface of the halfspace is kept at a constant temperature, which can
be taken to be zero, then we have the boundary condition on the surface
z = 0:

T (x, y, z, t)|z=0 = 0 . (2)

Considering the initial temperature disturbance in all points of the halfspace
as zero, we obtain the initial condition for t = 0:

T (x, y, z, t)|t=0 = 0 . (3)
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Then, the solution of Eq. (1) under the boundary and initial conditions, is
obtained in the form (Carslaw and Jaeger, 1959):

T (r, z, t) =
w

4πλT

{
R−1

1 erfc

(
R1√
4κt

)
− R−1

2 erfc

(
R2√
4κt

)}
, (4)

where R1 = [r2 + (z − ζ)2]1/2;R2 = [r2 + (z + ζ)2]1/2, with r = (x2 + y2)1/2

being the horizontal distance from the polar axis z and κ = λT/(cpρ). The
complementary error function erfc(s) is defined by:

erfc(s) = 1− 2√
π

s∫

0

e−u
2
du . (5)

The time and space variable temperature disturbance causes variable stresses
and displacements. Since the process of temperature change is much slower
in comparison with the propagation time of elastic waves, it is sufficient to
consider the static equilibrium equation for a viscoelastic body:

3∑

j=1

∂σij
∂xj

= 0 i = 1, 2, 3 , (6)

where σij is the viscoelastic stress tensor. In the purely elastic case the
components σij are given by the Duhamel-Neumann relation, but in the
viscoelastic case the stress-strain relations are given by more complicated
formulae (Nowacki, 1962).

In order to obtain the actual temporal behaviour of the displacements
and stresses we have to Laplace transform these quantities. The detailed
calculation was performed in Hvoždara (1992).

The calculation was performed for a Kelvin body, for which the genera-
lized Duhamel-Neumann relation has the form:

σij(xr, t) = 2µ
(

1 + t∗
∂

∂t

)
eij(xr, t) + δij

{
1
3

[
3K − 2µ

(
1 + t∗

∂

∂t

)
Θ(xr, t)

]

− 3KαTT (xr, t)
}
, (7)

where eij is the strain tensor, µ is the modulus of rigidity (the Lamé con-
stant), K = λ+ 2µ/3 is the bulk modulus, t∗ = η/µ is decay time, η being
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the viscosity of material, αT is the thermal coefficient of the linear expansion
and Θ(xr, t) is dilatation.

For the time dependance of displacements u and stresses σ on the sur-
face of the viscoelastic half-space we have the following formulae (Hvoždara,
1992):

ur(r, 0, t) =
Qr

π

t∫

0

V (t− τ)S1(r, τ)dτ,

uz(r, 0, t) =− Q
2π



ζR

−3
0 b(t) +

2ζ√
π

t∫

0

b(t− τ)τ−1(4κτ)
−3
2 e

(
−R2

0
4κτ

)
dτ−

−
t∫

0

W (t − τ)S2(r, τ)dτ



 , (8)

σrr(r, 0, t) =
2Q
π





t∫

0

B(t − τ)S0(r, τ)dτ −
t∫

0

U(t− τ)S1(r, τ)dτ



,

σϕϕ(r, 0, t) =
2Q
π





t∫

0

N(t− τ)S0(r, τ)dτ +

t∫

0

U(t− τ)S1(r, τ)dτ



.

The meaning of the symbols in Eqs (8) is detailed described in (Hvoždara,
1992).

In addition we can calculate the perturbation of gravity due to a point
source of heat. There are two principal reasons for the gravity changes.
The first one is the change of density ρ0 by the increment of ∆ρ due to
volumetric dilatation. The density change ∆ρ generates perturbation of the
gravity potential, which for z ≥ 0 obeys the Poisson equation. For z < 0 this
potential satisfies Laplace equation, i.e., it’s an harmonic function. Brimich
(1998) obtained the following formula for the gravity anomaly:

∆gTVE(r, 0, t) =
1
2
Gρ0Q



W (t)

−ζ
R3

0
+ 2ζ

t∫

0

W2(t− τ)
e−R

2
0/(4κτ)

(2κτ)
√

4πκτ3
dτ



, (9)
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where G = 6.67 × 1011kg−1m3s−2 is gravity constant and the meaning of
the other symbols in Eq. (9) is detailed described in Brimich (1998) . The
second reason for the gravity changes is the free-air change and Bouguer
correction as an effect of vertical uplift of the surface above the source of
heat. The gravity effect due to the upward doming of the surface of the
Earth, that originally was the plane z = 0, is given by the sum of the
free-air change of gravity and the Bouguer correction:

∆gFAB = [−γFA + 2πGρ0]h(r), (10)

where h(r) = −uz(0, r, t) is the doming, i.e., the vertical uplift, and γFA =
3.086× 10−6 ms−2/m is the vertical gradient of normal gravity and 2πGρ0

is the Bouguer correction.

3. The effect of topography

In this chapter the effect of the topography on the surface displacements
and gravity changes obtained by the thermo-viscoelastic model described
above is investigated. We propose a simple method of evaluating the to-
pographic effects in three-dimensional deformation model that consists of
assuming a different source depth at each point for which a solution is de-
sired. This methodology was introduced by Williams and Wadge (1998) and
permits that we still have analytical solutions even if we relax the restriction
of a free flat surface. The analytical solutions are useful for solving of the
inverse problem and avoid to include numerical models that can be time
consuming. Therefore, we allow magma chamber depth to vary with topog-
raphy, thus in the equations (8), (9) and (10) ζ is replaced by ζ ′ = ζ + H ,
where H is the point elevation we want to obtain the viscoelastic defor-
mation and gravity changes. If the topographic effect is due primarily to
the distance of the free surface from magma chamber rather than the lo-
cal shape of the free surface, this methodology comes near the actual case
(Williams and Wadge, 1998, 2000). To study the effect of the topography
the relief of an area can be represented by a volcanic cone with height H
and average slope of the flanks α. We consider the surface displacements
and respective gravity changes caused by a point source of heat located
beneath an axisymmetrical volcano with average slopes of their flanks of
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0◦, 15◦, 20◦, and 30◦. The volcano models with slopes of 15◦ and 20◦ are
representative of basaltic shield volcanoes, whereas the volcano models with
slopes 30◦ are representative of andesitic volcanoes. Schematic illustration
of the problem is given in Fig. 1. The effect of the topography is neglected
when α = 0(H = 0). The rheological behaviour of the crust is represented
by a homogeneous halfspace Kelvin’s type with Lamé parameters λ and µ
with the topography characterized by the same parameters. As a reference
model we have used a point source of heat at the depth ζ = 2 km, its in-
tensity (power) w = 2.6384× 107W in order to achieve the epicentral heat
flow anomaly qz(0) = 42 mW/m2, since qz(0) = w(2πζ2)−1. The density
and elastic parameters of the halfspace and the thermal parameters of the
medium are following:

Fig. 1. Characteristics of the model used to determine influence of the topography on the
surface displacements.
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λ = 7.05× 1010 Pa
µ = 6.075× 1010 Pa
K = 1.11×1010 Pa
ν = 0.26857
ρ = 3000 kgm−3

λT = 3 Wm−1K−1

cp = 840 Jkg−1K−1

α = 10−6K−1

We set the decay time for the Kelvin’s type of the viscoelastic body as
t∗ = 3.3× 1012s, where t∗ = η/µ and η is the mean viscosity of the crustal
rocks. The results for the depth ζ = 2 km (tκ = 8.37× 109 s) are presented
in Figs 2 to 4. The results are compared with the flat-surface solution given
by the analytical method. The curves for t/tκ = 0.5, 1.0, 2.0, 3.0, 5.0, 7.0 gra-
dually approach the curves that were calculated by means of the formulae
for the stationary thermoelastic problem (Hvoždara and Brimich, 1991).
We can see that the displacements and gravitational anomalies approach
their static values slowly, because of the viscoelastic behaviour of the half-
space, which is mathematically expressed by the convolution integrals in
the previous chapter. As it is pointed out by others authors, the principal
effect of topography is a reduction of vertical displacement and total gravity
anomaly magnitudes due to a the greater distance from the source to the
free surface (the steeper the volcano, the flatter displacement field and gra-
vity change). Fig. 4 shows that the topography effect changes the pattern
of the total gravity anomaly, too. Vertical displacements and total gravity
changes are mostly influenced by the topographic effect thus neglecting the
topography may lead to a mis-interpretation of the volume change of the
source. We observe in our results that, as Folch et al. (2000), the effects of
the topography are dramatically emphasized in the viscoelastic case.

4. Conclusions

The results show that the thermo-viscoelastic solution gradually ap-
proach the solution got for the stationary problem (thermo-elastic solution).
The models used to interpret the geodetic data measured in volcanic areas,
typically compute the deformation field and gravity changes at the surface
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Fig. 2. Thermo-viscoelastic vertical displacement in meters computed for different time
values and considering (a) a flat surface, and (b)-(d) axis-symmetric volcanic cone with an
average slope of the flanks of 15◦, 20◦ and 30◦, respectively. tκ is the decay time defined
in the text.
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Fig. 3. Thermo-viscoelastic radial displacement in meters computed for different time
values and considering (a) a flat surface, and (b)-(d) axis-symmetric volcanic cone with
an average slope of the flanks of 15◦, 20◦ and 30◦, respectively. tκ is the decay time
defined in the text.
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Fig. 4. Thermo-viscoelastic gravity changes in ms−2 computed for different time values
and considering (a) a flat surface, and (b)-(d) axis-symmetric volcanic cone with an ave-
rage slope of the flanks of 15◦, 20◦ and 30◦, respectively. tκ is the decay time defined in
the text.
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of an elastic halfspace due to a point source at depth and assume that
topography does not significantly affect the results. Considering previous
results obtained by other authors for elastic (Williams and Wadge, 1998,
2000; Cayol and Cornet, 1998) and viscoelastic media (Folch et al., 2000)
we have included topographic effects in the thermo-viscoelastic model. We
have used an approximate methodology. This methodology permits we still
have an analytical solution that allows to solve the inverse problem. With
the methodology described above we can observe the reduction of vertical
displacements in regions with higher topography due to the greater distance
from the source of heat to the free surface. In volcanic areas of greater relief
the perturbation of the thermo-viscoelastic solution (deformation and total
gravity anomaly) due to topography can be quite significant. Therefore we
have demonstrated that the topography may significantly affect the surface
displacements and gravity changes computed for a magma chamber repre-
sented by a heat point source. Thus we can conclude that any model that
neglects the topographic effect could cause a significant error in the estima-
tion of surface displacements and gravity changes, or in the determination
of the characteristics of the intrusion if we use the model to solve the inverse
problem.
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