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Fourier family match on an elastic
rectangle under its own weight

M. Bednárik, I. Kohút
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : Surfaces of many structures in the scope of earth sciences contain sharp
edges and corners where mechanical stress concentrates, and where not only the real
material but also the mathematical methods of displacement or stress field investigation
are most likely to fail, or, as for the latter, to have at least some difficulties. How do the
methods of the Fourier family perform in such situations? We gathered some of them
for a friendly match in solving the 2D biharmonic problem in a linearly elastic rectangle
under its own weight. The prize is quite strange – the winner shall become a referee for
future (mis)matches with other methods like finite element method.

Key words: plane strain, biharmonic equation, method of homogeneous
solutions, method of superposition

1. Introduction

In our studies of the cavity effect and deformation of speleothems, we
were often looking at the results of plane strain finite element method (FEM)
computations with quite a big deal of mistrust. Is that islet of unexpected
values a real thing or just an artifact? There are various methods to estimate
the error in discrete methods, but, as we think, the most persuasive means
is the direct comparison with the analytical reference solution. Of course,
for complicated geometries, it is too hard to find. So, we have to find a
domain easy to describe, nevertheless interesting enough, for which we can
find the analytical solution(s) of our problem, make comparisons with FEM,
and take lessons before going to more realistic geometries. The rectangle is
an ideal playground, for a long time and often visited, yet still interesting
(Meleshko, 1995).

In many civil engineering textbooks on linear elasticity, too many times
some magic sentences like “according to the Saint-Venant principle” or
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“let us neglect the own weight of the beam” appear in solved examples.
(Un)fortunately, in geoscientific linear elasticity problems, the neglection of
gravity is rarely possible. Own weight is, however, really not a thing to
be afraid of. In fact, the own weight problems are, as we will show, a nice
example of those where polynomials can be very helpful.

2. A fair match

Before introducing in detail the analytical methods of the Fourier family
used here, we have to say, that they are approximate and discrete in some
sense as well. From the point of view of signal processing theory, they are
based on sampling (and then reconstructing) of the continuous functions
(from samples taken) at fixed points in the frequency domain.

Whichever Fourier method we use, it will necessarily lead to solving
a finite system of linear algebraic equations, as it is in ‘purely’ discrete
methods.

Not the number of unknowns but the number of rows of the system
– the same as number of samples – is the most important criterion of the
fairness of the contest between different methods. Indeed, of the information
available, Fourier methods first process as big a part as possible analytically.
The remainder of the information has to be sampled and the amount of this
discrete information – the number of samples – has to be kept constant in
all the methods.

After the back-substitution of the Fourier series coefficients found by
the solution of the linear system, we obtain an analytical approximation
to the solution of the problem. It differs from the ideal solution due to the
combined (acting against each other) effects of the omission of the terms out
of the frequency range of our interest, and a partial compensation of their
input to the solution by slightly wrong (with respect to the ideal solution)
values of coefficients with the terms within our frequency range.

3. The statement of the problem

Let us have an isotropic linearly elastic body, characterized by density ρ,
Young modulus E, and Poisson number ν, in the form of rectangular par-
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allelepiped of infinite length and of rectangular perpendicular cross-section
with dimensions 2a × 2b. Let us have gravity ~g = {gx, gy, gz} perpendic-
ular to two of its faces with the width 2a (Fig. 1). Into the center of a
cross-section, we introduce a cartesian coordinate system with z-axis pa-
rallel to the length of parallelepiped and y-axis parallel to ~g. With this
setting, of gx, gy, gz only gy 6= 0 and we will denote it g. Satisfying the (to
be given later) boundary condition, we shall find displacements in x and y
directions ux, uy and stresses τxx, τyy , τxy in the rectangular cross-section
perpendicular to z.

Fig. 1. The rectangular cross-section and the coordinate system setting.

This is the plane strain problem, for which

εxz = 0, εyz = 0, εzz = 0, τxz = 0, τyz = 0, τzz = ν(τxx + τyy) 6= 0

where εij and τij are components of the strain and stress tensors, respec-
tively.

The remaining stresses have to satisfy the equations of equilibrium in x
and y direction, respectively:

∂τxx
∂x

+
∂τxy
∂y

= 0,
∂τxy
∂x

+
∂τyy
∂y

+ ρg = 0, (1)

As
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εxx =
∂ux
∂x

, εyy =
∂uy
∂y

, εxy =
1
2

(
∂ux
∂y

+
∂uy
∂x

)
, (2)

the strain compatibility equation

∂2εxx
∂y2 +

∂2εyy
∂x2 = 2

∂2εxy
∂x∂y

(3)

is satisfied identically for any ux, uy for which the respective third deriva-
tives exist. Thus, it looks quite convenient to solve the problem first in dis-
placements, and then to differentiate them to get the stresses from Hooke’s
law, which takes, in the plane strain case, the form of:





τxx
τyy
τxy





=
E

1 + ν




1− ν
1− 2ν

ν

1− 2ν
0

ν

1− 2ν
1− ν
1− 2ν

0

0 0
1
2








εxx
εyy
2εxy




, or





τxx
τyy
τxy





=



λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ








εxx
εyy
2εxy




,

(4)

where λ = νE
(1−2ν)(1+ν) and µ = E

2(1+ν) are Lamé constants.
Substituting (2) into (4) and subsequently the result into (1), we obtain

for ux, uy the partial differential equations to be solved:
[
2(1− ν)

∂2

∂x2 + (1− 2ν)
∂2

∂y2

]
ux +

∂2uy
∂x∂y

= 0 , (5a)

∂2ux
∂x∂y

+

[
(1− 2ν)

∂2

∂x2 + 2(1− ν)
∂2

∂y2

]
uy +

2(1− 2ν)(1 + ν)ρg
E

= 0 . (5b)

In accordance with Rekach (1977, p. 81), we will be looking for ux, uy ,
and τxx, τyy , τxy in the form:

ux =
1

1− ν
∂2ϕ

∂x∂y
, (6a)
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uy = −2
∂2ϕ

∂x2 −
1− 2ν
1− ν

∂2ϕ

∂y2 , (6b)

τxx = E

(
1

1 + ν

∂3ϕ

∂x2∂y
− ν

1− ν2

∂3ϕ

∂y3

)
, (6c)

τyy = −E
(

2− ν
1− ν2

∂3ϕ

∂x2∂y
+

1
1 + ν

∂3ϕ

∂y3

)
, (6d)

τxy = E

(
ν

1− ν2

∂3ϕ

∂x∂y2 −
1

1 + ν

∂3ϕ

∂x3

)
, (6e)

where ϕ is not the Airy stress function, but a function with a similar role
with respect to the displacement.

With (6a,b), equation (5a) is satisfied identically. From (5b) we will get
the biharmonic equation with non-zero right-hand side:

∂4ϕ

∂x4 + 2
∂4ϕ

∂x2∂y2 +
∂4ϕ

∂y4 =
(1 + ν)ρg

E
=
ρg

2µ
. (7)

Let us compose ϕ traditionally of ϕ0 + ϕg such that

∂4ϕ0

∂x4 + 2
∂4ϕ0

∂x2∂y2 +
∂4ϕ0

∂y4 = 0 , (8a)

∂4ϕg
∂x4 + 2

∂4ϕg
∂x2∂y2 +

∂4ϕg
∂y4 =

(1 + ν)ρg
E

. (8b)

The particular solution ϕg shall be chosen to satisfy identically, besides of
(8b), only some of the boundary conditions, and fail – the more the better
– to satisfy the remaining boundary conditions. The difference between the
desired satisfaction of the latter boundary conditions by ϕ and the actual
non-satisfaction of the same by ϕg will be input into the process of solving
(8a) as the prescribed (nonzero) boundary conditions for ϕ0 – the loading
functions. The homogeneous solution ϕ0 must be of course construed to
satisfy identically a subset of the boundary conditions identically satisfied
by ϕg.
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In the sequel, we shall:
− denote displacements and stresses corresponding to the particular own-

weight solution ϕg with an additional subscript “g” for general or con-
stant gravity and “glin” for linear gravity, e.g. ux g, uy g,

− leave the displacements and stresses corresponding to homogeneous so-
lution ϕ0 without any additional subscript, e.g. ux, uy,

− add an extra subscript “t” to denote the total displacements and stresses
corresponding to the solution ϕ, e.g. uxt, uyt.

4. The own weight

In the case of constant ρg, we do not need to solve (8b) in order to
find the loading functions. Instead, it is more efficient to guess directly the
(polynomial) formulas for displacements or stresses, with some constants
left to be determined after the substitution of such solutions into (1).

One can try to find an explicit formula of ϕg(y) for some (ρg) (y) as
well. In a solved and commented example problem in section 8, we will,
for constant ρ and linear g(y), find ϕglin polynomial in y. For arbitrary
(ρg)(x, y), we cannot give a simple recipe, thus we will not treat this general
case here.

In our small dimensions applications (tidal deformations at the site, seis-
mometry of speleothems), the gravity g can be considered as spatially con-
stant.

5. The boundary conditions

We will here restrain ourselves to symmetrical problems, where ϕ is an
even function of both x and y. It is advisable to choose an even ϕg. Then
the homogeneous solution ϕ0 is even, too, and its general form (which differs
from method to method) is simple and easy to handle. For a constant body
force ρg, symmetry of ϕ is achieved if the geometry of the domain, and
of the boundary conditions, is symmetric. This requires to prescribe the
same boundary conditions for the opposite sides of the rectangle. They are
ready to be formulated after the substitution of the assumed general form of
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ϕ0 into the formulas (6a,b) for displacement boundary conditions, and into
(6c,d,e) for stress boundary conditions. Due to the symmetry, it is enough
to make use of the boundary conditions for the halves of the two adjacent
sides.

Even though the mixed stress-displacement boundary problem is the one
most often encountered in reality, we will select for our method contest a
pure displacement boundary problem (zero displacements all around). The
main reason is to have an interesting contest – with this setting, we will
have a more narrow winner.

In the method of superposition, and in the method of homogeneous so-
lutions, as ϕ0 satisfies the biharmonic equation identically for any values
of the Fourier coefficients, the only criterion of the quality of the solu-
tion is the satisfaction of boundary conditions. Therefore, in section 10 we
will construct plots showing the fulfillment of the boundary conditions all
around the boundary calling them boucograms. They will be the strongest
indicators of who the winner is.

6. Method of homogeneous solutions

A very compact and useful user instruction to this method can be found
in Rekach (1977, pp. 81-82). Where possible, we will use the same notation.

Let us choose the particular solution

ϕg =
ρg

µ

(
y4

48
− b2y2

8

)
,

which satisfies

ux(x, b) = −ux(x,−b) = 0, uy(x, b) = uy(x,−b) = 0,

and search for the approximate homogeneous solution of the boundary prob-
lem

ux(x, b) =−ux(x,−b) = 0, uy(x, b) = uy(x,−b) = 0,

ux(a, y) =−ux(−a, y) = −ux g(a, y) = 0, uy(a, y) = uy(−a, y) = −uy g(a, y),

in the form:
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ϕ0(x, y) =
N∑

n=1

(An cosh kny + Dny sinh kny) cos knx, (9)

where kn, An, Dn are constants to be determined. The assumed homoge-
neous solution (9) identically satisfies the homogeneous biharmonic equation
(8a) and is even in x and y.

The respective displacements are:

ux(x, y) =
−1

1− ν
N∑

n=1

kn
[
(knAn + Dn) sinh kny +

+ knDny cosh kny
]

sin knx (10a)

uy(x, y) =
1

1− ν
N∑

n=1

kn
[
(knAn − 2(1− 2ν)Dn) cosh kny +

+ knDny sinh kny
]

cosknx (10b)

Let us formulate the boundary conditions to be satisfied identically:
ux(x, b) = −ux(x,−b) = 0, uy(x, b) = uy(x,−b) = 0, denoting knb = κn:

{
0

0

}
=

[
kn sinh κn sinknx (κn cosh κn + sinh κn) sinknx

kn cosh κn cos knx (κn sinhκn − 2(1− 2ν) coshκn) cos knx

]{
An

Dn

}
.

We will get nonzero solution either for kn = 0 (corresponds to a needless
constant term in ϕ0) or κn satisfying the characteristic equation

det

[
sinh κn κn cosh κn + sinh κn
coshκn κn sinh κn − 2(1− 2ν) coshκn

]
= 0,

which gives after some arrangement:

2κn = −(3− 4ν) sinh 2κn. (11a)

The corresponding solution is then:

Dn = − Ankn sinh κn
κn cosh κn + sinh κn

.
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With the introduction of rn = Re κn, pn = Im κn, the characteristic equation
(11a) can be split into two equations for real and imaginary parts:

2rn
sinh 2rn

= −(3− 4ν) cos 2pn and
2pn

cosh 2rn
= −(3− 4ν) sin 2pn, (11b)

whence pn can be eliminated:

pn = ±1
2

√
(3− 4ν)2 − 4r2

n

sinh2 2rn
cosh 2rn, (12a)

Besides of this equation, we have to, for the determination of rn, keep
both the equations (11b), i.e. after the elimination of pn:

2rn
sinh 2rn

= −(3− 4ν) cos

(√
(3− 4ν)2 − 4r2

n

sinh2 2rn
cosh 2rn

)
, (12b)

√
(3− 4ν)2 − 4r2

n

sinh2 2rn
=

= −(3− 4ν) sin

(√
(3− 4ν)2 − 4r2

n

sinh2 2rn
cosh 2rn

)
. (12c)

The reason becomes fully apparent by examining the graphs of (12b,c) in
Fig. 2: Only even roots of (12b) (or odd roots of (12c)), marked by grey
dots, correspond to the roots κn = rn + jpn of the characteristic equation
(11a).

The roots of (12b) or (12c) can be found numerically. Of these two, it is
more reliable to search for roots of (12b) and then to pick up every second
one. We used for it the Mathematica 4 implementation of damped Newton’s
method with the default settings.

After the substitution of the solutions into (9) and (10) we have

ϕ0(x, y) =
N∑

n=1

An

(
cosh

κny

b
− κny

b

sinhκn sinh κny
b

κn cosh κn + sinh κn

)
cos

κnx

b
,
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Fig. 2. Search for the real part of the roots of the characteristic equation for ν = 0.31 in
the method of homogeneous solutions of the zero-displacement boundary problem.

and

ux(x, y) =
1

1− ν
N∑

n=1

An
κ2
n

b2




κny

b
cosh

κny

b
sinh κn

κn coshκn + sinhκn
−

−
κn coshκn sinh

κny

b
κn coshκn + sinh κn


 sin

κnx

b
, (13a)

uy(x, y) =
1

1− ν
N∑

n=1

An
κ2
n

b2



κn cosh κn cosh

κny

b
κn cosh κn + sinh κn

+

+

(
(3− 4ν) cosh

κny

b
− κny

b
sinh

κny

b

)
sinhκn

κn cosh κn + sinh κn


 cos

κnx

b
. (13b)
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Now the task is to find such values of coefficients An, that would achieve
the best possible approximation to the fulfillment of the boundary condi-
tions ux(a, y) = −ux g(a, y) and uy(a, y) = −uy g(a, y). There are basically
two approaches to it: either to take samples of −ux g(a, y) and −uy g(a, y)
directly in spatial domain, as proposed in Rekach (1977, pp. 81-82), or
to expand ux(a, y), uy(a, y), −ux g(a, y), −uy g(a, y) into ordinary Fourier
series, thus taking samples in the frequency domain.

In the case of direct sampling, one has to avoid taking samples of ux(a, y)
in, or very near, the points where ux(a, y) = 0 regardless of An – i.e., in the
corner and in the midpoint of the side.

As for the sampling in frequency domain, the nature of the expected final
solution (Fig. 3) suggests the expansion of ux(a, y) and −ux g(a, y) into series
in sin(lπy/b) and of uy(a, y) and −uy g(a, y) into series in cos[(2m−1)πy/2b]
(l, m are natural) as the best option. Paradoxically, as we will show in
numerical results, the opposite (in arguments) is true!

7. Method of superposition

A well comprehensible explanation of this method can be found in Me-
leshko (1995). In the application to our case we will closely adhere, with
some exceptions in favour of the coherence of our paper, to his notation.

We will use the same particular own-weight solution ϕg with correspond-
ing displacements uxg, uy g as in the method of homogeneous solutions.
Let us search for the homogeneous solution of the same boundary prob-
lem ux(x, b) = −ux(x,−b) = 0, uy(x, b) = uy(x,−b) = 0, ux(a, y) =
−ux(−a, y) = −ux g(a, y) = 0, uy(a, y) = uy(−a, y) = −uy g(a, y) in the
form:

ϕ0(x, y) =− 1− ν
2 (1− 2ν)

C0y
2 −

−
∞∑

n=1

(
Anαnx

sinhαnx
sinhαna

+ Cn
coshαnx
sinhαna

)
cosαny
α2
n

− D0x
2

4
− (14)

−
∞∑

m=1

(
Bmβmy

sinh βmy
sinh βmb

+Dm
cosh βmy
sinh βmb

)
cosβmx
β2
m

,
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where αn = nπ/b, βm = mπ/a, and An, Bm, Cn, Dm are constants to be de-
termined, which identically satisfies the homogeneous biharmonic equation
(8a) and is even in x and y.

Let us denote −uy g(a, y) = f(y). For the chosen ϕg, −ux g(a, y) = 0.
We shall expand f(y) into Fourier series

f(y) = f0 +
∞∑

n=1

(−1)nfn cosαny, (15)

where

f0 =
1
2b

b∫

−b

f(y)dy, fn =
(−1)n

b

b∫

−b

f(y) cosαnydy, (16)

The conditions to be satisfied identically: ux(a, y) = −ux(−a, y) = 0,
ux(x, b) = −ux(x,−b) = 0 lead to

Cn = −An (1 + αna cothαna) , Dm = −Bm (1 + βmb cothβmb) . (17)

Then the boundary conditions for uy(a, y), uy(x, b) can be formulated:

uy(a, y) =C0 +D0 +
1

1− ν
∞∑

n=1

An

(
(3− 4ν) cothαna −

− αna

sinh2 αna

)
cosαny +

1
1− ν

∞∑

m=1

Bm(−1)m × (18a)

×
(

(3− 4ν + βmb cothβmb)
coshβmy
sinhβmb

− βmy
sinh βmy
sinh βmb

)
= f(y) ,

uy(x, b) = C0 + D0 +
1

1− ν
∞∑

m=1

Bm

(
(3− 4ν) cothβmb +

+
βmb

sinh2 βmb

)
cosβmx+

1
1− ν

∞∑

n=1

An(−1)n × (18b)

×
(

(3− 4ν − αna cothαna)
coshαnx
sinhαna

+ αnx
sinhαnx
sinhαna

)
= 0 .

Expanding the terms of the second sums in (18a), (18b) into Fourier
series in cosαny and cos βmx, respectively, and after the substitution Xn =
(−1)nAnαn/a, Ym = −(−1)mBmβm/b we obtain:
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C − 4
∞∑

m=1

Ym/β
2
m = f0 , C + 2σ

∞∑

n=1

Xn/α
2
n = 0 , (19)

and the infinite system of linear algebraic equations:

1
1− ν Xna

2∆a(αna) = fn + 4
∞∑

m=1

Ym
σα2

n + 2β2
m

(α2
n + β2

m)2 , (20a)

1
1− ν Ymb

2∆b(βmb) = 4
∞∑

n=1

Xn
σα2

n + 2β2
m

(α2
n + β2

m)2 , (20b)

where σ = 1−2ν
1−ν , C = C0 + D0, ∆a(αna) =

(
(3−4ν) cothαna

αna
− 1

sinh2 αna

)

and ∆b(βmb) =
(

(3−4ν) cothβmb
βmb

+ 1
sinh2 βmb

)
. This infinite system is regular

(Meleshko and Gomilko, 1997, p. 2140, inequality 1.3), as:

ξn = 1−
∣∣∣∣∣

4
a2∆a (αna)

∞∑

m=1

(1− 2ν)α2
n + 2 (1− ν)β2

m

(α2
n + β2

m)2

∣∣∣∣∣ =
2− 4ν

α2
na

2∆a (αna)
>0 ,

ηm = 1−
∣∣∣∣∣

4
b2∆b (βmb)

∞∑

n=1

(1− 2ν)α2
n + 2 (1− ν)β2

m

(α2
n + β2

m)2

∣∣∣∣∣ =
4− 4ν

β2
mb

2∆b (βmb)
> 0 .

The coefficients of the expansion of

f(y) =
ρg (1 + ν) (1− 2ν)

(
y2 − b2)

2 (1− ν)E

into Fourier series in cosαny, αn = nπ/b are:

f0 = −ρg (1 + ν) (1− 2ν) b2

3 (1− ν)E
and fn =

2ρg (1 + ν) (1− 2ν)
α2
n (1− ν)E

.

The infinite system has a bounded solution, because, in the notation of
(ibid, p. 2141, inequality 1.5):

|dm| = 0 and |bn| =
∣∣∣∣
fn (1− ν)
a2∆a (αna)

∣∣∣∣ =
2ρg (1 + ν) (1− 2ν)
α2
na

2∆a (αna)E
,
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and obviously, a constant K can be found such that |bn| ≤ Kξn. Notice
that the threshold value of K = |bn|/ξn = ρg (1 + ν)/E = ρg/2µ is equal to
the constant on the right hand side of the solved biharmonic equation (7).

Since our problem meets the criteria, we can apply the method of re-
duction of the number of unknows Xn, Ym to finite N and M , respectively.
More precisely, we will use the improved reduction approach (Meleshko,
1995, p. 216) based on the asymptotic behaviour of Xn, Ym (Koialovich,
1930):

Xn = xn + G, Ym = ym + G, (21)

where G is a nonzero constant and lim
n→∞xn = 0, lim

m→∞ym = 0. Substituting

(21) into (19) and (20), we obtain:

f0 = C − 4
∞∑

m=1

ym/β
2
m − 4G

∞∑

m=1

1/β2
m =C − 4

∞∑

m=1

ym/β
2
m − 2Ga2/3 ≈

≈C − 4
M∑

m=1

ym/β
2
m − 2Ga2/3 (22a)

0 = C + 2σ
∞∑

n=1

xn/α
2
n + 2σG

∞∑

n=1

1/α2
n = C + 2σ

∞∑

n=1

xn/α
2
n + σGb2/3 ≈

≈ C + 2σ
N∑

n=1

xn/α
2
n + σGb2/3, (22b)

and

fn =
2σG
α2
n

+ xn
a2∆a (αna)

1− ν − 4
∞∑

m=1

ym
σα2

n + 2β2
m

(α2
n + β2

m)2 ≈

≈ 2σG
α2
n

+ xn
a2∆a (αna)

1− ν − 4
M∑

m=1

ym
σα2

n + 2β2
m

(α2
n + β2

m)2 , (23a)

0 =
4G
β2
m

+ ym
b2∆b (βmb)

1− ν − 4
∞∑

n=1

xn
σα2

n + 2β2
m

(α2
n + β2

m)2 ≈

≈ 4G
β2
m

+ ym
b2∆b (βmb)

1− ν − 4
N∑

n=1

xn
σα2

n + 2β2
m

(α2
n + β2

m)2 . (23b)
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To simplify the notation, we will return to the exact equality sign without
altering the notation of the unknowns after the reduction to, e.g., x(N,M)

n ,
y

(N,M)
m , C(N,M), G(N,M). We shall nevertheless keep in mind that for finite
N and M , the coefficients of the reduced system are not equal to those of
the unreduced.

If we sum up the unreduced equation (23a) through all n and the unre-
duced equation (23b) through all m, and then add together the resulting
sums, we get:
∞∑

n=1

fn = f (b)− f0 = G
(
2a2 + σb2

)
/3 + 2σ

∞∑

n=1

xn/α
2
n + 4

∞∑

m=1

ym/β
2
m . (24)

From equations (22a) and (22b), though, we obtain a different equation:

−f0 = G
(
2a2 + σb2

)
/3 + 2σ

∞∑

n=1

xn/α
2
n + 4

∞∑

m=1

ym/β
2
m .

Fortunately, our f(b) = 0. Equation (24) provides a simple but useful
estimate of the order of error of the y-displacement corresponding to the

reduced solution u(N,M)
y (a, b), which is u(N,M)

y (a, b)− f(b) ≈ −
N∑
n=0

fn. The

actual error will differ from this estimate, as (24) does not keep its validity
after the reduction.

Once we have the solution C, G, x1, . . . , xN , y1, . . . , yM of the reduced
linear system (22, 23), we can substitute (17) and the coefficient relation-
ships

An = (−1)n(xn + G)a/αn, Bm = −(−1)m(ym +G)b/βm,

where xn = 0 for n > N and ym = 0 for m > M , into ϕ0(x, y) (14) to yield:

ϕ0(x, y) = −C0y
2

2σ
− (C − C0) x2

4
−

− a
N∑

n=1

(−1)n xn

(
x sinhαnx
sinhαna

−
(

1
αn

+ a cothαna
)

coshαnx
sinhαna

)
cosαny
α2
n

+

+ b
M∑

m=1

(−1)m ym

(
y sinhβmy
sinh βmb

−
(

1
βm

+ b cothβmb
)

cosh βmy
sinhβmb

)
cos βmx
β2
m

+

+G

(
b4 − a4

45
+
(
a2 − x2)2 − (b2 − y2)2

24

)
,
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because, according to Meleshko (1997, p. 33):

−Ga
∞∑

n=1

(−1)n
(
x sinhαnx
sinhαna

−
(

1
αn

+ a cothαna
)

coshαnx
sinhαna

)
cosαny
α2
n

+

+Gb
∞∑

m=1

(−1)m
(
y sinh βmy
sinhβmb

−
(

1
βm

+ b cothβmb
)

coshβmy
sinhβmb

)
cosβmx
β2
m

=

= G

(
b4 − a4

45
+

(
a2 − x2)2 − (b2 − y2)2

24

)
.

The value of C0 can be chosen freely. We leave the derivation of displace-
ments and stresses to the reader.

Here, one may dislike the slow decrease of fn with n, responsible for
the corner error of uy and for the ‘narrow’ (i.e. within the same order)
fulfillment of the bounded solution criterion with its slightly unpleasant
numerical implications, but there is not too much to do with it, save of
finding a better particular solution or using – from the very beginning –
another trigonometric system for Fourier expansion. Why do we put stress
on the very beginning? We tried to expand (18a) and (18b), the terms
with cosαny, cosβmx as well, into the series in cos γly, cos δkx with γl =
(2l−1)π/2b, δk = (2k−1)π/2a. It worked, but the error of this solution near
the corner was greater than with the standard expansion. If one wants to use
the series in cos γly, cos δkx, (s)he has to do so not later than in formulating
the boundary conditions to be satisfied identically uy(a, y) = uy(−a, y) = 0,
uy(x, b) = uy(x,−b) = 0 for eliminating half of the unknown coeffincients
(corresponds to the stage (17) here). These boundary conditions require
taking another particular solution:

ϕg =
ρg

µ

(
(1− 2ν)2x4

48
+

(1− ν)2y4

12
− (1− ν)(1− 2ν)x2y2

4

)
,

for instance. With series in cosγly, cos δkx, one has to take into account
another asymptotic behaviour of the unknowns (Meleshko and Gomilko,
1997, p. 2146, eq. 2.28). At the end, one should arrive at uy perfectly ful-
filling the boundary conditions and ux oscillating at the boundaries – the
opposite to the solution presented here.
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8. Choose your own weight!

After we have, in previous sections, realized the interdependence of the
choice of the particular solution ϕg and of the choice of boundary conditions
to be satisfied identically, we are able, for constant body force ρg, to fill in
the following overview table (Tab. 1):

Tab. 1. Overview of own-weight particular solutions corresponding to combinations of
boundary conditions

This table suggests the most appropriate method and the simplest polyno-
mial particular solution to be used for the respective combination of boun-
dary conditions (thick lines for easier orientation) to be satisfied identically.
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Bednárik M., Kohút I.: Fourier family match on an elastic rectangle. . . , (189–217)

In grey fields are the cases further investigated in this paper. We see that
of all the six possible boundary conditions couples, the method of superpo-
sition can cover twice as many as the method of homogeneous solutions.

Problem: For the boundary conditions ux(x, b) = 0, uy(x, b) = 0, find the particular
solution of the own weight problem in the case of constant ρ and linearly decreasing
g = g0 (1 − (h + y) /R), where g0 is the gravity at the Earth’s surface, R is the radius of
the Earth and h is the depth from the surface to the centerline of the very long rectangular
parallelepiped whose length and upper and lower faces are parallel to the Earth’s surface
(Fig. 1).

Comment 1.: An application instance could be a few km thick and wide (and much
longer) subsurface deposit of a weak and very pure (constant ρ) polycrystalic mineral in
a much stiffer rock. The reader may either excuse the unrealistic features and oversimpli-
fications involved here or forget about application and treat the problem as formally as
it is stated.

Solution: If we, in the case of constant ρg, substitute ϕg = ρg
µ

(
y4

48 − b2y2

8

)
into (6a,b),

we get ux g = 0, uy g = ρg(b2−y2)
2λ+4µ which satisfies the boundary conditions ux(x, b) =

−ux(x,−b) = 0, uy(x, b) = uy(x,−b) = 0. We need to keep the term b2 − y2 in the uy glin
corresponding to the solution ϕglin of our linear gravity problem, as well. It is reasonable
to expect that ϕglin will be independent of x, and that uy glin will include, compared to

uy g, an extra term. Let us therefore assume ux glin = 0 and uy glin = ρ(b2−y2)
2λ+4µ g(y)P (y),

the latter equivalent to ∂2ϕglin
∂y2 = ρ(y2−b2)

4µ g(y)P (y). With these assumptions, the bihar-
monic equation reduces to ordinary differential equation

∂4ϕglin
∂y4 =

ρg(y)
2µ

,

written in full:

ρ

(
4yg′ + (y2 − b2)g′′

)
P + 2(y2 − b2)g′P ′ +

(
2P + 4yP ′ + (y2 − b2)P ′′

)
g

4µ
=
ρg

2µ
,

whence after substitution of g = g0 (1 − (h+ y) /R) we get the equation for P (y):

−2(R − h − y)+ (R − h − 3y) P + 2
(
(2R − 2h− 3y) y + b2

)
P ′ +

+
(
y2 − b2

)
(R − h − y)P ′′ = 0 .

The solution of this ODE is

P (y) =
3Ry2 − 3hy2 − y3 − 3C1 − 3yC2

3 (R − h− y) (y2 − b2)
.
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In P (y), the term (y2 − b2) in the denominator is not welcome at all. Therefore, the
constants C1, C2 must be chosen so that the term (y2 − b2) will appear in the numerator
as well. In other words, if we denote the numerator of P (y) as NP (y), then NP (b) and
NP (−b) must be zero. From these conditions, we determine C1 and C2 and get the final
solution:

P (y) =
3R − 3h− y
3 (R − h − y)

, ϕglin =
ρg0

(
−3y5 + 15 (R − h) y4 + 10b2y3 − 90 (R − h) b2y2

)

720µR
.

Comment 2.: The found ϕglin is polynomial in y, and we are happy to see that for
|y| < h << R ϕglin = ϕg. Should we further solve this problem either by the method
of homogeneous solutions or by superposition, the ϕglin would have to be separated into
even and odd parts. For each of them, the respective ϕ0 can be constructed. The final ϕ
would have to be recomposed of the even and odd particular and homogeneous solutions.

9. First look at the solution for constant own weight

In this section we present rough sketches of the results of numerical com-
putations for a = 2 m, b = 1 m, a constant g = 9.81m s−2, ρ = 2712kg m−3,
E = 8.38 ·1010 Pa, ν = 0.31. In the sequel, all other computation results
will be given for the same values.

The purpose is to give us just an idea about how the solution looks like.
A close look will follow in the next section. With proper implementation and
enough terms in the Fourier expansions, the differences between the whole
region plots of the results of the two methods – homogeneous solutions and
superposition – are almost invisible to the naked eye.

The maximum tangential stress τmax t in Fig. 3f was computed as τmax t =√
τ2
xyt + (τxxt − τyyt)2 /4. The maximal absolute value of uxt is uxtmax =

1.306 · 10−8 m reached at approximately [±0.774 a, ±0.636 b] (Fig. 3a), the
maximum of uyt is uytmax = 1.173 · 10−7 m reached at [0, 0] (Fig. 3b).

10. Close look at the solutions

Now it is time to use our microscope – the plot of the fulfillment of
boundary conditions, or shortly, boucogram. The Fig. 4 explains how it is
constructed.
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Let us measure the length c of the anticlockwise (c ≥ 0) and clock-
wise (c ≤ 0) path around the boundary, starting in the point [0, b]. The
boucograms of uxt and uyt are the plots of uxt(c)achieved − uxt(c)prescribed =
uxt(c)−0, uyt(c)achieved−uyt(c)prescribed = uyt(c)−0, respectively. The whole
boundary is covered by c ∈ 〈−2a− 2b, 2a+ 2b). Because of the symmetry
(uxt(c) and uxt(c− 2a− 2b) are odd, uyt(c) and uyt(c− 2a− 2b) even), one
gets the full information from boucograms on the interval 〈0, a+ b〉 (triple
line).

Fig. 3. Total displacement and stress fields in the elastic rectangle under own weight
with zero-displacement fixation at the boundary; a) displacement uxt [m] b) displacement
uyt [m] c) stress τxxt [Pa] d) stress τyyt [Pa] e) stress τxyt [Pa] f) maximum tangential stress
τmax t [Pa].
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Fig. 4. Construction of a boucogram.

Fig. 5 shows the whole boundary boucograms uxt(c), uyt(c) (upper part)
and their zoomed sections (lower part) for the own weight problem with
ϕg = ρg

µ

(
y4

48 −
b2y2

8

)
solved by the method of homogeneous solution with

identical satisfaction of ux(x, b) = 0, uy(x, b) = 0. The remaining boundary
conditions are covered by the first 10 and 10 frequency domain samples
i.e. coefficients of the Fourier series of ux(a, y) and of uy(a, y), respectively.
Expansion of ux(a, y) into sin(lπy/b) and of uy(a, y) into cos[(2m− 1)πy/2b]
was used, thus in both of these series, the zero frequency terms of all the
functions involved are equal to zero.

Besides of the error signals uxt(c), uyt(c) themselves, their root mean
squares are shown by white flat lines. They, together with the total misdis-
placement ut(c) =

√
u2
xt(c) + u2

yt(c) (black flat lines) are important indica-
tors of the quality of the solution.

Fig. 6 shows the boucograms for the own weight problem, using the same
ϕg as in previous example, solved by the method of superposition with
identical satisfaction of ux(a, y) = 0, ux(x, b) = 0. Again, alltogether 20
samples were taken. In the expansions into cosαny, αn = nπ/b and cos βmx,
βm = mπ/a, one gets nonzero terms at zero frequencies, which definitely
have to be involved in the computations, otherwise the baselines will drift
away from the prescribed zero displacement. Thanks to the asymptotic
behaviour of the unknowns, one can try to take advantage of the ‘infinite’
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Fig. 5. Boucograms for own-weight, zero-displacement-boundary problem solved by
method of homogeneous solutions.

Fig. 6. Boucograms for own-weight, zero-displacement-boundary problem solved by the
method of superposition.
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frequencies samples (see 23a, 23b):

fn ≈
2σG
α2
n

− 4
M∑

m=1

ym
σα2

n + 2β2
m

(α2
n + β2

m)2 for n� N and

0 ≈ 4G
β2
m

− 4
N∑

n=1

xn
σα2

n + 2β2
m

(α2
n + β2

m)2 for m�M.

The boucograms correspond to 1+9 samples taken of uy(a, y) = f(y): 1
zero frequency sample and 9 ‘ordinary’ frequencies samples for 1 ≤ n ≤ 9,
and 1+8+1 samples taken of uy(x, b) = 0: 1 zero frequency sample, 8
samples for 1 ≤ m ≤ 8 and one ‘infinite’ frequency sample atm = 9·(106+1).
From thus constructed linear system, 9+9 coefficients xn, ym, for 1 ≤ n ≤ 9,
1 ≤ m ≤ 9 and 1+1 unknown constants C, G can be determined.

The ‘numerical noise’ in uxt(c), where the boundary conditions should
be satisfied identically (17), is odd, too. We have plotted it in Fig. 6 just
for completeness. In the overview of numerical results of the method of
superposition, we will omit the plots uxt(c) completely.

In uyt(c), a fact worth noticing is that |uyt(c)| reaches its maximum value
1.72 ·10−9 m in the corners (uyt(a, b) = −1.72 ·10−9 m). The estimated error
value according to (24) is, however, uyte(a, b) = f(b) = −4.89 · 10−9 m.

11. Overview of numerical results

The method of homogeneous solutions, ϕg = ρg
µ

(
y4

48 −
b2y2

8

)
, identical

satisfaction of ux(x, b) = 0, uy(x, b) = 0: The total number of samples
(identical with the number of unknown coefficients An) is 20 (the most
examples), 40 or 60 – the respective fields of the table are separated by
thick lines. In Tab. 2 and 3, the relative displacement values are related to
the displacement maxima given in section 9.

The method of superposition, ϕg = ρg
µ

(
y4

48 −
b2y2

8

)
, identical satisfaction

of ux(a, y) = 0, ux(x, b) = 0: From totally N +M + 2 samples, we have to
determine N+M coefficients xn, ym and two constants C, G. The numbers
N ′, M ′ of nonzero-frequencies coefficients of Fourier expansions of loading
functions, stated in the respective columns of the table, do not need to be
equal to N , M . They must be though N ′ ≤ N , M ′ ≤ M . In the columns
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Bednárik M., Kohút I.: Fourier family match on an elastic rectangle. . . , (189–217)

Tab. 2. Numerical results of the method of homogeneous solutions for various ways of
sampling
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Tab. 3. Numerical results of the method of superposition for various ways of sampling
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“0”, the numbers of samples at the respective zero frequencies are given. In
the columns n∞, m∞ are the values of n∞ � N , m∞ � M . No sample
taken at ‘infinite’ frequency is indicated by “-”. More than one value of m∞
(or n∞) are conceivable as well (thus generated equations are still linearly
independent), but the results are too disappointing to be stated here. Again,
the table is subdivided into portions corresponding to 20, 40 and 60 samples
by thick lines.

12. Who is the winner?

To make the answer easier, we have set up categories according to the
number of samples. In the 20 samples category, we do have a surprise –
the lowest values of all error indicators were attained by one of the imple-
mentations of the method of homogeneous solutions – see the gray fields in
the Tab. 2. Here, the method of homogeneous solutions made the best of
its home ground – it benefited from the identical satisfaction of boundary
conditions on the longer sides and of investing all the available number of
samples into dense coverage of the shorter sides.

In the 40 samples duel (forelast rows of the two tables), the superposition
is already better in rms, but still defeated in maximum error. So, here we
have a draw.

At 60 samples (last rows), the more sophisticated superposition method
clearly shows its supremacy over the little bit brute homogeneous solutions,
where (in our numerical implementation) the indicators are worse than at
40 samples!

The nice feature of the method of homogeneous solutions is that the
satisfaction of the characteristic equation secures the zero displacements
in the corners, whereas with the method of superposition, we get in the
corners the error maxima of uy . However, in the superposition method, we
can find (rough) upper bound estimate of this corner error in advance – in
the homogeneous solutions, to know the maximum error, we have to wait
for the numerical solution. Other advantage of the method of superposition
was already stated in the comment to the Tab. 1 – the superposition is
“twice as universal” as the homogeneous solutions. Indeed, there can be
practical situations where we have to insist on exact fulfillment of two of
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the boundary conditions and can let the other two boundary conditions
be fulfilled approximately. It is then more likely to find the right method
among the superpositions.

13. Final comments on numerical results

In all cases, the values of coefficients of the Fourier series were com-
puted directly from the respective linear systems by Gaussian elimination
as implemented in LinearSolve[] in Mathematica 4.

In the method of homogeneous solutions (Tab. 2), all the sampling modes
produced, according to the warnings issued by Mathematica, ill-conditioned
matrices. Nevertheless, the solutions found can be considered as satisfac-
tory. Notice that the direct linear sampling with its results is not completely
lost among the frequency domain sampling modes. On the other hand, dis-
appointing is the bad performance of the “best fit” expansions of ux(a, y),
uy(a, y) into series in sin(lπy/b) and cos[(2m− 1)πy/2b], respectively. Why
are the “worst fit” expansions into sin((2l− 1)πy/2b) and cos[mπy/b] bet-
ter? In our opinion, having in mind the way the Fourier coefficients are
computed, the “worst fit” expansions, unlike the “best fit”, emphasize the
behaviour of the expanded functions near the corner and thus provide valu-
able information for finding better-fitting coefficients.

In the method of superposition (Tab. 3), we immediately see something
wrong with the numerical example in the fifth row. Indeed, it is a manifesta-
tion of a typical unsuccessful coefficient computation. Whereas in successful
computations, the coefficients generally obey the asymptotic rule i.e. de-
crease with increasing index, here the coefficient y12 is more than ten times
bigger than y11. The coefficients xn remained undisturbed, as can be seen
in the right part of the boucogram as well. The ill-behaving y12 signalizes
that the system does not like including the sample at m∞. This was the
case for all the systems with unequal numbers N , M of coefficients xn, ym.
It may look like that even in the cases, where m∞ works (N = M), it is
not very helpful. Well, the quality indicators in the second and third row
are slightly worse than in the first (without m∞), but some positive effect,
namely suppression of the ondulation in the middle of the longer side, is
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clearly visible. Of course, objection can be raised, that if rms is approxi-
mately the same, then the ondulation there is lower at the expense of higher
ondulation elsewhere. We think that adding a little bit to the error values
that are big anyway is not an unbearable injustice. In neither of our numer-
ical experiments were we successful with including the sample at n∞. In
the 20 samples category, the lowest rms of error displacement was attained
for the equal step sampling (N = 6, M = 12 – fourth row). The sixth row
demonstrates that increasing the number of coefficients N to 12 did not
help to lower the corner error, as would the equation (24) suggest.

14. Conclusions

To each of the six boundary condition couples, we have attributed one of
the two Fourier methods and at least one of the three kinds of simple poly-
nomial particular own-weight solutions (see Tab. 1). So, we found basically
seven different ways to solve the zero displacement boundary problem. All
the seven players would have liked to participate in our match but only two
of them got the chance. Many other boundary problems can be posed for
the elastic rectangle.

Hence, there are many possibilities for contests between Fourier methods
and we have just proposed to the reader how to arrange one, hoping (s)he
liked the idea and will let the Fourier methods either play or decide the
matches as well – in spite of their age and a the little bit of schizophrenia
in boundary condition satisfaction.
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