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Magnetic anomaly due to magnetic
halfspace with buried cylindrical
perturbing body

M. Hvoždara, A. Kaplíková
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : For purposes of better knowledge of the magnetic anomalous fields in
volcanic areas we analyze the mathematical model of relevant properties: wide spread
magnetic halfspace of permeability µ1 (corresponding to the lava field) which contains
buried cylindrical body of radius a, permeability µ2. This problem is solved exactly by
means of Laplace equations in bipolar coordinate system. Numerical results show that
the presence of cylinder is reflected in the anomaly of ∆T , as well as in the inclination
angle I.
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1. Potential of normal magnetic field

In the practice of magnetometric measurements in regions of solidified
volcanic mountains we encounter a situation when the magnetometric mea-
surements are performed on the surface of a halfspace (wide spread volcanic
complex) of permeability µ1, and there occurs perturbing a body in the inte-
rior of the halfspace, with permeability µ2. On the basis of electromagnetic
theory (Stratton, 1941) it is clear, that if the exciting magnetic field H0e is
oblique with respect to the surface plane z = 0, then in the interior of the
halfspace z > 0 there appears refraction of force lines H1e, which must be
taken into account in theoretical analysis.

Let the exciting magnetic field above the halfspace be H0e ≡ (H0x, H0z),
and inside of it H1e ≡ (H1x, H1z). It is known that potentials of the fields
are
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V0e(x, z) = −x ·H0x − z ·H0z, (1)

where H0x = |H0e| · cosα, H0z = |H0e| · sinα,

V1e(x, z) = −x ·H0x − z ·DH0z , (2)

and where constant D is to be determined from boundary conditions at
z = 0. There must be continuous potential and z-component of the magnetic
induction B = µH, i.e.:

V0e|z=0 = V1e|z=0 , (3)

µ0
∂V0e

∂z

∣∣∣∣
z=0

= µ1
∂V1e

∂z

∣∣∣∣
z=0

. (4)

The condition (3) is for (1) and (2) satisfied and (4) +µ0H0z = µ1DH0z .
Then we have:

D =
µ0

µ1
=

1
µ1r
≤ 1 (5)

It means, that if the inclination of normal magnetic field above the halfspace
is α, with

tgα =
H0z

H0x
, (6)

then inside of halfspace we have another inclination angle β with

tg β =
DH0z

H0x
= D · tgα =

µ0

µ1
tgα. (7)

Because the rocks of magmatic wide-spread field “1” are magnetic, D < 1
and β < α. This refraction is an important feature of the magnetic “normal”
fields of our problem.

2. Effect of the cylindrical intrusions buried in the halfspace

The calculation of the effect of the cylindrical intrusive body is another
important step in our analysis. This body is considered in the form of
infinitely long circular cylinder, radius a permeability µ2, infinitely extended
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Fig. 1. Scheme of used bipolar coordinate system (ξ,ψ) and vectors of unperturbed
magnetic field.

in the y-direction, as shown in Fig. 1. This model enables us to calculate
two important cases: a) anomalous magnetic field due to a body with higher
permeability µ2 : µ2 > µ1 > µ0, b) anomalous magnetic field due to a
nonmagnetic hollow gallery: µ1 > µ0 and µ2 = µ0. Our experience with
solutions of similar geoelectric problems (Hvoždara, 1975) or geothermic
problem (Hvoždara and Majcin, 1985) indicate the possibility of an exact
solution of this magnetometric problem by means of bipolar coordinates
(ξ, ψ) which are linked with Cartesian coordinates (x, z) by the following
transformation relations:
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x = p sinψ/(ch ξ − cosψ), z = p sh ξ/(ch ξ − cosψ), (8)

where p =
√
h2 − a2 is the parameter of the bipolar coordinate system, h is

the depth of the cylinder axis, a is its radius. We know that if ξ → +∞, we
have (x = 0, z = p), which corresponds to the positive pole of the bipolar
system. The negative pole ξ → −∞ lies above the surface of the halfspace
at the point (x = 0, z = −p), as shown in Fig. 1.

The magnetic field in all three considered regions of our problem is split
in the form of the sum of normal field and anomalous field, denoted by the
asterix:

H = Hek +H∗k , H = − gradU, (9)

Uk(x, z) = Vek(x, z) + U∗k (x, z), k = 0, 1, 2. (10)

The potentials of the exciting magnetic field satisfying the boundary condi-
tions (3,4) are already known

Ve0 = −(H0x · x +H0z · z) , z < 0, (11)

Ve1,2 = −(H0x · x+ µ−1
1r H0z · z) , z > 0 (k = 1, 2, ) (12)

and their expression in bipolar coordinates (ξ, ψ) using (8) is easy.

3. Anomalous magnetic potentials

The advantage of introducing the bipolar coordinates (ξ, ψ) lies in the
possibility of coincidence of plane boundary of the halfspace z = 0 with
coordinate line ξ = 0 (circular line of infinite radius) and the surface of the
circular cylinder with coordinate line ξ = ξ1. The perturbing potentials due
to the cylinder obey the Laplace equation:

∇2U∗(ξ, η) = 0, i.e.
∂2U∗

∂ξ2 +
∂2U∗

∂ψ2 = 0, (13)

which has particular solution of the form:
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(U∗)n =

{
enξ

e−nξ

}{
cosnψ
sinnψ

. (14)

Using these particular solutions we must compose perturbing potentials U ∗0 ,
U∗1 , U∗2 . Because in excitation potentials (11), (12) there occur terms with
cosψ and sinψ, we will have in perturbing potentials both cosnψ and sinnψ.
With respect to the requirement of bounded values of perturbing potentials
we can write their general expressions in the form:

U∗0 (ξ, ψ) = p
∞∑

n=0

enξ(C0n cosnψ +B0n sinnψ), (ξ < 0) (15)

U∗1 (ξ, ψ) = p
∞∑

n=0

enξ(C1n cosnψ +B1n sinnψ) +

+ e−nξ(E1n cosnψ + F1n sinnψ), (16)

U∗2 (ξ, ψ) = p
∞∑

n=0

e−nξ(E2n cosnψ + F2n sinnψ), ξ ∈ 〈ξ1,+∞). (17)

In (15) there cannot occur terms with e−nξ since they would be singular
for ξ = −∞, which is in the region “0” (ξ ∈ (−∞, 0〉). In (16) we have
both terms with enξ and e−nξ , because there ξ varies from 0 to ξ1. In
the interior of the cylinder we cannot have terms with enξ, since they are
singular at ξ = +∞. For calculations of coefficients A0n, B0n . . . , F2n we
will use boundary conditions at ξ = 0, ξ1, so we need to know expansions
of primary potentials V0e(x, z) = V0e(ξ, ψ) and V1e(x, z) = V1e(ξ, ψ) into
particular solutions (14). The basis of their expansion in region z ≥ 0 are
formulae adopted from Gradstejn and Rhyzhik (1971)

x =
p sinψ

ch ξ − cosψ
= 2p

∞∑

n=1

e−nξ sin(nψ), ξ > 0, (18)

z =
p sh ξ

ch ξ − cosψ
= p

{
1 + 2

∞∑

n=1

e−nξ cos(nψ)

}
, (19)
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which rapidly converge for ξ > 0. Since the primary potential V0e given
by (1) continuously transits to V1e at ξ = 0 (z = 0) and (4) is satisfied
too, we can easily find that on the boundary ξ = 0 we must treat only
the continuity of U ∗0 (ξ, ψ) and U∗1 (ξ, ψ), as well as the continuity of their ξ
derivatives multiplied by permeabilities µ0 and µ1. Then we will have pairs
of equations for sine coefficients:

B0n = B1n + F1n , B0n = µ1rB1n − µ1rF1n , where µ1r = µ1/µ0 . (20)

Similar pair holds true for cosine coefficients:

C0n = C1n +E1n , C0n = µ1rC1n − µ1rE1n . (21)

For the application of the boundary conditions at ξ = ξ1 (the surface of the
interior cylinder), we use expressions of potentials U1(ξ, ψ), U2(ξ, ψ) in the
form of:

U1(ξ, ψ) =−2pH0x

∞∑

n=1

e−nξ sin(nψ)− 2pH1z

{
1
2

+
∞∑

n=1

e−nξ cos(nψ)

}
+

+ p
∞∑

n=0

enξ(C1n cosnψ +B1n sinnψ) +

+ e−nξ(E1n cosnψ + F1n sinnψ) , (22)

U2(ξ, ψ) =−2pH0x

∞∑

n=1

e−nξ sinnψ − 2pH1z

{
1
2

+
∞∑

n=1

e−nξ cosnψ

}
+

+ p
∞∑

n=0

e−nξ [E2n cosnψ + F2n sinnψ] , (23)

where H1z = H0zµ
−1
1r . We introduce these series into boundary equations

at ξ = ξ1 and then, by application of orthogonality Fourier series, we will
arrive at the system of linear equations for the coefficients:

B1ne
nξ1 + F1ne

−nξ1 = F2ne
−nξ1 , (24)

2H0xe
−nξ1 + B1ne

nξ1 − F1ne
−nξ1 = 2

µ2

µ1
H0xe

−nξ1 − µ2

µ1
F2ne

−nξ1 . (25)

Similarly, for cosine coefficients we have
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C1ne
nξ1 + E1ne

−nξ1 = E2ne
−nξ1 , (26)

2H1ze
−nξ1 + C1ne

nξ1 −E1ne
−nξ1 = 2

µ2

µ1
H1ze

−nξ1 − µ2

µ1
E2ne

−nξ1 . (27)

The continuity for cosine coefficients is kept at n = 0 as well, and we see,
that the form of equations for sine and cosine coefficients is the same, so
we concentrate on the sine coefficients at first. We shall multiply (24) by
µ2/µ1, on addition to (25), and we eliminate F2n, then we have
(

1 +
µ2

µ1

)
B1ne

nξ1 −
(

1− µ2

µ1

)
F1ne

−nξ1 = −2
(

1− µ2

µ1

)
H0xe

−nξ1 . (28)

From the pair (20) we eliminate B0n which results in

(1− µ1r)B1n + (1 + µ1r)F1n = 0 . (29)

The equations (28) and (29) we arrange to a more suitable form:

B1n − F1n ·R1n = −2H0xR1n , q0 ·B1n + F1n = 0 , (30)

where R1n =
1− µ2/µ1

1 + µ2/µ1
e−2nξ1 = q2e

−2nξ1 ,

and we introduce reflection coefficients:

q0 =
1− µ1r

1 + µ1r
=

1− µ1/µ0

1 + µ1/µ0
, q2 =

1− µ2/µ1

1 + µ2/µ1
. (31)

Now we can write necessary coefficients:

B1n =
−2H0xR1n

1 + q0R1n
, F1n =

2H0x · q0R1n

1 + q0R1n
. (32)

It is clear that if µ2 = µ1, there is R1n = 0 and coefficients of perturbing
potential U∗1 (ξ, ψ) will be zero.

For coefficients of perturbing potential in the upper halfspace we will find
by means of (20):

B0n = B1n + F1n = 2
R1n(q0 − 1)
1 + q0R1n

H0x . (33)

For the sake of completeness we give coefficients in the interior of the cylin-
der as resulted from (24):
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F2n = F1n + B1ne
2nξ1 = 2q2

(q0e
−2nξ1 − 1)

1 + q0 q2e−2nξ1
H0x . (34)

The form of all coefficients gives explicitly their zero values for µ2 = µ1,
since then q2 = 0, R1n = 0. In a similar way we repeat the derivation of
cosine coefficients, substituting H1z for H0x:

C1n =
−2H1z ·R1n

1 + q0R1n
, E1n =

2H1z · q0R1n

1 + q0R1n
, (35)

C0n = 2
R1n(q0 − 1)
1 + q0R1n

H1z , (36)

E2n = 2q2
q0e
−2nξ1 − 1

1 + q0 q2e−2nξ1
H1z . (37)

Let us note, that

H1z = H0z · µ−1
1r = H0z ·

µ0

µ1
.

Now we will have prepared all necessary expressions for the calculation
of potentials of anomalous magnetic field in all regions “0”, “1” and “2”.
Magnetic contrasts are expressed by q0, q2; their absolute value is less than
1. In the derived formulae there is an important term e−ξ1 and its powers
e−2nξ1 . On the basis of the transformation relations we can show that to
the coordinate surface ξ = ξ1 corresponds a circle in the plane (x, z):

x2 + (z − p coth ξ1)2 = (p/ sh ξ1)2 . (38)

This equation is compared with a canonical equation of the circle radius a,
and the centre at z = h:

x2 + (z − h)2 = a2. (39)

We see that ξ1 and p can be determined from equations:

p · coth ξ1 = h, p/ sh ξ1 = a, (40)

which gives p2 = h2 − a2 and

ch ξ1 = h/a, sh ξ1 =
√
h2/a2 − 1 =

√
h2 − a2

a
,

ch ξ1 = h/a, sh ξ1 = p/a, p =
√
h2 − a2, (41)
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e−ξ1 = (h− p)/a, eξ1 = (h+ p)/a . (42)

From these relations we can easily find that e−ξ1 < 1 and powers e−2nξ1 will
rapidly decrease to zero for increasing n.

Since the exciting magnetic field is known, our attention will concen-
trate onto Cartesian components which follow from perturbing potentials
U∗0 (ξ, ψ), U∗1 (ξ, ψ), U∗2 (ξ, ψ).

4. Numerical calculations of anomalous magnetic field ∆H
and ∆T

Calculations of x and z components of anomalous magnetic field in re-
gions “0”–“2” must be performed by the formula:

∆H = − gradU∗(x, z). (43)

Perturbing potentials are expressed in series with bipolar coordinates, but
we can calculate Cartesian components as well (omitting indices 0–2):

∆Hx = −∂U
∗(ξ, ψ)
∂ξ

· ∂ξ
∂x
− ∂U∗(ξ, ψ)

∂ψ

∂ψ

∂x
, (44)

∆Hz = −∂U
∗(ξ, ψ)
∂ξ

· ∂ξ
∂z
− ∂U∗(ξ, ψ)

∂ψ

∂ψ

∂z
. (45)

We shall now use transformation relations adopted e.g. from (Arfken, 1966):

ξ + iψ = 2 Arcoth [(z/p)− i(x/p)] , (46)

which after some rearrangement gives:

e2ξ =
[
(z + p)2 + x2

]
/
[
(z − p)2 + x2

]
, (47)

tgψ = 2px/
[
x2 + z2 + p2

]
. (48)

Now we can easily find that x and z derivatives of ξ and ψ will be:

∂ξ

∂x
=

x

(z + p)2 + x2 −
x

(z − p)2 + x2 , (49)
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Fig. 2ab. Profile curves ∆T and ∆I calculated for the circular cylinder of magnetic
susceptibility κ2 = 0.05, radius a = 100 m, buried at the depth h = 150 m in the magnetic
halfspace κ1 = 0.01. The inclination of B0 is I0 = 75◦.

∂ξ

∂z
=

z + p

(z + p)2 + x2 −
z − p

(z − p)2 + x2 , (50)

∂ψ

∂x
=

2p(z2 − p2 − x2)

(x2 + z2 − p2)2 + 4p2x2
,

∂ψ

∂z
=

−4pxz

(x2 + z2 − p2)2 + 4p2x2
. (51)

These derivatives, when applied to (44) and (45), enable us to calculate
∆Hx and ∆Hz in all regions “0”–“2”, and after multiplication by magnetic
permeability, also ∆Bx and ∆Bz .
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Fig. 3ab. The same as in Figs 2ab, but the inclination ofB is 90◦ (vertical normal field).

Because in magnetometric practice mostly total anomaly field ∆T is
used, we will have, by known formula (Logachev and Zacharov, 1979):

∆T = ∆Bx cos β + ∆Bz sin β , (52)

where β is the inclination angle I for region “0” or “1” and “2” by means
of (6):

tg β =
1
µr

tg(I) . (53)
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Fig. 4ab. Profile curves of ∆T and ∆I above the shallow circular gallery of radius a = 1 m,
buried in the depth h = 10 m, with inclination of B0 equal to 75◦.

Now we have a complete system of formulae for calculations in our model.
In our FORTRAN 77 computer program we introduced truncation of the
series for H∗1 at indices n which fulfilled relative accuracy better than 10−4

to the terms given by n = 1.
For numerical calculations we adopted magnetic susceptibility of the

halfspace κ1 = 0.01 and for the intrusive cylinder body κ2 = 0.05. The
depth of its axis is assumed as h = 150 m and its radius a = 100 m.
The unperturbed magnetic induction B0 = 47000nT, normal inclination
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I0 = 75◦(≡ α). Derived formulae were used for calculations on five levels:
z/h = −0.4, −0.2, 0.0, 0.2, 0.4 and profile curves are plotted in Fig. 2a.
We can see that values of ∆T for the first four levels gradually increase
with depth level z, they can attain positive values up to 250 nT and then
slowly attain smaller negative depression at x/h > 0.7. The depth profile
z/h = 0.4 intersects the interior cylinder, the course of ∆T is more compli-
cated, with jumps on boundaries of the cylinder. Fig. 2b presents values of
inclination B for the five depth levels mentioned above. We can see, that
changes in inclination can attain ±30′ (arc minutes). We present an illus-
trative example of the Figs 3a,b with similar curves calculated for normal
vertical inclination (I0 = 90◦). In this case we have more symmetric features
in the calculated curves. In order to follow magnetic effects of the shallow
cylindrical gallery situated near the surface, we adopted a = 1, h = 10 m,
κ1 = 0.01, κ2 = 0.001, I0 = 75◦, B0 = 47000nT. From profile curves ∆T in
Fig. 4a we see that the presence of the gallery gives very small anomaly, ∆T
about −2 till 0.5 nT. Also the changes of inclination are small, as shown in
Fig. 4b. Let us note that the calculations for this analytical model are very
fast, so it is possible to perform a lot of model calculations.
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