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Geothermal anomaly due to a cylindrical
obstacle buried in the halfspace with
groundwater flow

M. Hvoždara
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : We present analytical solution of two coupled potential problems: ground-
water flow and geothermal disturbance affected by an partly permeable circular cylinder
buried in the uniform halfspace. The solution is performed in the bipolar coordinate
system and physical fields are represented by Fourier series. Numerical results show dis-
turbance of the velocity of groundwater flow and combined refraction and convective
anomalies in geothermal gradient around the cylinder.

Key word: geothermics, groundwater flow, hydrothermal anomalies, ana-
lytical methods

1. Introduction

For geohydrothermal reservoir exploitation modelling of geothermal field
disturbances due to groundwater flow around various obstacles below the
surface is important. The cylindrical obstacle of radius a, buried at the
depth h is one model which can be treated analytically, using method of
Fourier separation in bipolar coordinate system. The situation is depicted
in Fig. 1 as planar flow in plane x, z. The unperturbed velocity field far away
from the cylinder is supposed to be uniform, in x-direction: V0 ≡ (V0, 0, 0),
so its potential is:

U0(x, z) = −V0 · x. (1)

The unperturbed temperature field is assumed corresponding to a uniform
heat flow in z-direction, so its dependence is linear:

T0(x, z) = q0 · z/λ1 (2)
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Fig. 1. The bipolar coordinate system (ξ,ψ) with lines ξ = const (full) and ψ = const
(dashed), respectively.

where q0 = λ1(∂T0/∂z) is heat flow density and λ1 being coefficient of heat
conductivity in halfspace. The axis y is parallel to the axis of circular cylin-
der, so we have planar potential problem for groundwater potential U(x, z),
as well as for temperature field T (x, z). It is clear, that the disturbance of
the groundwater velocity field will produce a disturbance in heat flow, and
the material contrast of the cylinder will produce another one, the so-called
refraction anomaly of the normal temperature field (2).
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2. Potential of the velocity field

As was noted above, we shall employ the bipolar orthogonal coordinate
system (BCS) (ξ, ψ, y) related to the Cartesian coordinates by the formulae
of Arfken (1966):

x =
c sinψ

ch ξ − cosψ
, z =

c sh ξ
ch ξ − cosψ

, y = y, (3)

c =
√
h2 − a2 is depth of the pole line (ξ = +∞) of the BCS. The Laplace

equation for general potential U(ξ, ψ) is:

∇2U(ξ, ψ) =
1
c2 (ch ξ − cosψ)2

[
∂2U

∂ξ2 +
∂2U

∂ψ2

]
= 0,

which reduces into simple equation:

∂2U

∂ξ2 +
∂2U

∂ψ2 = 0 . (4)

Particular solution with 2π periodicity in coordinate ψ is:

Un(ξ, η) =

{
e−nξ

e+nξ

}{
cosnψ
sinnψ

. (5)

For the uniqueness of further explanation we will link our BCS to the geo-
metrical parameters of the model. From Eqs (3) it is clear that the surface
plane z = 0 corresponds to the value ξ = 0, while coordinate ψ there varies
along the x axis according to formula:

c sinψ
1− cosψ

= x, i.e. tg(ψ/2) = c/x . (6)

Now we determine value ξ in order to match the coordinate surface ξ = ξ1

with the circle having centre at the point x = 0, z = h:

(z − h)2 + x2 = a2 . (7)

Using the transformation relations (3) we can find, that

z

x
=

sh ξ
sinψ

, sinψ =
x

z
sh ξ .
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By elimination of ψ from Eqs (3) we can find general relation between (x, z)
and ξ:

(z − c coth ξ)2 + x2 = c2/ sh2ξ , (8)

which means that curves ξ = const ≡ k0 are circles of radius equal to c/ shk0

and centre in the depth h = c · cothk0. This means in comparison with (7)
that we have for the surface of the cylinder, coordinate ξ1 which is linked
to h and a as follows:

h = c · coth ξ1, a = c/sh ξ1 . (9)

From the quadratic values of h and a we obtain:

h2 − a2 =
c2 ch2 ξ1

sh2 ξ1
− c2

sh2 ξ1
=
c2 sh2 ξ1

sh2 ξ1
= c2 ,

i.e. the parameter c of the biaxial coordinate system:

c2 = h2 − a2, c =
√
h2 − a2 , (10)

which means that the pole of BCS is closer to the surface than the axis of
the cylinder. Using relation a · sh ξ1 = c we can find that value ξ1 is linked
to h, a, c as

eξ1 = (c+ h)/a , ξ1 = ln[(c+ h)/a] . (11)

Here we can see, that if a→ 0, then ξ1 → +∞ and c = h, so the cylinder is
degenerated to the straight line in the depth h and parallel to the y-axis.

Now we present expansion of the unperturbed potential (1) into series
with particular solution (5). We have to find the Fourier expansion of
U0(x) = −V0 · x, which in BCS means:

U0(ξ, η) = −V0
c sinψ

ch ξ − cosψ
. (12)

We turn our attention to the function

sinψ
ch ξ − cosψ

=
2 sinψ

eξ + e−ξ − 2 cosψ
=

2e−ξ sinψ
1 + e−2ξ − 2e−ξ cosψ

.

Now we use the formula 1.447.1 from (Gradstejn and Ryzhik, 1971) which
reads:
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2p sinψ
1− 2p cosψ + p2 = 2

∞∑

n=1

pn sinnψ , |p| < 1 .

We put p = e−ξ and we have an expansion for (12):

U0(ξ, ψ) = −2V0c
∞∑

n=1

e−nξ sinnψ . (13)

Due to the presence of the cylinder this potential will be changed to function
U1(ξ, ψ) for the exterior of the cylinder ξ ∈ 〈0, ξ1〉 and to function U2(ξ, ψ)
in the interior of the cylinder ξ ∈ 〈ξ1,+∞〉.

On the free surface ξ = 0 the boundary condition must be satisfied. So:

[∂U1(ξ, ψ)/∂ξ]ξ=0 = 0 , (14)

this condition is satisfied by U0(ξ, ψ) as follows from (12), so we must add
to U0(ξ, ψ) perturbing potential U ∗1 (ξ, ψ) with dependence on ξ as ch(nξ),
so we have:

U1(ξ, ψ) = U0(ξ, ψ)− 2V0c
∞∑

n=1

An ch(nξ) sinnψ . (15)

The velocity potential in the interior of the cylinder must be bounded even
for ξ → +∞, so we have:

U2(ξ, ψ) = U0(ξ, ψ)− 2V0c
∞∑

n=1

Cne
−nξ sinnψ . (16)

The terms with cosnψ will not occur in the view of sin(nψ) dependence of
Fourier series (13). We suppose the diffusivity coefficient σ1 in the halfspace
and σ2 in the cylinder. Then the boundary condition must be satisfied at
the surface ξ = ξ1:

U1(ξ, ψ)|ξ=ξ1 = U2(ξ, ψ)|ξ=ξ1 ,

∂U1(ξ, ψ)
∂ξ

∣∣∣∣
ξ=ξ1

=
σ2

σ1

∂U2(ξ, ψ)
∂ξ

∣∣∣∣
ξ=ξ1

, (17)
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Using Fourier series technique we obtain two linear equations for determi-
nation of An and Cn:

An ch(nξ1)− Cne−nξ1 = 0 ,

An sh(nξ1) +
σ2

σ1
Cne

−nξ1 =
(

1− σ2

σ1

)
e−nξ1 .

The solution is easy and gives:

An =
(1− σ2/σ1)e−nξ1

sh(nξ1) + σ2/σ1 ch(nξ1)
=

2k12 e
−2nξ1

1− k12 e−2nξ1
, (18)

where k12 = (1 − σ2/σ1)/(1 + σ2/σ1) is the coefficient of the diffusivity
contrast. For coefficient Cn we have:

Cn = An · enξ1 ch(nξ1) = k12
(1 + e−2nξ1)

1− k12e−2nξ1
. (19)

Thus we have suitable formulae for perturbation potentials:

U∗1 (ξ, ψ) = −4CV0k12

∞∑

n=1

e−2nξ1 cosh(nξ)
1− k12e−2nξ1

sinnψ , (20)

U∗2 (ξ, ψ) = −2CV0k12

∞∑

n=1

(1 + e−2nξ1)
1− k12e−2nξ1

e−nξ sinnψ . (21)

It is obvious, that for k12 = 0, i.e. σ2 = σ1 these perturbation potentials are
zero, since the cylinder has the same diffusivity as the surrounding halfspace.

3. Calculation of velocity field and convective disturbance of
heat flow

For the potentials calculated in the previous section we need derivatives
with respect to x and z in order to determine the velocity field in Cartesian
coordinates:

Vx = −∂U/∂x , Vz = −∂U/∂z . (22)
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Taking the derivatives of the primary potential U0 is easy. Since both po-
tentials U∗12(ξ, ψ) are expressed in BCS (ξ and ψ), we must calculate more
complicated derivatives namely:

∂U

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂ψ

∂ψ

∂x
,

∂U

∂z
=
∂U

∂ξ

∂ξ

∂z
+
∂U

∂ψ

∂ψ

∂z
. (23)

Since derivatives with respect to ξ, ψ of series (20), (21) are easy, we must
give derivatives of (ξ, ψ) with respect to (x, z). We adopted formulae of
Arfken (1966) according to which

ξ =
1
2

ln
(z + c)2 + x2

(z − c)2 + x2 , ψ = arctg
2xc

(z2 − c2) + x2 . (24)

After some calculus we obtain:

∂ξ

∂x
=

x

ρ2
2
− x

ρ2
1
,

∂ξ

∂z
=
z + c

ρ2
2
− z − c

ρ2
1

, (25)

where ρ2
1 = (z − c)2 + x2, ρ2

2 = (z + c)2 + x2. Similar derivatives of ψ are:

∂ψ

∂x
=

2c[(z2− c2)− x2]

4x2c2 + [(z2 − c2) + x2]2
,
∂ψ

∂z
=

−4cxz

4x2c2 + [(z2 − c2) + x2]2
. (26)

For completeness we give partial derivatives of U ∗1 (ξ, ψ) and U∗2 (ξ, ψ):

∂U∗1
∂ξ

= −4cV0k12

∞∑

n=1

ne−2nξ1 sh(nξ)
1− k12 e−2nξ1

sin(nψ) ,

∂U∗1
∂ψ

= −4cV0k12

∞∑

n=1

ne−2nξ1 ch(nξ)
1− k12 e−2nξ1

cos(nψ) . (27)

For the interior of cylinder we have:

∂U∗2
∂ξ

= +2cV0k12

∞∑

n=1

(1 + e−2nξ1)n
1− k12 e−2nξ1

e−nξ sin(nψ) ,

∂U∗2
∂ψ

= −2cV0k12

∞∑

n=1

(1 + e−2nξ1)
1− k12 e−2nξ1

e−nξn cos(nψ) . (28)

According to Carslaw and Jaeger (1959) the convective part of the distur-
bance in the vertical component of the heat flow is:
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q∗z = −f∗z = −ρCvT (x, z) · Vz = +ρCvT (x, z)
∂U

∂z
, (29)

where ρ is density and Cv is specific heat of the fluid. The negative sign is
according to the convection adopted in geothermics

qz = +λ(∂T/∂z) . (30)

4. The effect contrast of heat flow conductivity (refraction
effect)

It is clear, that the heat flow will be affected by the different heat flow
conductivity of the cylinder λ2 and the surrounding halfspace medium λ1.
This is known as the refraction effect of the heat flow. The undisturbed
temperature far from the cylinder was considered in the form (2), which
according to transformation formulae (3) gives:

T0(ξ, ψ) = g0
sh ξ

ch ξ − cosψ
, (31)

where g0 = q0 · c/λ1 is undisturbed temperature at the depth z = c.
The steady temperature field in the region without heat sources obeys

the Laplace equation, so we can use particular solution, i.e. functions (5)
to express temperature outside the cylinder T1(ξ, ψ) and inside it T2(ξ, ψ):

T1(ξ, ψ) = T0(ξ, ψ) + g0

∞∑

n=1

Bn sh(nξ) cosnψ , (32)

T2(ξ, ψ) = T0(ξ, ψ) + g0

∞∑

n=1

Gne
−nξ cosnψ . (33)

The temperature T1(ξ, ψ) attains zero value on the planar boundary ξ = 0
and on the surface of the cylinder ξ = ξ1 there must be continuous tempe-
rature and normal component of the heat flow, i.e.:

T1(ξ1, ψ) = T2(ξ1, ψ) , (34)

[∂T1/∂ξ]ξ1 = (λ2/λ1) [∂T2/∂ξ]ξ1 . (35)
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Now we need expansion of T0(ξ, ψ) into Fourier series of particular functions
(5) which we obtain easily as follows:

T0(ξ, ψ) = 2g0
sh ξ

eξ + e−ξ − 2 cosψ
=

= g0
1− e−2ξ

1 + e−2ξ − 2e−ξ cosψ
= g0

[
1 + 2

∞∑

n=1

e−nξ cosnψ

]
. (36)

Here we have employed modification of the formula 1.447.3 from Gradstejn
and Ryzhik (1971).

Using Fourier series theory we can realize from boundary conditions (34)
and (35) that we have a system of two linear equations:

Bn sh(nξ1) = Gne
−nξ1 ,

−2e−nξ1 +Bn ch(nξ1) = −(λ2/λ1)[Gne−nξ1 + 2e−nξ1 ] . (37)

After simple algebra we have:

Bn =
4γ12 e

−2nξ1

1 + γ12 e−2nξ1
, (38)

where γ12 = (1 − λ2/λ1)/(1 + λ2/λ1). For the interior of the cylinder we
have coefficients:

Gn = 2
γ12(1− e−2nξ1)
1 + γ12 e−2nξ1

. (39)

Now we have the possibility to calculate temperature and heat flow density
corresponding to T1(ξ, ψ) or T2(ξ, ψ). With respect to the convective part
of the vertical component of the heat flow, we obtain the net vertical heat
flow density inside or outside the cylinder

qz = λ
∂T

∂z
+ ρCv T (x, z)

∂U

∂z
, (40)

where z derivative must be calculated similarly to formula (23).

5. Numerical calculations

For our numerical calculations using the derived formulae we adopted
the following parameters of the model:
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- radius of the cylinder a = 1 (km)

- depth of its axis h = 1.5× a
- ratio of the diffusivity coefficients σ2/σ1 = 0.05.

This low value of σ2/σ1 corresponds to the case when the cylinder is al-
most impermeable for the ground water flow. For the coefficients of heat
conductivity we considered two ratios of λ2/λ1 = 3 and 0.3, respectively,
which means good and low thermal conductivity of the cylinder. The prod-
uct ρCv (density multiplied by the specific heat of the fluid) is for the
water equal to 4.19 × 106 J m−3 K−1. Since the practical velocities Voz
of the ground water flow at the depths about 1–2 km are few meters per
year, we have chosen value ρCv ·Voz = 0.80W m−2 K−1, which corresponds
to the velocity Voz ≈ 6 m/y = 1.9013 · 10−7 m s−1. Then the quantity
q∗z = ρCv(Voz/V0)T (x, z)∂U/∂z will reflect ratio of the convective heat
transfer to the “normal” q0 = 1 (provided the velocity potentials U1, U2

are calculated for normal horizontal velocity V0 = 1 m/s. Let us stress,
that the main purpose of our paper is the study of general features of the
interaction between velocity and thermal fields.

The results for the cylinder, which is to groundwater impermeable, but
with high thermal conductivity (λ2/λ1 = 3), are presented in the Fig. 2.
The top isoline map presents equipotential lines of the velocity potentials
U1(x, z) U2(x, z) according to formulae from Section 2. The thin lines in this
map depict the velocity directions (force lines) of V1,2 = − gradU1,2(x, z)
which were calculated by the formulae from Section 3. We can see that the
lines of groundwater flow “avoid to enter” into cylinder, since we put the
ratio σ2/σ1 = 0.05. The potential pattern is antisymmetric with respect to
the plane x = 0. The velocity components Vx are symmetric, while Vz are
antisymmetric to this plane.

The middle map in Fig. 2 presents isotherms in our model, together with
isolines official qz/q0, where qz represents superposition of conductive and
convective parts of the heat flow. We can see that isotherms are sightly
bowed to the surface, since λ2/λ1 = 3 and isolines of qz/q0 have quite
complicated course, especially near the surface of the cylinder. The region
of qz/q0 > 1.0 appears above the cylinder, as well as on the right side below
it. The pattern of isolines not symmetric with respect to the x = 0 plane
is the effect of the convection. In the bottom graphs in Fig. 2 there are
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Fig. 2. Results of numerical calculation for the impermeable cylinder: h/a = 1.5, σ2/σ1 =
0.05 and good thermal conductivity, λ2/λ1 = 3. The top figure presents equipotential
lines (full) and velocity lines (gray) of the groundwater flow. The middle map presents
isotherms (full) and qz/q0 lines (gray). The bottom graphs present more detailed vertical
profiles qz/q0 along “boreholes” at x/a = −1.6,−1.1,−0.6,−0.1, 0.4, 0.9.
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Fig. 3. The same as in Fig. 2, but for low conductive cylinder λ2/λ1 = 0.3.
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plotted vertical courses of qz/q0 for six “boreholes” situated at x/a = −1.6,
−1.1, −0.6, −0.1, 0.4, 0.9. We can see, that most effective boreholes for
hydrothermal exploitation are e.g. for x/a = −0.6, −0.1, 0.4 which can be
effective even being shallow z ∈ 〈0, h− a).

In the Fig. 3 there are plotted similar graphs but for the low conductive
cylinder for the heat transfer, i.e. λ2/λ1 = 0.3. The filtration ratio σ2/σ1

is again equal to 0.05, so the velocity field is the same as in Fig. 2. But
temperature field is substantially different. We can see, that the region with
qz/q0 > 1 is much smaller in comparison with Fig. 2, it resides outside the
cylinder at depths z/a ∼ 0.7−1.6 and x/a

� −1. Another region with qz/q0

is in the right part of figure, but at depths z > h.
We can conclude, that better situation for hydrothermal resources is pro-

vided by structures with σ2/σ1 � 1 which push groundwater flow toward
the surface mainly above the cylinder and with λ2/λ1 � 2 which enable flows
of the conductive heat flow also above the cylinder. This situation is illus-
trated in Fig. 2.
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