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Calculation of the numerical derivatives
– comparison of the software
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A b s t r a c t : In the geophysical as well as other scientific practice we oftentimes need
to calculate the derivatives of the measured data. Since the analytical approach cannot
be used, numerical differentiation is adopted. There are many techniques to calculate the
derivatives, usually as a part (or plugin) of commercial software. For 0% random noise
all of the software lead to almost same results. But if noisy data are processed, the choice
of the correct method (software) is far from being trivial because the differences in the
outputs are surprisingly huge.
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1. Introduction

In the nature, there are some situations where the classical mathemat-
ical approaches do not describe the geological (or other) situations well.
This particularly holds for the calculations of the numerical derivatives. Of
course, it does not mean that the mathematics used is bad. The reasons for
this are in the fact that universe, nature, field, are much more complicated
than we were taught at elementary courses. There is a way out, though.
Throughout the years many different techniques have been developed to
manage these problematic aspects. Many authors have developed their own
approaches to process the data so the calculated output is acceptable (not
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too noisy, not too smooth). Usually these techniques apply filtering (Bielik,
1982; Šefara and Bielik, 2004) the input data and the filtered intermediate
product is differentiated. Most of the used filters require the knowledge of
the appropriate values of the filter parameters. These values can be esti-
mated from the boundary conditions or by the trial and error method. On
the other hand, there are some techniques that do not call for the filter
parameters in advance. One of such methods is regularization, which does
not need the “a priori” information about the filter parameters (regulariza-
tion parameters). Potential theory in gravity and magnetics applications is
very well described e.g. in Blakely (1995), Mudretsova and Veselov (1990).
As a magnificent output of application of these methods is the structural –
tectonic map (Šefara et al., 1987).

2. Unstable operators

To compute any type of representation from the image, information must
be extracted using certain operators interacting with the image. The most
common and basic questions about the operators are: Which operators to
apply? Where and how to apply them? Most of the operators used in the
practice somewhat involve the differentiation. It is known that differenti-
ation is an unstable operation – small perturbations in the input lead to
high perturbations in the output. The most often used derivative operators
are directional derivatives, gradients, terrain aspect, curvatures, the second
vertical gradient, biharmonic operator or various combinations of them.

Directional derivatives. This is a difference operator, which compares
two neighboring values separated by a certain distance. In mathematics this
distance can be infinitesimally small if we take the limit of the separation
distance to zero. But in physics, of course, we cannot use infinitesimal
distances because our measurements are always represented by the discrete
data. We can never make our measurements infinitely dense (fast, small).
Therefore we encounter serious problems if we deal with the differentiation
of discrete data in a pure mathematical way. Because the differentiation is
used in many fields, not only geophysical, this operator is one of the best
known among the unstable operators.

Terrain slope (first total horizontal gradient). For a particular point on
the surface, the terrain slope is based on the direction of steepest descent or
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ascent at that point (terrain aspect). This means that across the surface,
the gradient direction can change. The slope, S, at a point P is the mag-
nitude of the gradient at that point. From the definition of the gradient
(MapInfo, 2000)

S =
√

(∂xf )2 + (∂yf)2.

Terrain aspect. This operator calculates the downhill direction of the
steepest slope (i.e. dip direction). It is the direction that is perpendicular
to the contour lines on the surface, and is exactly opposite to the gradient
direction. The terrain aspect, AT , is represented as an azimuth (in degrees,
not radians) (MapInfo, 2000):

AT =
180
π

atan2
(
∂yf

∂xf

)
,

where atan2 is defined as arcus tangens for interval 〈0, π).
Analytical signal (total gradient). Very similar to the first total horizon-

tal gradient and used very often in geophysics (Berezkin, 1967; Nabighian,
1972):

AS =
√

(∂xf)2 + (∂yf)2 + (∂zf)2.

Profile curvature. This operator determines the downhill or uphill rate
of change in slope in the gradient direction (opposite of slope aspect di-
rection). It produces contour maps that show isolines of constant rate of
change of steepest slope across the surface. Negative values are convex up-
ward and indicate accelerated flow of water over the surface. Positive values
are concave upward and indicate slowed flow over the surface. The profile
curvature KS is given by (Golden Software Surfer, 2003)

KS =
(∂xxf) (∂xf)2 + 2 (∂xyf) (∂xf) (∂yf) + (∂yyf) (∂yf)2

[
(∂xf)2 + (∂yf )2

] [
1 + (∂xf)2 + (∂yf)2

]3/2 .
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Plan curvature. This operator reflects the rate of change of the terrain
aspect angle measured in the horizontal plane, and is a measure of the cur-
vature of contours. Negative values indicate divergent water flow over the
surface, and positive values indicate convergent flow. The plan curvature
KH is given by (Golden Software Surfer, 2003)

KH =
(∂xxf ) (∂yf)2 − 2 (∂xyf) (∂xf) (∂yf) + (∂yyf) (∂xf)2

[
(∂xf)2 + (∂yf)2

]3/2 .

Tangential curvature. This operator measures curvature in relation to a
vertical plane perpendicular to the gradient direction, or tangential to the
contour. The negative and positive areas are the same as for plan curvature,
but the curvature values are different. Tangential curvature is related to
the plan curvature by the sine of the slope ϕ: KH = KT/ sin ϕ. Tangential
curvature KT is given by (Golden Software Surfer, 2003)

KT =
(∂xxf) (∂yf)2 − 2 (∂xyf) (∂xf) (∂yf) + (∂yyf) (∂xf)2

[
(∂xf)2 + (∂yf )2

] [
1 + (∂xf)2 + (∂yf)2

]1/2 .

2. vertical gradient. Second vertical gradient of the gravity field is an
important tool in the frame of the transformation of potential fields – it
suppresses the effect of regional components in the interpreted field and its
local maxima are connected with the centres of isolated bodies and edges of
contacts and steps. The second vertical gradient is given by

Vzz = − (∂xxf + ∂yyf) .

Biharmonic operator. Bending of thin plates and shells, viscous flow in
porous media, and stress functions in linear elasticity are three examples of
physical quantities that can be mathematically described using the bihar-
monic operator. The biharmonic operator is defined by

∇4f = ∂xxxxf + 2∂xxyyf + ∂yyyyf.
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3. Comparison of the software

Naturally, many authors have developed formulae or algorithms for cal-
culation of the derivatives or other unstable operators. Some of these meth-
ods are a part of some commercially available software packages. Now the
question is which of these products is the best in evaluating the unstable
operators. We are presenting here the comparison of results obtained by six
independent software packages, namely, GeoSoft (1997), Golden Software
Surfer 8 (2003), MapInfo Professional Version 6.0 (2000), MathSoft Math-
CAD Professional (2000), the regularization method developed by Pašteka
(Pašteka and Richter, 2002), and the regularization method developed by
Richter (Richter and Pašteka, 2003).

Geosoft (1997) and Surfer (2003) have implemented also the low-pass
filters. But these filters need their own input parameters. However, assess-
ing the appropriate values of the filter parameters is difficult and requires a
skilled user. Compared with this the regularization approach has shown to
be more convenient. Based on this Surfer as well as Geosoft were used in
the basic mode (without filters) as many users often use it.

Two signals are under the inspection, namely the theoretical Vz of the
sphere and the Vz of the sphere influenced by the 2% white noise (Fig. 1),
which is generally considered to be low. The synthetic study area will be
on the grid {xi = i, yj = j}, where i, j ∈ Z ∩ 〈−25, 25〉. The spherical body
is located in the point [0 m, 0 m, - 5 m], radius r = 1 m, density ρs =
19270 kg.m−3 (gold spherical nugget). The quality of the eight unstable
operators was compared, namely the first horizontal gradient (Vzx), the
first total horizontal gradient (terrain slope, S), terrain aspect (AT ), profile

Fig. 1. The theoretical Vz of the above-mentioned sphere (left) and the signal influenced
by the 2% white noise (right).
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curvature (KS), plan curvature (KH), tangential curvature (KT ), 2. vertical
gradient (Vzz) and biharmonic operator (B).

For the 0% white noise all of the compared commercial software leads
to the more or less same results. The maximal differences are below 0.5%.
Because of this we concentrated on the noisy data. All the figures of the
calculated operators refer to the 2% white noise in the input. Despite this
low value the differences among the results are significant.

The first horizontal gradient. Five independent software packages were
applied and the results were compared with the theoretical solution (Fig. 2).
The regularization methods are clearly the best and very close to the theo-
retical solution. The solutions by Surfer and Geosoft are so noisy that the
anomaly is almost invisible. MathCAD worked in a very strange manner.
Such a result is not only bad, but also confusing and misleading.

Terrain slope. Six independent software packages were applied and the
results were compared with the theoretical solution (Fig. 3). The regulari-
zation methods are clearly the best again and very close to the theoretical
solution. The solutions by Surfer and Geosoft are so noisy that the anomaly
is almost invisible, although an experienced geophysicist might distinguish
the Geosoft’s result. MapInfo is too steep although the central parts of
the anomaly could be interpretable. MathCAD worked in a very strange
way again. Such a result is not only incorrect and noisy, but also confusing
and misleading. It makes a feeling of strictly concave function which is an
absolute nonsense.

Terrain aspect. Six independent software packages were applied and the
results were compared with the theoretical solution (Fig. 4). The regular-
ization methods have proven to be good again (the method of Pašteka looks
worse, though), although small distortions at the borders and near the dis-
continuity can be seen. The solutions by Surfer, Geosoft and MapInfo are
so noisy that the anomalies are absolutely invisible. They resemble a very
slightly centrally correlated noise. MathCAD would be quite close to the
theoretical solution but it is rotated and small distortions at the borders
and near the discontinuity can be seen. Compared with the regularization,
the part near the discontinuity is better reconstructed by the regularization.

Profile curvature. Five independent software packages were applied and
the results were compared with the theoretical solution (Fig. 5). Again,
the only legible result was obtained by the regularization (both methods
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comparable), although a banded or circular pattern is seen. Surfer’s and
Geosoft’s results are similar in the way that the results look like pure white
noise. The result of MathCAD resembles the Dirac delta function. Such a
result is even worse than the extremely noisy ones because it can mislead
the interpreter.

Tangential curvature. Five independent software packages were applied

Fig. 2. The theoretical first horizontal gradient (a) and the one calculated by the method
developed by Richter (2003) (b), the method developed by Pašteka (2002) (c), Golden
Software Surfer 8 (2003) (d), Geosoft (1997) (e) and MathSoft MathCAD Professional
(2000) (f).
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Fig. 3. The theoretical first total horizontal gradient (terrain slope) (a) and the one calcu-
lated by the method developed by Richter (2003) (b), the method developed by Pašteka
(2002) (c), Golden Software Surfer 8 (2003) (d), Geosoft (1997) (e), MapInfo Professional
6.0 (2000) (f) and MathSoft MathCAD Professional (2000) (g).
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Fig. 4. The theoretical terrain aspect (a) and the one calculated by the method developed
by Richter (2003) (b), the method developed by Pašteka (2002) (c), Golden Software
Surfer 8 (2003) (d), Geosoft (1997) (e), MapInfo Professional 6.0 (2000) (f) and MathSoft
MathCAD Professional (2000) (g).
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Fig. 5. The theoretical profile curvature (a) and the one calculated by the method devel-
oped by Richter (2003) (b), the method developed by Pašteka (2002) (c), Golden Software
Surfer 8 (2003) (d), Geosoft (1997) (e) and MathSoft MathCAD Professional (2000) (f).

and the results were compared with the theoretical solution (Fig. 6). Again
the regularization methods are superior to the others, although the undu-
lated patterns are seen (both methods comparable). Geosoft looks like pure
white noise. Surfer is even worse because it makes the feeling of an empty
space with two spikes. Similarly, confusing work of MathCAD makes the
feeling of the negative Dirac delta function.

28



Contributions to Geophysics and Geodesy Vol. 35/1, 2005

Fig. 6. The theoretical tangential curvature (a) and the one calculated by the method
developed by Richter (2003) (b), the method developed by Pašteka (2002) (c), Golden
Software Surfer 8 (2000) (d), Geosoft (1997) (e) and MathSoft MathCAD Professional
(2000) (f).

To be more objective, the statistical analysis was performed. The dis-
tributions of the relative deviation of the calculated operator from the the-
oretical one were calculated. The graphs can be found in Richter (2004).
The qualitative results are presented in Tab. 1 for the 0% noise and in the
Tab. 2 for the 2% white noise. A very simple criterion is used – the closest
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Tab. 1. The grades assigned to the particular software packages that were used for ap-
plying the operators to the Vz of the above-mentioned sphere for 0% noise. The column
“Mean” represents the average resulting grade of a particular software.
1Richter and Pašteka (2003)
2Pašteka and Richter (2002)

Tab. 2. The grades assigned to the particular software packages that were used for ap-
plying the operators to the Vz of the above-mentioned sphere for 2% noise. The column
“Mean” represents the average resulting grade of a particular software.
1Richter and Pašteka (2003)
2Pašteka and Richter (2002)

solution to the theoretical one wins the first place and so on. In this way
each software gets a grade and after all, the resulting grade is the mean of
the particular grades.

Tables 1 and 2 belong to the most important results of the paper. They
prove that the research in the field of regularization is important. The same
way they show that the usual commercial software use non-regularization
methods for the calculation of derivatives, which is not suitable for noisy
data. Of course, there are various software packages calculating the deriva-
tives by the means of regularization. The problem is, however, that such
programs are usually too expensive (Zhdanov, 2002; e-mail communication).
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5. Conclusions

Comparing the software packages it was shown that for the synthetic
data (without noise) the results are in most cases comparable (Richter,
2004). If it were not for the regularization methods, Surfer would produce
the closest results to the theory in most cases. Regularization showed a tiny
side effect in some cases. Geosoft develops clear artifacts, banded patterns
in the results. MapInfo slightly distorts the results. MathCAD produces
artifacts.

For data influenced by 2% random noise the regularization methods were
the only that produced reasonable results. In absolutely most cases none
of the other software packages calculated any interpretable solution. Their
solutions are either extremely noisy, or perfectly smooth. Interpretable
results are exceptions even in cases of very small noise content.

From the previous it results that the regularization is not necessary if
the signal is without noise or the noise content is very low. Such data
can be acquired, for example, with the highly accurate TM-4 magnetome-
ter of the Australian company G-Tek. It has been observed that in such
cases the regularization can even create some artifacts, or strange shapes,
in the resulting output. By this way the regularization can be used as an
independent marker of the data quality (whether it is or is not necessary
to regularize). From these results it implies that in such cases whatever
software can process the data without noise.
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Richter P., Pašteka R.: Calculation of the numerical derivatives . . . , (19–32)

Blakely R. J., 1995: Potential theory in gravity and magnetics applications. Cambridge
University Press.

Geosoft User guide for MAGMAP (FFT-2D) (114W V1.0) 1997. Geosoft Inc., Toronto,
Canada.

Golden Software Surfer version 8, user’s guide, 2003. Golden Software Inc., Golden,
Colorado, USA.

MapInfo Professional R©version 6.0 user’s guide, 2000. MapInfo Canada, Toronto, Canada.
MathSoft MathCAD Professional user’s guide, 2000. Bethesda, MD, USA.
Mudretsova E. A., Veselov K. E. (Ed.), 1990: Gravimetry. Nedra, Moscow (in Russian).
Nabighian M. N., 1972: The analytic signal of two-dimensional magnetic bodies with

polygonal cross-section: its properties and use for automated anomaly interpreta-
tion. Geophysics, 37, 507–517.
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