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A b s t r a c t : The Euler deconvolution method is one of the most used semi-automated
methods in potential fields interpretation during last decade. The evaluation of gradients,
which enter into the algorithm of the method should be stabilized, because this numerical
calculation strongly emphasizes errors and noise in the original data and makes the results
of the method instable and defocused. Evaluation of stable derivatives by means of
the regularization method demonstrates on a synthetic model study and practical data
application the stabilization and focusing of the depth estimates, obtained by means of
the Euler deconvolution method. Solutions, obtained for regularized gradients are deeper
in comparison with the erroneous shallow ones (obtained without the regularization).

Key words: geophysics, gravimetry, magnetometry, semi-automated inter-
pretation methods, Tikhonov regularization

1. Introduction

Results of interpretation methods in gravimetry and magnetometry build
an important part of the geophysical interpretation. As separate methods
(e.g. Blakely, 1995; Mudretsova and Veselov, 1990) or in the frame of
complex/integrated geophysical studies (e.g. Dérerová and Bielik, 2003;
Šefara and Bielik, 2004). The greatest problem during an effective utiliza-
tion of these results is the well-known inherent instability and ambiguity
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of the inverse problem of potential fields. The only solution (up to present
days) is the introduction of the a priori (additional) information about the
solution. This information can be of mathematical-physical or geological-
geophysical kind. From this point of view, we often speak about so called
direct interpretation methods (without the introduction of the geoscientic
additional information) and indirect methods (mainly modeling in the 21/2D,
23/4D or 3D regime with the acceptation of the results from other geological
and geophysical methods, as wells, well-logging, seismics, MT, DC sound-
ings, etc.). The direct methods are often named as deconvolution-, singular
points-, depth estimates- or semi-automated methods, etc. In the Western
Carpathian region, the indirect methods (based mainly on modeling) have
a long-year tradition with very good results, because of the strong school,
methodological developments and a high level of a priori geological and geo-
physical information. But there still exist areas in this region, where the
direct methods can bring valuable information about the source distribution
(without the direct introduction of the mentioned geological and geophysical
data).

Among the direct interpretation methods of potential fields during last
years the so called Euler deconvolution method (ED method) (also called
Euler homogeneity- or ELDPH-method) became very popular. The reason
is probably hidden in its relatively simple realization and application to
profile or grided data. It became a part of various professional software
packets for processing and interpretation of potential fields (Geosoft, Fugro,
Intrepid, etc.). On the other side the basic idea of the method is built on a
simple linearization, utilizing gradients of the interpreted field. This com-
bination of properties (linearization and gradients) is responsible for a very
high level of instability of the method (this was pointed by many authors
and experts from the industry, e.g. Farrelly, 1997). There is a huge amount
of contributions focused on the improvement of this method (Fairhead et
al., 1994; Stavrev, 1997; Barbosa et al., 1999; Mushayandebvu et al., 2001;
Mikhailov et al., 2003; Pašteka, 2004 and many others). One important
way to improve the focusing properties of the method is the stabilization
of the gradients of the input field, which play an important part in the
input of the method. The evaluation of the higher derivatives (gradients)
belongs to the so called ill-posed problems of the mathematical physics, be-
cause of its very high instability (small perturbations in the input result in
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great perturbations in the output). There are several ways how to stabi-
lize/smooth the numerically evaluated derivatives of potential fields. Very
effective is the concept of the noise separation in the original data by means
of Wiener filtering (Pawlowski and Hansen, 1990). Another approach is
a Fourier-domain low-pass filtering by means of the Gaussian regional fil-
ter in the area below the Nyquist wave-number (Fitzgerald, 2003, personal
communication). The concept of regularized derivatives, introduced by au-
thors of this contribution (Pašteka and Richter, 2002; Richter and Pašteka,
2003) can help to stabilize the derivatives calculation. A simple characteris-
tics of the regularized derivatives calculation describes it also as a low-pass
filter in the Fourier domain. But the concept of the selection of the opti-
mum parameter of the filter (the regularization parameter) by means of the
norm-functions analysis, show some benefits for the user.

The paper presents on a synthetic model and real data application the
improvement of the stability and focusing properties of the classical Euler
deconvolution algorithm by means of the introduction of the regularized
gradients.

2. Euler deconvolution method

The Euler deconvolution method is based on the Euler’s theorem for
homogeneous functions. The ‘potential’ of this property of special functions
(coming from the basics of the function analysis) was recognized by several
geophysicists in the 1950’s and 1960’s (Smelie, 1956; Hood, 1965), but
the real introduction into the practice was realized after the publication
of fundamental papers from Thompson (1982, 2D- profile application) and
Reid et al. (1990, 3D- grid application).

The basic idea of the method is based on the so called Euler’s theorem
of homogeneous functions: a function f(x, y, z) is homogeneous of degree n,
when it satisfies the following property:

f(tx, ty, tz) = tnf(x, y, z), (1)

where t is a real constant. When a homogeneous function has a total dif-
ferential, then the following equation is valid:
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The mentioned authors (Smelie, 1956; Hood, 1965; Thompson, 1982) have
recognized that formulae for the direct problem for simple source-types (bo-
dies) in magnetometry and gravimetry are homogeneous functions of form:

f (x, y, z) =
K

rN
=

K
√

(x− x0)2 + (y − y0)2 + (z − z0)2
N
, (3)

where K is a constant (reflecting the physical properties and including ba-
sic physical constants), x0, y0 and z0 are the coordinates of the source.
Equation (2) can be rewritten:

(x− x0)
∂f

∂x
+ (y − y0)

∂f

∂y
+ (z − z0)

∂f

∂z
= −Nf (x, y, z) . (4)

From this equation it follows that the degree of homogeneity is n = −N .
N is a very important parameter of the method and it characterizes the
type of the source and was named by Thompson (1982) as structural index.
The typical values for different bodies in magnetometry are: 3 (sphere),
2 (horizontal cylinder, pipe), 1 (dike, sill) and 0 (contact). These values
in gravimetry are decreased by 1, which is associated with the relationship
between gravity and magnetic field (described by the Poisson theorem).
This property was generalized and described by Stavrev (1997). The role
of the value N during the application of the method is very important, it
describes the type of the source, whose contribution is recognized in the
interpreted data. Thompson (1982) defined it as a measure of the rate of
change with distance of the potential function – but this property definition
holds only for point or line sources (described by rational functions of type
K/rN .

The realization of the method is based on the solution of the equation
(4) for unknown x0, y0 and z0. The value of the structural index N is
assumed to be known or predicted. The formulation of (4) for several mea-
surement points create a system of linear equations and can be solved in a
moving window along a profile (2D modification) or a grid (3D modifica-
tion). Thompson (1982) has found out on practical data (where anomalies
are often superposed on a regional trend) that Eq. (4) gives much better
results, when it is used in a rewritten format:
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(x− x0)
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= −N (f −B) , (5)

where constant B is the so called background term, describing a constant
shift (regional field, trend) of the anomalous field. The role of the back-
ground term B was generalized by Pašteka (2004) – the idea of the in-
terference polynomial from the well-known Werner deconvolution method
(Werner, 1953; Hartman et al., 1971 ) was adopted and the right-hand side
of Eq. (5) was enlarged by the influence of a polynomial of higher degree:

(x− x0)
∂f

∂x
+ (y − y0)

∂f

∂y
+ (z − z0)

∂f

∂z
=

= −Nf + A0 +A1x+ A2y + A3xy +A4x
2 +A5y

2 + ...

(6)

where A0, A1, A2, . . .are coefficients of the interference polynomial. Intro-
duction of the interference polynomial improves the clustering properties
of the method (Pašteka, 2000; Pašteka, 2004) and allows to work with
non-traditional negative structural index (contact structure in gravimetry)
(Pašteka, 2001, 2005). On the other side, its introduction causes a quite
intensive growth on the instability of the linear equation system solution
(Pašteka, 2004). The instability of the equation system solution is one
of the most serious troubles, occurring during Euler deconvolution method
application. It can be simply demonstrated on a simple model. We take a
case of thin belt fault, which describes a situation, occurring often in sedi-
mentary basins (sub-volcanic sills, disturbed by tectonics, building a small
depth shift between two parts of the system – Fig. 1). The correct value
of the structural index was derived by Reid (2003) and it is equal to 2 for
magnetic field (it is very interesting that one separate sill/sheet has N = 1).
The depth of the upper sheet is 10 m, the lower is in 11 m. In Fig. 1 we can
see that the solutions from the classical 2D-Euler deconvolution algorithm
(utilizing only the linear background term B) are quite well clustered at the
source position of this body-system. The mean depth is – 11.1 m, which is
closer to the lower sheet. At present we can not explain this fact, but this
error is approximately 11% of the estimated depth, which is in the frame of
the usually accepted error interval, when using the semi-automated methods
in practice. Important is the fact that the solutions build a well “developed”
cluster and there is no false solution. Another situation occurs, when we
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Fig. 1. Results of the 2D-Euler deconvolution algorithm (for N = 2) applied on synthetic
∆T (x) data from the model of a thin belt fault (without additional synthetic normal
noise). Clustering of the depth solutions is focused (with a 11% error) in depth of the
real source of the anomalous bodies system (window length = 10 m).

apply the same algorithm on ∆T (x) data with added synthetic normal noise
(with the maximum amplitude of 5% of the interpreted anomaly).

The reader can see (Fig. 2) that the obtained solutions are not well
clustered in the area of the source (there occur some solutions, but without
the knowledge about the source position an interpreter could think that
they build only a part of a typical artificial “tail”, coming from a shallower
source). Important is the occurrence of a relatively great amount of false
shallow solutions. In the case of such a simple anomaly from an isolated
source there is a straightforward criterion on how to exclude such false
solutions – solutions outside the important gradients of the anomaly curve
(field) are usually wrong. But when we deal with the interpretation of
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Fig. 2. Results of the 2D-Euler deconvolution algorithm (for N = 2) applied on synthetic
∆T (x) data from the model of a thin belt fault (with an additional 5% synthetic normal
noise). Clustering of the depth solutions is not well focused at the depth of the real source
of the anomalous bodies system and a large amount of false solutions occur on both sides
of the profile (window length = 10 m).

complex anomalies from complicated geological situations, this criterion can
not be used.

3. Stabilization of derivatives by means of the Tikhonov
regularization

Based on our long year experience with theoretical models and prac-
tical applications it follows that the instability of the equation system in
the ED algorithm strongly grows after the introduction of disturbed data
by synthetic noise (e.g. Pašteka, 2005; tests with Gaussian normal noise).
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Fig. 3. Norm functions, obtained during the evaluation of regularized x- and z-derivatives
in the Fourier domain by means of the Tikhonov’s approach. The input ∆T (x) field was
disturbed by an additional 5% synthetic normal noise. The local minimum of the norms
(point 2 on the graphs) corresponds to the optimum value of the regularization parameter
α. Other local maxima (points 1 and 3) are depicted because of the demonstration of
under- and over-regularized solutions.

The influence of the noise and errors in the original input data is strongly
emphasized by the derivatives (gradients), which build a part of the input
into the interpretation Eq.(4). The numerical evaluation of higher deriva-
tives (in the spatial or spectral domain) is a well know instable operation –
small changes in the input signal cause large changes (disturbances, oscil-
lations) in the output signal (in the spectral domain the characteristics of
this operations are high-pass filters). This property leads to the breaking
of the second of Hadamard’s criterions (Hadamard, 1923, in Tikhonov and
Arsenin, 1974), which are set on the so called well-posed problem in math-
ematical physics. This means that the numerical evaluation of derivatives
belongs to the so called ill-posed problems.

Several approaches were developed, how to solve ill-posed problems in
mathematical physics – regularization, introduced by Russian authors Tik-
honov and Arsenin (1974), is probably most powerful of all approaches.
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Fig. 4. Results of the 2D-Euler deconvolution algorithm (for N = 2) applied on syn-
thetic ∆T (x) data from the model of a thin belt fault (with an additional 5% synthetic
normal noise). The gradients, entering into the method were evaluated by means of the
Tikhonov’s regularization (for the optimum value of the regularization parameter - taken
from the point 2 in Fig. 3). Depth solutions are relatively well focused in depth of the
real source of the anomalous bodies system. The amount of false solutions was lowered in
comparison with the results from non-regularized gradients application (Fig. 2) (window
length = 10 m).

The fundamental solution idea of the so called Tikhonov’s regularization
is based on the solution of the operation as a variational problem. The
main functional (to be minimized) of the problem is composed of two par-
tial functionals. The first is the miss-fit functional, describing the classical
problem (the inverse transform of the output should be close to the mea-
sured/interpreted data). The second (additional) functional describes the
stabilizing properties of the solution – it is usually the so called maximum
smoothness stabilizing functional (Zhdanov, 2002). We can mathemati-
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Fig. 5. Results of the 2D-Euler deconvolution algorithm (for N = 2) applied on syn-
thetic ∆T (x) data from the model of a thin belt fault (with an additional 5% synthetic
normal noise). The gradients, entering into the method were evaluated by means of the
Tikhonov’s regularization (for the value of the regularization parameter, taken from the
point 1 in Fig. 3). Depth solutions are relatively well focused in depth of the real source
of the anomalous bodies system, but the amount of false solutions is higher in comparison
with the results from (correctly) regularized gradients application (Fig. 4) (window length
= 10 m).

cally describe this property by summing (integrating) the squares of the
derivatives along the direction of the profile axis (or in two directions, when
working with 2D data). Such a sum will reach maximum values for highly
distorted (oscillating) field data. The role of both functionals in the solution
is “managed” by the so called regularization parameter (α). Tikhonov et
al. (1968) have shown an elegant solution by means of this approach for
the problem of stable analytical continuation downwards. The result of the
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Fig. 6. Results of the 2D-Euler deconvolution algorithm (for N = 2) applied on syn-
thetic ∆T (x) data from the model of a thin belt fault (with an additional 5% synthetic
normal noise). The gradients, entering into the method were evaluated by means of the
Tikhonov’s regularization (for the value of the regularization parameter, taken from the
point 3 in Fig. 3). ED solutions are too deep and they do not build well “developed”
clusters (window length = 10 m).

variational problem in the Fourier domain is a low-pass filter. Its smooth-
ing properties are “managed” by the value of the regularization parameter.
The problem of the determination (estimation) of the correct (optimum)
value of the regularization parameter is one of the most important tasks
during the practical application of this approach. Tikhonov et al. (1968)
introduced an approach, where a C norm of two following solutions (for
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Fig. 7. Shaded relief map of the west-south part of the regional Bouguer gravity anomaly
from Slovakia (correction density 2.67 g.cm−3) with the selected area (square) in the west-
south part of the Danube Basin region. Data were interpolated into a grid with square
step approximately 470 m (64 × 64 points).

various values of the regularization parameter) is evaluated and plotted as
a function of the regularized parameter α. This procedure is evaluated for
a geometrical sequence of regularization parameter values (typically from
10−10 to 10+10). Such a norm-function has usually a specific shape (cf.
Fig. 3) – it is a “bulging” function with a local developed minimum. This
minimum reflects the area of most stable solutions – small changes of the
regularization parameter cause small changes in the evaluated regularized
derivatives.

The approach of Tikhonov et al. (1968) was transferred to the solution of
stable derivatives (Pašteka and Richter, 2002) in the Fourier domain, where
the Strakhov’s (in Mudretsova and Veselov, 1990) regularizing low-pass filter
was adopted. Second relatively independent approach to the solution of reg-
ularized derivatives was presented by Richter (Richter and Pašteka, 2003).
Comparison of these two independent approaches (Richter and Pašteka,
2005) have shown very close results. In this paper we will work with a model
situation and practical data application with the Tikhonov’s approach in the

12



Contributions to Geophysics and Geodesy Vol. 35/1, 2005

Fig. 8. Norm functions, obtained during the evaluation of regularized x-, y- and z- deriva-
tives in the Fourier domain by means of the Tikhonov’s approach, calculated from selected
Bouguer anomaly data from Danube lowland. Selected local minima are marked by small
squares.

Fourier domain (Pašteka and Richter, 2002). In Fig. 3 we can see the C
norm-function, obtained for the evaluation of x- and z-derivatives of the
∆T (x) data with 5% normal noise (displayed in Fig. 2). A well developed
local minimum (point 2 in Fig. 3) defines for both norm-functions the opti-
mum regularization parameters. ED solutions are displayed in Fig. 4, where
we can see that the clustering of the estimates is much better focused in the
area of the real source (in comparison with the results from the application
of non-regularized gradients – displayed in Fig. 2).

When we will take the values of regularization parameters from two other
important extremes of the C norm-function (Fig. 3 – points 1 and 3), we
can clearly see that for α from point 1 (lower value than the optimum α)
we get the so called under-regularized derivatives and the character of the
ED soluions (Fig. 5) is very similar to that displayed in Fig. 2. In Fig. 6 we
can see the opposite situation – for α from point 3 (higher value than the
optimum α) we get the so called over-regularized (too smooth) derivatives
and the depths of ED solutions are too great (focusing is also very poor).
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Fig. 9. Results from the 3D-Euler deconvolution algorithm (for N = 0) with the non-
regularized (a) and regularized derivatives (b) involvement (input field was the selected
grid of Bouguer gravity anomalies from the region of west-south Danube lowland). Po-
sitions of obtained estimates are plotted with crosses (+). No filtration or clustering of
the results were realized. The shaded relief map in the background is the field of the
non/regularized z-derivative of Bouguer gravity anomaly (window length = 10× 10 m).
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4. Practical application

For a practical demonstration of the improvement of the Euler deconvo-
lution method an area of a square shape from the regional Bouguer anomaly
of Slovak Republic (Grand et al., 2001) (correction density 2.67 g.cm−3) was
selected (Fig. 7). The shapes of the norm-functions, obtained for this grid
during the calculation of all three derivatives (x-, y- and z-derivative) are
displayed in Fig. 8. For the final regularized derivatives reconstruction the
optimum values from the local minima of the norms (Fig. 8 – these points
are marked by small squares) were taken. Some of the local minima are not
exact minima (the closest neighbour points do not have greater values in
comparison with the “minimum” value), but based on our experiences they
can be used for the reconstruction of optimum regularized derivatives. For
the norm-functions, obtained during the y- and z-derivative evaluation we
got two local minima – this phenomenon is often registered, but at present
we have no explanation for it (coming from the influence of two independent
sources of errors in the original data?). The optimum value is usually se-
lected from a qualitative analysis of the reconstructed derivatives – usually
“average” solutions lying between too noisy (e.g. the first small minimum
in the norm-function for the z-derivative) and too smoothed (e.g. the large
second minimum in the norm-function for the y-derivative) solutions are
selected. We are aware of this ambiguity in our approach and work on the
solution of this problem in the future.

Evaluation of the regularized derivatives by means of the presented ap-
proach brought desired results (from our point of view). In Fig. 9a we can
see the results for the 3D-ED algorithm with non-regularized gradients uti-
lization – there is a large amount on false solutions and a strong influence
of the edge effects (artificial sequences of points, parallel to the edges of the
map). In Fig. 9b the solutions from regularized gradients involvement show
better clustration in the areas of main gradients of the original Bouguer
anomaly map. Also the average depth of the solutions, obtained by means
of regularized derivations involvement is greater (median: 1986.2 m below
the surface) than the non-regularized ones (median: 780.6 m bellow the sur-
face) – here a large influence on the smaller depths have erroneous shallow
solutions. The detailed geological interpretations of the obtained solutions
(by means of regularized derivatives) would overload the scope of this me-
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thodical contribution – it is a topic of a separate publication (interpretation
of ED solutions from the regional Bouguer anomaly map from a larger area
in West Carpathians region).

5. Conclusions

The introduction of regularized derivatives into the Euler deconvolution
algorithm in the frame of the presented study (demonstrated by a simple
model and practical data study) brought an improvement of the stabil-
ity of the received solutions. The solutions are in general better clustered
(synthetic model and practical data results) and closer to the real depth
(practical data result). The presented results could be, of course, obtained
also by a precise manual application of a low-pass filtering procedure on
the original data. The involved regularization algorithm helps to select the
optimum regularization/smoothing parameter by means of the existence of
local minima in the norm-functions. This approach is helpful for interpreters
with a lower level of experience and is suitable for automatization (task for
future developments). The problem of the selection of the optimum regu-
larization parameter still exists – the occurrence of several local minima of
the norm-functions (for practical data) is for us still an opened problem.
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