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Some aspects of Bouguer gravity
determination – revisited
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Abs t r a c t : The Bouguer gravity disturbance gets a clear physical meaning only when

it is based on ellipsoidal heights. However, applying closed expressions or Taylor series

expansions for the normal gravity calculation is not permitted in areas of negative ellip-

soidal heights. The paper investigates problems associated with using alternate reference

earth models and compares the differences with respect to the classical reference ellipsoid

approach. It is shown that the quasi-ellipsoid concept is a suitable way to handle negative

ellipsoidal heights. The paper also discusses the consequences of gravity vector transfor-

mation into scalar quantities which are commonly used. Strictly speaking the latter are

no harmonic functions but can be regarded as such in planar approximation.

Key words: scalar and vector gravity disturbance, normal gravity, refer-
ence ellipsoid, quasi-ellipsoid.

1. Introduction

Since modern surveying methods (GPS) make ellipsoidal heights avail-
able, several papers have been published recently stimulating the discussion
among geodesists and geophysicists on problems like the geophysical indirect
effect, gravity anomaly versus disturbance terminology, physical meaning of
Bouguer gravity etc. (e.g., Ivan, 1996; Li and Götze, 2001; Hackney and
Featherstone, 2003; Vajda et al., 2004; Hinze et al., 2005; Vajda et al.,
2006). Actually all these papers do not provide much new findings to spe-
cialists as the basics are well known. However, it was worth and necessary
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to clarify the situation as perhaps not everybody was aware that only by
using ellipsoidal heights the Bouguer gravity gets a clear physical meaning.
As long as orthometric or normal heights were only available instead of

ellipsoidal ones, the problem of the geophysical indirect effect was commonly
ignored. This was justified in local and regional studies because on these
scales the effect behaves as a long wavelength signal with low amplitude.
Besides, orthometric or normal heights allow for applying closed expressions
or series expansions for normal gravity calculation almost worldwide as they
are positive almost everywhere on and above the earth surface. Contrarily,
wide areas exhibit negative ellipsoidal heights not only in certain oceanic
regions, but also onshore, e.g., close to some continent-ocean boundaries.
Here the usual way of a normal gravity correction is not possible or intro-
duces systematic errors. A possible solution to overcome this problem is to
define alternate reference earth figures (e.g., Vajda et al., 2004). This paper
investigates consequences of such a strategy.

2. On the problem of normal gravity calculation

The 3rd boundary value problem in physical geodesy requires that La-
place’s differential equation (LDE) holds regarding the disturbing gravity
potential T at the boundary (geoid) and within the exterior space. The
disturbing gravity potential is defined as:

T (x) =W (x)− U(x). (1)

W is the gravity potential and U denotes the normal potential. The normal
potential is uniquely defined by the 4 Stokes’ constants (e.g., Heiskanen
and Moritz, 1967). No assumption regarding the mass density structure
inside the reference ellipsoid is required. In geophysics the normal potential
is assumed to be caused by an ellipsoidally stratified density distribution
inside the reference ellipsoid which matches global seismological findings
(e.g., PREM (Dziewonski and Anderson, 1981)). Consequently, Poisson’s
DE holds rather than the LDE, where ellipsoidal heights are negative, and
thus the gravitational part of the normal potential is no harmonic function
inside the reference ellipsoid.
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In physical geodesy this problem is overcome by the non-uniqueness prin-
ciple of potential theory. Infinitely many mass distributions exist that pro-
duce the normal potential. The spherical harmonic expansion of the normal
potential converges down to a sphere closely surrounding the focal points of
the reference ellipsoid (Moritz, 1980). According to the equivalent source
principle a surface density distribution spread over this sphere of conver-
gence exists that generates the normal potential. Hence the gravitational
part of the normal potential is a harmonic function far below the surface of
the normal ellipsoid.

In geophysics this concept is not applicable as the geophysicist is looking
for anomalous density distribution defined as a deviation from the ellip-
soidal density stratification of the reference earth model. In addition, the
geophysicist needs to calculate the gravity disturbance and has to deter-
mine normal gravity at the observation point. This is no problem when
the station is located above the ellipsoid, but severe problems arise if the
ellipsoidal height is negative. In this case one can no longer use the same
closed formulas or Taylor series expansion as for normal gravity outside the
ellipsoid. Fig. 1 shows an error estimate based on a PREM like density
distribution in spherical approximation.
The problem is solved if the density distribution of the reference earth

is known. An alternate way has been proposed, e.g., by Vajda et al. (2004)

Fig. 1. Gravity inside the earth (left) and close to the earth’s surface (right) indicating
the error introduced when applying the normal gravity formula even inside the earth.
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who suggest to refer to a so-called quasi-ellipsoid. In this article, both con-
cepts are discussed in terms of their physical meaning and differences.

3. Reference ellipsoid concept

All reference earth models have to fulfill following conditions:

1. The mass ME of the reference earth model is equal to the total mass M

of the real earth because the corresponding gravitational potentials have
the same zero degree term if expanded into solid spherical harmonics.

2. The surface of the reference ellipsoid coincides with the equipotential
surface of the normal gravity field equal to the actual gravity potential
at the geoid.

Then the real earth can be regarded as synthetically composed (Fig. 2) of

• ellipsoidal density stratification with total mass ME (reference ellipsoid)

• topographic surplus mass MTs

• topographic deficit mass MTd

• mass anomalies inside the reference-ellipsoid: δMTs, δMTd,
∑

δME .

Fig. 2. Synthetic composition of the earth applying the reference ellipsoid concept.
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δMTs and δMTd just compensate the topographic surplus and deficit mass,
respectively. The atmospheric mass is either included in the topographic
surplus and deficit mass or is considered by the atmospheric correction of
normal gravity (e.g., Wenzel, 1985).
It should be noted that the actual geoid constrains location and geometry

of all compensating masses. That means they cannot be located arbitrarily.
Additionally, as the total massM has to be preserved, the following equation
holds:

M =







ME+
+MTs + δMTs+
+MTd + δMTd+
+
∑

δME







=ME ⇒







MTs + δMTs+
+MTd + δMTd+
+
∑

δME







= 0 (2)

The gravity g observed at any point P (x) outside, on or inside the reference
ellipsoid therefore reads as:

g(x) = γE(x;ME) + g̃(x;MTs) + g̃(x;MTd)
︸ ︷︷ ︸

topographic
mass correction

+ g̃(x; δMTs) + g̃(x; δMTd) +

+ g̃(x;
∑

δME) (3)

γE denotes the normal gravity vector and the tildes indicate pure gravita-
tional contributions to gravity. As the Bouguer gravity disturbance δg(x)
is defined by

δg(x) = g(x)− γE(x;ME)− {g̃(x;MTs) + g̃(x;MTd)} (4)

it has a clear physical meaning as Newtonian attraction of all mass anomalies
below the topo-surface at the observation point:

δg(x) = g̃(x; δMTs) + g̃(x; δMTd) + g̃(x;
∑

δME) (5)

Of course, this holds only if the mass density within topography is ex-
actly known. If the topographic mass correction is performed by assuming
constant density, then the Bouguer gravity disturbance is the Newtonian
attraction of all mass anomalies below the topo-surface with respect to the
mass distribution of the reference earth (if located within the reference el-
lipsoid) and to the mass of constant density, respectively (if located inside
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the topographic surplus mass) at the observation point. Inside the reference
ellipsoid the components of the Bouguer gravity disturbance vector can be
calculated if and only if the internal density structure of the reference ellip-
soid is known.
It has to be stressed that the Bouguer gravity disturbance does not ex-

actly correspond to the gradient of the disturbing gravity potential in the
sense of physical geodesy because it includes the topographic mass correc-
tion term. This has to be considered, when geoidal heights are derived by
applying Bruns’ theorem on the potential calculated by simple vertical in-
tegration of the Bouguer gravity.
Equation (4) shows that the mass correction considers also the deficit

mass missing between ellipsoid and topo-surface. This is essential in order
to get a harmonic disturbing potential within the space above the topo-
surface. Otherwise applying field transformation methods (e.g., upward
continuation) would not be strictly permitted. Therefore digital elevation
models based on ellipsoidal heights even offshore are required.

4. Quasi-ellipsoid concept

The quasi-ellipsoid is defined as a spheroid located inside the reference
ellipsoid. The distance between each surface point and its projection onto
the reference ellipsoid along the reference ellipsoidal normal is constant. It
is fixed such that each point of the topo-surface is either on or outside the
quasi-ellipsoid (e.g., Vajda et al., 2004). Following requirements have to be
fulfilled:

1. The quasi-ellipsoid exhibits a mass density distribution such that its
external gravity field equals exactly to that of the reference ellipsoid.
Outside the reference ellipsoid, the potential field is uniquely determined
by the normal gravity on the reference ellipsoid. As between the reference
ellipsoid and the quasi-ellipsoid the LDE holds, we can make use of the
analytical continuation of the external potential into the interior of the
reference ellipsoid. Hence, everywhere outside and on the quasi-ellipsoid,
the closed expressions or series expansions for the normal gravity can be
applied, i.e., the components of the Bouguer gravity disturbance vector
can now be calculated without an a priori knowledge of the internal
density structure even at points with negative ellipsoidal heights.
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2. The total mass of the quasi-ellipsoid MQ equals to that of the reference
ellipsoid ME (or that of the real earth M) which follows immediately
from the first requirement.

The real earth can now be regarded as synthetically composed (Fig. 3) of

• ellipsoidal density stratification with mass MQ (quasi-ellipsoid)

• topographic surplus mass MTQs filling the space between reference- and
quasi-ellipsoid

• topographic surplus mass MTs

• topographic deficit mass MTd

• mass anomalies inside the quasi-ellipsoid: δMTQs, δMTs, δMTd,
∑

δME .

δMTQs, δMTs and δMTd again just compensate the topographic surplus
(MTQs, MTs) and deficit mass (MTd), respectively:

M =







MQ+
+MTQs + δMTQs

+MTs + δMTs

+MTd + δMTd+
+
∑

δME







=MQ =ME ⇒







MTQs + δMTQs+
+MTs + δMTs+
+MTd + δMTd+
+
∑

δME







= 0 (6)

Then gravity g observed at any point P (x) outside or on the quasi-ellipsoid
reads as:

Fig. 3: Synthetic composition of the earth applying the quasi-ellipsoid concept.
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g(x) =

=γ
E
(x)

︷ ︸︸ ︷

γQ(x;MQ) +

topographic
mass correction

︷ ︸︸ ︷

g̃(x;MTQs) + g̃(x;MTs) + g̃(x;MTd)+

+g̃(x; δMTs) + g̃(x; δMTd) + g̃(x; δMTQs) + g̃(x;
∑

δME)

(7)

Again, the Bouguer gravity disturbance δg(x) has the clear physical mean-
ing as Newtonian attraction of all mass anomalies below the topo-surface
at the observation point:

δg(x) = g̃(x; δMTs) + g̃(x; δMTd) + g̃(x;
∑

δME) + g̃(x; δMTQs) (8)

However, this expression differs from that of the reference ellipsoid concept
(Eq. (5)) just by the last term on the right hand side. Accordingly, applying
Gauss’ law
∫ ∫

∂V

g · df =

∫∫∫

V

divg dv = −4πGM (9)

on Eqs. (5) and (8) yields the total anomalous mass MS (Eq. (10)) gener-
ating the Bouguer gravity disturbance. V is an arbitrary volume including
both the reference ellipsoid and the quasi-ellipsoid with volume elements
dv, ∂V denotes its boundary with surface elements df.

reference ellipsoid concept

δg = g − γE − g̃(MTs,MTd)
↓ ↓ ↓ ↓

MS =M − M − (MTs +MTd)
MS = −MTs − MTd

(10)
quasi-ellipsoid concept

δg = g − γE − g̃(MTs,MTd) − g̃(MTQs)
↓ ↓ ↓ ↓ ↓

MS =M − M − (MTs +MTd)− MTQs

MS = −MTs − MTd − MTQs

Hence, in the quasi-ellipsoid concept additional anomalous mass exists that
balancesMTQs and yields to a global and height dependent gravity signal in
Eq. (8). The magnitude of this global signal can be estimated by a simple
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Fig. 4. Earth model in spherical approximation.

model of the Earth (Fig. 4) in spherical approximation (homogeneous sphere
without topography).

In the reference ellipsoid concept observed gravity equals to normal grav-
ity at all points outside (P1), on (P0) and inside (P2) the sphere. As no
topographic surplus or deficit mass exists, the Bouguer gravity disturbance
is zero everywhere. However, in the quasi-ellipsoid concept the observed
gravity equals to normal gravity only outside (P1) and on (P0) the refer-
ence ellipsoid. Additionally, the mass correction δg

T
taking the spherical

shell between reference ellipsoid and quasi-ellipsoid into account differs for
different radii R:

The Bouguer gravity disturbance is no longer zero but dependent on the
radius R:

δg =
4πGρ

3

Q30 − R30
R2

=
4πGρ

3

(R0 − h′)3 − R30
R2

=

=
4πGρ

3

R30
R2

((

1−
h′

R0

)3

− 1

)

≈ −4πGρh′
R20
R2

≈
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≈−4πGρh′

(

1− 2
h

R0

)

(11)

where h′ denotes the separation of the reference ellipsoid and the quasi
ellipsoid, ρ the density and G the gravitational constant. The Bouguer
gravity disturbances differ in both concepts by one constant and one height
dependent term:

height dependent term :
8πGρ

R0
h′h (12)

Assuming a crustal density of 2670 kgm−3 and h′ = 0.1 km, the height
dependence is estimated to be as small as 70 nms−2/km, and therefore this
global signal has no impact on local studies.

5. Vector versus scalar formulation

The previous sections used the vector formulation for gravity in order to
be rigorous. In praxis we have to deal with scalar quantities instead. The
latter is inevitable to be left with harmonic quantities required for applying
interpretation methods like field transformation and for simplifying data
processing and modeling. Harmonic quantities can be obtained by either
using the vector components or any linear combination of theirs. The norm
of a potential gradient vector does not meet Laplace differential equation
while its projection to any direction does. For being rigorous we need to
know the direction of the observed gravity vector and not only its norm as
resulting from gravity measurements. Only in this case we can calculate the
projections of all contributing gravitational vectors to the direction of the
observed gravity vector. The following recalls which imperfections or errors
are introduced by the data processing commonly used in praxis.
Let U be a scalar potential. Then the potential gradient vector is trans-

formed into a scalar quantity W by performing the scalar product with any
vector field b, and W is written by using the Einstein notation as:

W = bj
∂U

∂xj
(13)

Applying the Laplace operator yields
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∂2W

∂x2i
=

∂2bj

∂x2i

∂U

∂xj

+ 2
∂bj

∂xi

∂2U

∂xi∂xj

+ bj
∂

∂xj

(

∂2U

∂x2i

)

(14)

If U is a harmonic function, i.e., LDE holds, then Eq. (14) simplifies to

∂2W

∂x2i
=

∂2bj

∂x2i

∂U

∂xj
+ 2

∂bj

∂xi

∂2U

∂xi∂xj
(15)

Obviously W is a harmonic function if b is any constant vector or if b = x.
In the scalar formulation of the Bouguer gravity, b is commonly chosen as
unit vector parallel to the ellipsoidal surface normal or, in spherical approx-
imation, to the radial direction:

b = x/‖x‖ (16)

It has to be stressed, that, strictly speaking, the scalar Bouguer gravity
disturbance is no harmonic function. As for example, if the unit vector in
radial direction is used, Eq. (15) results in:

∂2W

∂x2i
= −

2

x2k

(

W + xi
∂W

∂xi

)

(17)

If Eq. (17) equals zero, then the right-hand side of Eq. (17) contains Euler’s
homogeneity relation, i.e., W is a homogeneous function of degree −1 and
U = C lnx2k +D. However, this is not a harmonic potential function in 3D
space.
Conventionally the unit vector n is chosen as pointing downward and

parallel to the ellipsoidal normal which passes the observation point P (x).
Its direction varies with x as long as the observation points are not aligned
along the same ellipsoid normal. Note that outside the reference ellipsoid
the normal gravity vector is not parallel to the ellipsoid normal because the
equipotential surfaces except the reference ellipsoid itself are no ellipsoids.
The scalar representation of the Bouguer gravity disturbance follows from
Eq. (4):

n(x) · δg(x) = n(x) · g(x)− n(x) · γE(x;ME)− n(x) · g̃(x;MT ) (18)

MT here denotes the surplus and deficit mass. Using the symbols explained
in Fig. 5 yields:
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Fig. 5. The problem of vector misalignment.

δg(x) cos δ(x) = g(x) cos ε(x)− γE(x) cosα(x)− g̃(x;MT ) cos δT (x)
︸ ︷︷ ︸

topographic
mass effect

(19)

In praxis, at each observation point a Cartesian coordinate system is locally
adjusted so that its vertical axis is parallel to the ellipsoidal normal, and
Eq. (19) is evaluated simply by calculating the vertical components. The
deflection of the vertical ε and the angle α are disregarded. This is justified
because the error is less then 420 nms−2 as long as ε does not exceed 60
arcsec. Afterwards the local coordinate systems are rotated such that their
vertical axes are aligned. As noted before, strictly speaking the left-hand
side of Eq. (19) does not fulfill the LDE, but after alignment of the verti-
cal axes it can be regarded as harmonic function in planar approximation.
However, it is important to keep in mind that this approximation introduces
errors. They have to be considered when field continuation is used for high
accurate 3D interpolation. Moreover, this concept is not applicable for large
scale investigations.

6. Conclusions

• The Bouguer gravity disturbance corresponds exactly to the gravity ef-
fect of all mass anomalies below the topo-surface with respect to the mass
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distribution of the reference earth (if located inside the reference ellipsoid
or quasi-ellipsoid) and constant density respectively (if located outside)
at the observation point. Reference ellipsoid and the quasi-ellipsoid ex-
hibit different density distributions.

• The density distribution of the reference ellipsoid has to be known in
order to calculate normal gravity at observation points with negative el-
lipsoidal heights. Contrarily, the quasi-ellipsoid concept does not require
an a priori density information. However, a global and slightly height
dependent signal is left in the Bouguer gravity disturbance.

• The mass correction has to include the gravity effect of the deficit mass
missing between ellipsoid and topo-surface in the reference ellipsoid con-
cept while in the quasi-ellipsoid concept the mass correction domain is
extended down to the surface of the quasi-ellipsoid.

• The Bouguer gravity disturbance vector does not exactly correspond to
the gradient of the disturbing gravity potential in the sense of physical
geodesy. This has to be considered, when deriving geoidal heights by ap-
plying Bruns’ theorem on the potential calculated by field transformation
(vertical integration) of the Bouguer gravity disturbance.

• The scalar Bouguer gravity disturbance can be regarded as harmonic
quantity only in planar approximation. This limits the scale on which
field transformation is permitted by applying FFT techniques and in-
troduces additional error sources in upward continuation or other field
transformation results.
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