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A b s t r a c t : In the paper a new neural network (NN) model for prediction of Kp
indices during geomagnetic storms is proposed. The model consists of 34 individually
trained three-layer networks that are fed with solar wind parameters Bz, n, and V mea-
sured at libration point L1. One-hour averages of those are used. Four geomagnetic storm
intervals (14–18 May 1997, 1–7 May 1998, 25–26 June 1998, and 24–27 September 1998)
were used for the training and validation of the NNs. The final test was performed on
three storm intervals (26–29 August 1998, 18–22 October 1998, and 7–11 November 2004).
This test was compared with the results of simple NNs fed with three-hour averages of the
solar wind data. As follows from this comparison, the NN model based on the one-hour
averages gives more accurate predictions of Kp during the selected test storms, than the
usually utilized model based on three-hour averages of solar wind parameters.

Key words: neural networks, Kp index, geomagnetic storm, solar wind

1. Introduction

The Earth’s magnetosphere interacts with the ever-changing solar wind.
Currents in the ionosphere and magnetosphere are generated during in-
teraction processes. Their intensity and, generally, the near-Earth plasma
dynamics are directly associated with the variable solar forcing (Feldstein
et al., 2003, 2005). The chain of these complex phenomena including gen-
erated geomagnetic disturbances characterizes the changing space weather.
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Valach F., Prigancová A.: Neural network model for . . . , (61–71)

Various types of geomagnetic disturbances which can be measured on the
Earth’s surface are known. A typical one is a magnetic storm. Three phases
for this global disturbance are usually considered. When disturbed solar
wind streams arrive, the dynamic pressure exposing on the magnetopause
compress the dayside magnetosphere. In fact the increased solar wind dy-
namic pressure drives the magnetopause earthward as revealed by magnetic
field and plasma measurements in space (Siscoe et al., 1968; Ogilvie et
al., 1968). When the arrived shock wave is forcing on the magnetosphere
a distinctive magnetic impulse (sudden commencement, SC) is produced
as a consequence of the resulted magnetopause current intensification. An
abrupt increase (SC) of the geomagnetic field horizontal component seen in
magnetograms of magnetic observatories within the worldwide network is
an initial phase of the magnetic storm, but not each storm begins with a SC.
A gradual decrease of the geomagnetic field horizontal component, a main
phase, follows. It is mainly caused by the dramatic enhancement of the ring
current, the magnetic effect of which is opposite to the Earth’s magnetic
field of the interior origin (Akasofu and Chapman, 1961). Loss processes
in the ring current lead to a slow recovery of the geomagnetic field to its
undisturbed state, i.e. a recovery phase takes place (Williams, 1983).

In solar-terrestrial studies a planetary activity index Kp is often used
(Mayaud, 1980). As a measure of geomagnetic activity Kp values range
between 0 and 9, the differences among successive values being expressed
in thirds. The 0 value means absolutely quiet conditions, 9 corresponds to
most disturbed conditions. The calculated Kp values are based on measure-
ments from 13 selected subauroral stations located at geomagnetic latitudes
between 48◦ and 63◦. The Kp data are usually available with a delay of
about two month long, while a preliminary Kp index based on a subset of
observatories is obtained in about a six-hour time lag.

Real time predictions ofKp as an indicator of the disturbed space weather
are of great practical importance. That has dramatic impacts on high-tech
systems. Wu et al. (1999) reported the possibility to use Kp as inputs
in predicting increased risks for satellites. To determine the probability of
high levels of geomagnetically induced currents in power grids Boteler et al.
(1990) also used Kp as inputs.

To predict stormy conditions a neural network (NN) method (e.g. Lund-
stedt, 1996) is used recently. For providing real time predictions of the space
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weather and its effects, the Lund Space Weather Model (Lundstedt, 1999)
was developed. A neural network model to make real time three-hour pre-
dictions of the planetary magnetospheric Kp is one of the modules in the
Lund Space Weather Model (Boberg et al., 2000). It consists of two expert
networks. One of them makes low Kp predictions (i.e. within intervals of
lower geomagnetic activity) and the latter makes high Kp predictions (i.e.
within intervals of high geomagnetic activity). These two expert networks
are joined to a hybrid model. The input parameters for the networks are
the interplanetary magnetic field (IMF) Bz component, the solar wind den-
sity n, and the solar wind velocity V given as three-hour averages. The
networks were trained with the error back-propagation algorithm. The op-
timum number of hidden units was found to be 10 for the both expert
networks. The network specialized on making low Kp predictions uses only
the current solar wind data as input. The second network on making high
Kp predictions needs to take into account six-hour time interval, i.e. two
inputs per parameter.

The NN method was successful in predictions of other geomagnetic in-
dices, too. The Dst index was predicted by Gleisner (1996), Lundstedt
(1996), and Jankovičová et al. (2002). The prediction of AE index was
reported by Gleisner and Lundstedt (1999).

In this paper we present the NN predictions of Kp indices during mag-
netic storms. Instead of three-hour averages of the IMF Bz and solar wind
parameters n, and V , we propose to use one-hour averages of them. Such
an approach seems to express the time dependence links between solar wind
parameters and the geomagnetic activity level more adequately. In fact a
current one-hour input is most actual for a forthcoming three-hour interval
to be predicted. In addition measurements at L1 point, those being one-
hour ahead (transit time in case of the solar wind velocity of ≈ 400 km s−1),
are favorable for the Kp predictions.

As described below our NN model intends the utilization of either one-
hour values closest to the corresponding three-hour intervals or those to-
gether with one and/or two preceding one-hour values. The model is likely
to improve the accuracy of prediction. To confirm this assumption a com-
parison with the model based on three-hour averages is also considered.
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2. Data and method

This study is focused on seven magnetic storm intervals, namely 14–
18 May 1997, 1–7 May 1998, 25–26 June 1998, 26–29 August 1998, 24–
27 September 1998, 18–22 October 1998, and 7–11 November 2004. Solar
wind data for these intervals are based on measurements by ACE satellite
at libration point L1 as presented at ftp://ftp.ngdc.noaa.gov. The one-
hour averages of the IMF Bz component, of the proton number density
n, and of the solar wind velocity V were calculated. The geomagnetic
activity level was quantified using Kp indices prepared by Adolf-Schmidt
Observatory for Geomagnetism, Niemegk, Germany.

To construct the NN model the sets of patterns for a training process and
the another sets for a validation test are needed. In addition, independent
sets of the patterns for a final test of the NN model are considered. The
storm intervals on May 1998, June 1998, and September 1998 were used
as the training patterns. The May 1997 storm was used for the validation.
The final test was performed using the August 1998, October 1998, and
November 2004 storms.

We used three-layer feed-forward neural networks with one output node
(for the predicted Kp value) (Kundu, 1996). The number of input nodes is
3τ , where τ is the length of input vectors (i.e., a history of input parameters).

The output of NN model can be expressed by the following expression:

y = f



H∑

i=1

Wi f




3τ∑

j=1

wij xj + wi0


+ W0


 . (1)

Here H is the number of hidden nodes, xj are the inputs to the NN (j =
1, 2, ..., 3τ),wij andWi are the so-called weights. These parameters were cal-
culated within the training process realized with the backward-propagation
algorithm (Gurney, 1996; Kundu, 1996). The symbol f in (1) denotes
an activation function of the nodes. It was implemented that f(z) =
[1 + exp(−z)]−1 for each node.

In order to estimate reasonable values for H and τ we trained networks
with various pairs of H and τ . Five NNs with randomly initialized weights
for each pair H , τ were considered. The results of the validation test are
collected in Tabs 1 and 2 using averages and medians of root mean square
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error (RMSE) and/or of correlation coefficient (CC) quantities to judge the
most adequate option of H and τ values.

Analysing the CC and RMSE we selected the pairs of (H , τ) for which
the simple NNs were most successful. As the next step, 34 new networks for
these (H , τ) were trained. As shown in Tab. 3, the final numbers of trained
simple NNs for pairs of H and τ chosen were accepted taking into account
results of the validation test. The final model consisting of 34 independent
NNs was used for Kp prediction. The results obtained are discussed below.

3. Results and discussion

The proposed NN model for real time prediction of the Kp index consists
of 34 individually trained simple NNs. The NN model is fed with solar
wind data Bz , n, and V , measured at libration point L1, using one-hour
averages. Inputs of individual NNs include either one-hour values closest
to the corresponding three-hour intervals or those together with one-hour
values taken ahead with the shift of 1 and/or 2 hours. Outputs calculated
using individual NNs are then averaged to obtain the final predicted value
of Kp. Within the final test of the NN model the prediction of Kp profiles
during three storm intervals on 26–29 August 1998, 18–22 October 1998,
and 7–11 November 2004 were performed. As seen in Figs 1–3 the predicted
Kp profiles (shaded lines) fit observed Kp profiles (black lines) quite well.
The accuracy of prediction is most transparent in case of twostorm intervals

Tab. 1. Validation test for different numbers of hidden nodes H and different lengths of
input vectors τ . The averages and medians of RMSE from five individually trained NNs
are shown

Averages of RMSE Medians of RMSE
H τ = 1 τ = 2 τ = 3 τ = 4 H τ = 1 τ = 2 τ = 3 τ = 4

0 1.15 1.16 1.17 1.16 0 1.15 1.16 1.17 1.16
2 0.99 1.04 0.96 1.24 2 1.02 1.03 0.88 1.24
3 0.91 1.39 1.18 1.57 3 0.98 1.31 1.25 1.60
4 1.03 1.32 1.38 1.27 4 0.95 1.34 1.36 1.21
5 1.01 1.30 1.79 1.52 5 0.97 1.25 1.86 1.44
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Tab. 2. Validation test for different numbers of hidden nodes H and different lengths of
input vectors τ . The averages and medians of correlation coefficients from five individually
trained NNs are shown

Averages of CC Medians of CC
H τ = 1 τ = 2 τ = 3 τ = 4 H τ = 1 τ = 2 τ = 3 τ = 4

0 0.85 0.84 0.84 0.84 0 0.85 0.84 0.84 0.84
2 0.83 0.85 0.86 0.74 2 0.86 0.87 0.89 0.74
3 0.86 0.71 0.79 0.70 3 0.87 0.70 0.78 0.74
4 0.83 0.81 0.80 0.81 4 0.86 0.82 0.82 0.80
5 0.83 0.78 0.59 0.76 5 0.83 0.79 0.57 0.79

Tab. 3. Numbers of simple NNs trained for the final NN model. Altogether 34 NNs are
considered for option of H and τ values taking into account results of the validation test

H τ = 1 τ = 2 τ = 3 τ = 4

0 2 — — —
2 4 5 8 —
3 8 — — —
4 5 — — —
5 2 — — —

for 1998 (Figs 1 and 2). In case of the third storm interval the observed
and modeled Kp profiles are consistent during 7 November 2004. Later on
differences in the observed and modeled Kp values become apparent.

As a matter of fact, the November 2004 storm interval was unusually
intense. Actually two storms occurred, namely on 7 and 9 November 2004.
The geomagnetic activity levels for these 2 storms were comparable as fol-
lows from Kp values. During early November 2004 the Sun was most active.
The large full halo CME observed on 6 November 2004 and resulted massive
magnetic cloud of solar plasma caused the first storm. The high depression
of the geomagnetic field was due to a strong ring current in the Earth’s mag-
netosphere along with the other currents in the ionosphere magnetosphere
system (Feldstein et al., 2003). The Earth-directed CMEs followed further
on and the second massive magnetic cloud along with the shock passage
on late 9 November impacted the magnetosphere. As a result the second
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storm, its intensity being comparable with the first one, was observed. The
development of the second storm under most disturbed conditions in the
magnetosphere, i.e. before its complete recovery, was attributed not only
to the solar wind parameters, but also to the actual state of the magne-
tosphere. Due to the high activity level (Kp

�
3.5) this is quite obvious.

However, no parameters of the current magnetospheric state are included
into the NN model. This fact appears to be the plausible reason of the
relatively worse Kp prediction after 7 November 2004.

In order to quantify the performance of the NN model proposed, we cal-
culated the CC and RMSE quantities for Kp prediction performed within
three storm intervals comparing observed and modeled Kp values. As seen
in Tab. 4, for each storm CC ∼ 0.7–0.8 and RMSE < 2. The averaged
CC is 0.74 and averaged RMSE is 1.39. On the other side, if the model
calculation are based on three-hour averages of solar wind parameters, the
modeled values fit observed Kp worse. Boberg et al. (2000) found that for
their expert network specialized to high Kp prediction the optimal charac-
teristics are H = 10 and τ = 2. In addition we trained five NNs with these
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26–29 August 1998 storm intervalKp
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Fig. 1. Modelled Kp indices compared with the observed ones for the geomagnetic storm
occurred on 26–29 August 1998.
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Fig. 2. Modelled Kp indices compared with the observed ones for the geomagnetic storm
occurred on 18–22 October 1998.
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Fig. 3. Modelled Kp indices compared with the observed ones for the geomagnetic storm
occurred on 7–11 November 2004.
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Tab. 4. Quality of performance for the NN model based on the one-hour averages of the
solar wind data

Measure August October November Average
26–29, 1998 18–22, 1998 7–11, 2004

RMSE 1.23 1.00 1.95 1.39
CC 0.83 0.72 0.67 0.74

Tab. 5. Typical quality of performance (medians of the correlation coefficients and RMSEs
of the individual NNs) for the simple NNs based on the three-hour averages of the solar
wind data

Measure August October November Average
26–29, 1998 18–22, 1998 7–11, 2004

RMSE 1.33 1.93 2.83 2.03
CC 0.73 0.56 0.36 0.55

characteristics. Both the training and validation storm events were used for
this purpose. These five simple NNs yielded RMSE and CC values for three
storm intervals as stored in Tab. 5. As seen, the averaged CC ∼ 0.5 and
analysed RMSE ∼ 2. The quantitative comparison (Tabs 4 and 5) gives
evidence on the improvement of Kp prediction on the basis of one-hour
averages of the solar wind parameters.

4. Conclusion

The NN model based on the one-hour averages of solar wind parameters
was proposed for Kp prediction. In our NN model altogether 34 networks
are considered for pairs of H and τ values as chosen taking into account
results of the validation test. Within the final test of the NN model the
prediction profiles during three storm intervals on 26–29 August 1998, 18–
22 October 1998, and 7–11 November 2004 were performed and discussed.
The averaged CC and RMSE indicate quite good coincidence of observed
and modeled Kp values. The comparison with results of modeling based
on three-hour averages gives evidence that in case of NN model based on
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the one-hour averages the more accurate Kp predictions during the selected
storm intervals are obtained.
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