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Abs t r a c t : It has been for several decades that computers have enabled us to per-

form the terrain correction computation much faster and accurate then before. In the

meantime several programs for terrain correction computation have grown up among geo-

physicists and geodesists. All these programs have something in common – they all use a

digital elevation model (DEM) as an input. On the other hand there are some differences,

either in form of the integration kernel (planar, spherical), or in the integration scheme

and integration method. While browsing over the flat region, all of the programs give

almost identical results, assuming all use the same DEM. However, when terrain grows

higher and gets more broken, the differences in results become significant. Now, it is

not an easy task to decide which program produces better results. One way how to do

it would be to produce an etalon computed analytically from idealized terrain. Such an

approach, in fact, has several disadvantages: it is rather complicated and it cannot be

done in real, or at least real-like, terrain. A different way how to compare the quality of

terrain corrections in the mountains is presented in this contribution. The main idea is

very simple: terrain corrections that produce smoother refined Bouguer gravity anomalies
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are better. This approach, of course, can only be used when the computation points are

sufficiently close each other and when the real gravity at these points is known from direct

measurement.

During summer 2004 the unique joint measurements of gravity and 3D position had

been collected in High Tatra Mountains. The amount of 153 points had been measured

using Scintrex CG-3 gravity meter and Trimble 5700 GPS receivers (3D position). At

some points the additional measurements of 3D position in close surrounding area had

been performed. These measurements are very convenient for our investigation.

In this contribution we compare three different programs for terrain correction compu-

tation. At first we briefly explain the basic differences between the programs. As a next

step we compute the terrain corrections by each program using the same DEM obtaining

the 3 sets of terrain corrections. The integration radius is 166.7 km ≈ 5390 arcsec. and

density is standard 2670 kg·m−3. Consequently we compute the 3 sets of refined Bouguer

gravity anomalies corresponding to 3 sets of terrain corrections. Finally we compare 3

different sets of refined Bouguer anomalies and evaluate the smoothness of each set us-

ing statistical testing. At the end we give conclusions and recommendations based on

obtained results.
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1. Introduction

Let us define the terrain correction and introduce the principle of terrain
correction computation in general.

The first term we introduce is topographical masses. Simply, topograph-
ical masses are masses between the basic equipotential surface – geoid and
physical surface of the Earth. In geophysics and also in geodesy it is often
important to remove the attraction of topographical masses. This can be
done applying so called topographic reduction δgT = −AT . Computation
of this reduction is often divided into reduction of a Bouguer plate (or re-
duction of a spherical Bouguer shell) δgB = −AB and terrain correction
δgt = −At (Heiskanen and Moritz, 1967). The terrain correction by def-
inition removes gravitation attraction of part of the topographical masses
rising above the Bouguer plate (or shell) and missing within the Bouguer
plate (or shell), see Fig. 1. In other words, terrain correction is affected
by masses bounded with equipotential surface passing through the point
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of computation from one side, and with physical surface of the Earth from
the other side. Therefore, to compute the terrain correction, some kind of
elevation model is necessary. The best case is to have a digital elevation
model (DEM).

Fig. 1. Principle of planar and spherical approach to terrain correction computation.

Let us describe three different approaches to terrain correction computa-
tion represented by three independent software products developed in one
non-academic and two academic institutions.

2. Approach A – developed and used in Geocomplex Corpo-

ration

The basic partitioning of the area around the computation point respects
the Hayford zones, following suggestions of (Pick et al., 1960), see Tab. 1
and Fig. 2.
Terrain for T1 computation is approximated using vertical prisms with

triangular bases with the edges length from 10 to 20 meters. The Boundary
of T1 is square shaped, therefore the gravitational effect of the body shown
in Fig. 3 must be subtracted in order to assure the compatibility with T2.
T1 is computed using a planar model, see Fig. 1.
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Tab. 1. Partitioning of surrounding area for terrain correction computation (approaches
A and B)

Fig. 2. Partitioning of the area for approach A.

Fig. 3. Transition from square-shaped to circle-shaped area for T1 part of approach A.
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T2, T31 and T32 is computed as a sum of gravitational effects of segments
of a spherical layer with thickness obtained as a difference between the height
of the point of computation and height of the terrain in the middle of the
segment obtained from DEM by interpolation. This approach operates in
S-JTSK coordinate system.

3. Approach B – developed in Comenius University and used

in project “Atlas of geophysical maps and profiles”

The basic partitioning of the area around the computation point is the
same as in approach A, see Tab. 1 and Fig. 4. T1 part is computed us-
ing vertical prisms with triangular bases and T2 using rectangular vertical
prisms. Both, T1 and T2 use a planar model, see Fig. 1. T31 and T32
parts are computed using a pseudo-spherical model, i.e. with the vertically
immersed rectangular prisms.

Fig. 4. Partitioning of the area for approach B and DEM grid spacing.

The elevation grid using for calculation of T1 is 20 × 20 m, for T2 is
50 × 50 m, for T31 is 250 × 250 m and for T32 is 1000 × 1000 m. This
approach also operates in S-JTSK coordinate system and it was used for
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re-computation of terrain corrections in geological research project Atlas
of Geophysical Maps and Profiles (Kubeš et al., 2001). For more detailes
about this approach see (Grand et al., 2004).

4. Approach C – developed in University of New Brunswick,

improved in Slovak University of Technology and used

mostly within geodetic community

Program used for terrain correction computation is part of the software
package for precise geoid determination SHGEO (Stokes-Helmert’s GEOid
software) (Tenzer and Janák, 2002). It operates in geographical coordinates
and uses a spherical model, see Fig. 1, with the analytical spherical integra-
tion kernel derived by (Martinec, 1998). The basic partitioning of the area
around the computation point is shown in Tab. 2 and Fig. 5.

Particular parts Ti1, Ti2, Tm1, Tm2 are computed as a sum of gravita-
tional effects of segments of spherical layer, see Fig. 6, with the thickness
computed as a height difference obtained from DEM using biquadratic in-
terpolation.

5. Some ideas, how to check the quality of terrain corrections

Quality of terrain correction depends on several factors. First of all it
depends on quality and minuteness of used DEM. Next, the roughness of
terrain and density variation, also play an important role. Last but not
least, the computation procedure (partitioning of the area, interpolation
method used for heights estimation, integration algorithms etc.), affects the
results as well. An important question is how we can test the real quality of
computed terrain correction. Three ideas are presented here, but only the
second one has been applied.

The first idea is to use an idealized terrain, where terrain correction can
be computed exactly without any approximation. Advantage of this method
is that the true error of terrain correction is obtained. Disadvantage is that
it is very complicated to create such synthetic terrain, that would look like
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Tab. 2. Partitioning of surrounding area for terrain correction computation (approach C)

Fig. 5. Partitioning of the area for approach C and DEM grid spacing.

Fig. 6. Segment of spherical layer bounded by meridian and prime-vertical planes.
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real and that would be analytically computable. Especially it holds when
we want to simulate high mountains terrain.
The second idea is to compare several sets of terrain corrections indi-

rectly, in terms of refined Bouguer gravity anomalies. According to empiri-
cal experience, the terrain corrections that produce smoother field of refined
Bouguer gravity anomalies are more accurate and therefore better. Degree
of smoothness can be measured in various ways. We chose to do it in terms
of standard deviation of particular sets of refined Bouguer gravity anomalies
and also in terms of standard deviations of their residuals with respect to
quadratic polynomial surface.
The third idea is based on fact that spherical refined Bouguer gravity

anomaly multiplied by geocentric distance is a harmonic function (Vańıček
et al., 2004) and harmonicity can be tested numerically performing the
second partial derivatives, e.g. using regularization approach (Pašteka and
Richter, 2002). The terrain corrections producing the most ideal harmonic
field of refined Bouguer gravity anomalies should be the best.

6. Experiment with smoothness of refined Bouguer gravity

anomalies

Data used for our experiment were collected during 2004 summer season
in High Tatra mountains. It was a unique joint measurement of GEO-
COMPLEX Corporation and Department of Theoretical Geodesy of Slovak
University of Technology. Gravity was measured by Scintrex CG3 gravity
meter and position was measured by Trimble 5700 GPS receivers. Nor-
mal heights were derived by subtracting the quasigeoid undulation from
ellipsoidal heights obtained from GPS. The quasigeoid model GMSQ03C
(Mojzeš et al., 2004) was used.
Some basic statistics of measured points is given in Tab. 3 and distribu-

tion of measured points is shown in Fig. 7.
In order to make a reasonable comparison, the following conditions were

kept during terrain correction computation: the same DEM (1′′ × 1′′), the
same integration radius of 166.7 km ≈ 5390′′ and the same reduction density
of 2670 kg ·m−3. The three sets of terrain corrections were computed using
approach A, B and C, described above. The basic statistics can be found
in Tab. 4.
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Tab. 3. Statistics of measured points

Fig. 7. Distribution of the measured points and topography in our experimental area.

Tab. 4. Statistics of terrain correction sets

Consequently, the refined Bouguer anomalies ∆gB were computed ac-
cording to following equation (Pick, 2000, Eq. (1.73)), using particular sets
of terrain corrections.

∆gB = g − γ0 −
∂γ

∂H
H + δgB − B + δgt (1)

In Eq. (1): g is measured gravity, γ0 is normal gravity at the reference
ellipsoid, H is normal height, δgB = −2πGρH is reduction of the Bouguer
plate, B is so called Bullard’s term computed according to (Pick, 2000, Eq.
(8.6)) and finally δgt is terrain correction computed according to particular
approach A, B and C, respectively. The basic statistics of refined Bouguer
gravity anomalies can be found in Tab. 5.
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Tab. 5. Statistics of corresponding refined Bouguer anomaly sets

As the next step we compute the quadratic polynomial surfaces, one for
each refined Bouguer gravity anomaly set, given by following general form

z(x, y) = A+Bx+ Cy +Dx2 +Exy + Fy2, (2)

best fitting the refined Bouguer gravity anomalies in sense of L2 norm. In
Eq. 2: x, y, z are general coordinates and A,B,C,D,E, F are corresponding
coefficients. The polynomial surfaces for particular approaches are shown
in Fig. 8.
Residuals obtained as differences between the value of refined Bouguer

gravity anomaly and corresponding value of polynomial surface at the mea-
surement point were tested and basic statistics is given in Tab. 6.

7. Conclusions

Based on our numerical experiments we can conclude that all tested
programs for terrain correction computation give similar results. Analysis
of statistical values in Tab. 5 and Tab. 6 revealed some minor differences:

• Approach C produces the refined Bouguer anomalies with wider range
then approaches A and B. The same holds for residuals above the best
fitting quadratic polynomial surface.

• Approach B produces the refined Bouguer anomalies with slightly larger
standard deviation. The same holds for residuals above the best fitting
quadratic polynomial surface.

• Approach A seems to give the best results in terms of our statistical
testing. Most likely, the reason is that, in this approach, for the prisms
touching the point of computation, the slope of the upper base was
estimated according to direct observation in the field.
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• Based on previous conclusion we can say that any local information
about the shape of the very near area can improve the accuracy of
terrain correction computed in an extremely disturbed terrain.

Fig. 8. The best fitting quadratic polynomial surface for a particular approach. From the
top: approach A, B and C.

Tab. 6. Statistics of residuals above the best fitting quadratic polynomial surface
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