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Out-of-plane principal stress in plane
strain/stress failure investigations –
an overview of its relevance for various
failure criteria

M. Bednárik, I. Kohút
Geophysical Institute of the Slovak Academy of Sciences1

Abs t r a c t : The paper exposes the role of the out-of-plane principal stress in the

investigations of (brittle) failure of isotropic linear elastic continuum using plane strain

(or plane stress) approximations. The plots in (σm, τm), (σ3, σ1) spaces for each of the

examined criteria: the two-dimensional: Coulomb, Tresca, Hoek-Brown, and the three-

dimensional ones: Drucker-Prager and linear Mogi, give an insight into the interplay of

Poisson ratio and the material parameters involved in the respective criterion formula.
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1. Introduction

Although sometimes, due to some special geometric properties of the
three-dimensional elastic continuum, the problem to be solved actually de-
generates to two-dimensional (or plane problem), the continuum itself, nev-
ertheless, does not cease to be fully three-dimensional and shall be dealt
with accordingly. In three dimensions, the state of stress in a point can be
fully described by the triplet of principal stress values and the correspond-
ing orthogonal triplet of principal stress directions – normals of planes, on
which zero shear stresses and normal stresses equal to the respective prin-
cipal stresses act.

In plane problems, two of the principal directions (let us denote the corre-
sponding principal stresses σ1 and σ3, σ1 ≥ σ3, compression being positive)

1 Dúbravská cesta 9, 845 28 Bratislava, Slovak Republic; e-mail: geofmabe@savba.sk

343
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are parallel to the studied planar cross – section, the third one is perpendic-
ular to it. In plane stress, the principal stress value σ2 corresponding to that
out-of-plane principal direction (out-of-plane principal stress, for brevity) is

σ2 = 0. (1)

In plane strain problems applied to the linearly elastic isotropic contin-
uum, the out-of-plane principal stress value σ2 linearly depends on the other
two:

σ2 = ν (σ1 + σ3) , (2)

where ν is the Poisson ratio of the material.
Given the state of stress in a point, the material can either sustain it or

fail, i.e., undergo an irreversible change of its structure.

2. Failure criteria in general

Any reasonable failure criterion can be expressed in terms of physical
quantities, whose values do not change under transformation of coordinates:
either in terms of invariants of stress tensor, or in terms of principal stress
values.
In the formulae of three-dimensional criteria, all the three principal stress

values appear at once. In the two-dimensional criteria, only couples (how-
ever, all the three couples, couple by couple) of principal stress values are
involved.
The most common graphical presentation of the two-dimensional fail-

ure criteria is the one based on the use of Mohr circles. A Mohr circle
(Fig. 1) illustrates the quantitative relationships between a couple of princi-
pal stresses σ1, σ3, whose corresponding principal directions define a plane,
and the normal and tangential stresses σ, τ acting on a plane perpendicular
to the former plane, whereby θ is the angle between the normal to the latter
plane and the principal direction 1 (Jaeger and Cook, 1979, p. 15).
Common for most shear failure criteria is the assertion that the failure

occurs on a plane perpendicular to the plane containing the two principal
directions corresponding to the principal stresses with the biggest difference,
i.e., σi, σj , i, j ∈ {1, 2, 3}, such that:
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Fig. 1. The Mohr circle.

|σi − σj | = max |σk − σl|
k, l∈{1, 2, 3}

. (3)

Let us assume the principal stresses σi, σj fulfilling (3) are σ1, σ3. Next,
let us vary the values of σ1, σ3, so that at failure they produce many dif-
ferent Mohr circles with a common envelope (Fig. 2). The envelope curves
τ = ±f(σ) touch a particular circle in points [σ, ±τ ], which define two ori-
entations of failure planes identical with, or very close to, the orientations
actually observed (Fig. 3).
Thus,

|τ | = f(σ) (4)

is the general form of a two-dimensional failure criterion, often called also
Mohr-Coulomb criterion. For τ ≥ 0, we can write the criterion simply as

τ = f(σ), (5)

and this is the form we will use in the sequel. The same criterion can
be written in terms of the mean of the two in-plane principal stresses σm,
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Fig. 2. The envelope of Mohr circles.

Fig. 3. The Mohr-Coulomb criterion and relationships between f(σ), g(σm) and h(σ3).
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σm =
1

2
(σ1 + σ3), and the maximum in-plane shear τm, τm =

1

2
(σ1 − σ3),

i.e., the centre and the radius of the Mohr circle, respectively, as:

τm = g(σm), (6)

or in terms of the principal stresses σ1, σ3 at failure as:

σ1 = h(σ3). (7)

Whereas the formulae (4), (5), (6) have a clear geometric relationship to
Mohr circles, the advantage of plots of (7) is the easy specification of shear
failure mechanism region, to which the validity of all the here investigated
criteria is restricted, directly by quadrants of the space (σ3, σ1), where at
least one principal stress is positive (i.e., compressive).
Either of the formulae (5), (6), (7) can be obtained by fitting the experi-

mental data in the respective space with a function of the chosen class; the
remaining two formulae can then be derived, most conveniently in the form
of parametric plots.
The general parametric formulae for conversions between (5) and (6) are:

( σm, τm) =

(

σ + f(σ) f ′(σ), f(σ)
√

1 + (f ′(σ))2
)

, (8)

( σ, τ ) =

(

σm − g(σm) g
′(σm), g(σm)

√

1− (g′(σm))
2

)

. (9)

The transformation of (6) to (7) can be written in matrix form as:





σ3

σ1



 =





1 − 1
1 1









σm

τm



, (10)

which after the substitution of (6) (or (7)) yields the parametric formula for
conversion of (6) to (7) (or (7) to (6), respectively).
The more complicated is the primary formulation of the criterion in its

“native” space, the harder it is to eliminate the parameter from the para-
metric secondary reformulation in the “foreign” space. If we, for illustrative
purposes, take up with the graphic form of the transformation between (6)
and (7), we can take advantage of the simple geometric relationships be-
tween these spaces: (10) can be deciphered as
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σ3

σ1



 =
√
2









cos π
4

− sin π
4

sin π
4

cos π
4













σm

τm



. (11)

Thus, by anti-clockwise rotation by the angle π
4
and uniform stretching

by the factor of
√
2, we transform an object in (σm, τm) space into its image

in (σ3, σ1) space. Or, we can do the opposite: leave the object as it is, rotate
the coordinate axes by −π

4
and rescale them by factor of 1√

2
to obtain the

coordinate axes of the (σ3, σ1) space (Fig. 3). In the sequel, we will use this
latter approach in the graphical presentations and draw both the coordinate
systems in one plot.

3. The statement of the problem

In plane problems, let us break the convention of indexing the principal
stresses so that σ1 ≥ σ2 ≥ σ3, and introduce instead a convention of σ1, σ3
such that σ1 ≥ σ3 for in-plane principal stresses and σ2 for the out-of-plane
principal stress.
Taking into account that σ2 is not an independent variable, but is given as

(2) for plane strain or (1) for plane stress, we have here only two independent
principal stresses σ1 and σ3.
The two-dimensional criterion τm = g(σm), (where σm =

1

2
(σ1 + σ3),

τm =
1

2
(σ1 − σ3)), is only valid for σ1 ≥ σ2 ≥ σ3, whereas the principal

stresses σ1, σ2, σ3 can obviously take values σ2 ≥ σ1 ≥ σ3 or σ1 ≥ σ3 ≥ σ2,
as well. In these two latter cases, according to (3), the plane of failure is not
perpendicular to the plane problem cross-section, i.e., the plane containing
the principal directions 1 and 3.
Bearing this in mind, we shall, for the given plane problem, find a com-

pound criterion covering all the values of σ1 and σ3:

τm = gC(σm) =











g−(σm),
g(σm),
g+(σm),

σ2 ≥ σ1 ≥ σ3,
σ1 ≥ σ2 ≥ σ3,
σ1 ≥ σ3 ≥ σ2.

(12)

Let us now specify the subregions on which gC(σm) is defined, in terms
of σm, τm:
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τm = gC(σm) =











g−(σm),
g(σm),
g+(σm),

τm ≤ − (1− 2k)σm,
τm ≥ − (1− 2k)σm ∧ τm ≥ (1− 2k)σm,
τm ≤ (1− 2k)σm,

(13)

where k = ν for plane strain and k = 0 for plane stress.

Similarly, any three-dimensional criterion degenerates to two-dimensional,
and can be expressed in the same manner.

4. The general solution

For the subregions where σ2 ≥ σ1 ≥ σ3 or σ1 ≥ σ3 ≥ σ2, in the case of
isotropic material, the same criterion as for σ1 ≥ σ2 ≥ σ3 is valid – however,
instead of σm =

1

2
(σ1 + σ3) and τm =

1

2
(σ1 − σ3),

σm− =
1

2
(σ2 + σ3) , τm− =

1

2
(σ2 − σ3) for σ2 ≥ σ1 ≥ σ3, (14)

and

σm+ =
1

2
(σ1 + σ2) , τm+ =

1

2
(σ1 − σ2) for σ1 ≥ σ3 ≥ σ2 (15)

must be used. Then, the criterion reads:

τm− = g(σm−) for σ2 ≥ σ1 ≥ σ3, (16)

and

τm+ = g(σm+) for σ1 ≥ σ3 ≥ σ2. (17)

Our task is then to rewrite τm− = g(σm−) into the form of τm = g−(σm)
and τm+ = g(σm+) into τm = g+(σm).
After the substitution of σ1 = σm+τm and σ3 = σm−τm into σm−, τm−,

σm+, τm+ we obtain the implicit relationships of σm and τm, which define
the functions τm = g−(σm), τm = g+(σm):

τm − (1− 2k)σm = 2 g

(−τm + (1 + 2k)σm

2

)

, (18)

which defines τm = g−(σm), and
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τm + (1− 2k)σm = 2 g

(

τm + (1 + 2k) σm

2

)

, (19)

which defines τm = g+(σm), where k = ν for plane strain and k = 0 for
plane stress.
For some simple functions g(σm), the explicit formulae for g−(σm), g+(σm)

can be found, otherwise we have to resort to numerical constructions.
Of special importance are the boundary lines between subregions:

τm = b−(σm) = − (1− 2k) σm (20)

(between the subregions for g−(σm) and g(σm)), and

τm = b+(σm) = (1− 2k)σm (21)

(between the subregions for g(σm) and g+(σm)). With (18) (or (19), re-
spectively), it can be easily shown that if τm = g(σm) and b−(σm) (or
b+(σm)) intersect in a point, so in the same point intersects them the line
τm = g−(σm) (or τm = g+(σm), respectively) (Fig. 4).
As the procedure of obtaining τm = g−(σm) and τm = g+(σm) can be

quite labourious, the first step in any analysis of the relevance of the out-
of-plane principal stress for our particular failure criterion should be the

Fig. 4. The Coulomb criterion with out-of-plane stress taken into account: left (4a) in
plane strain, right (4b) in plane stress. Grey is the formal validity region of the middle
branch of (25), the portions of graphs beyond their validity regions are dotted, dashed
are asymptotes of the Mohr envelope (26), (27). White or grey underline shows where
the criterion τm = gC(σm) or σ1 = hC(σ3) is physically relevant (to shear failure).
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examination of whether and where does τm = g(σm) intersect b−(σm) and
b+(σm). The lines g(σm) and b−(σm) do always intersect (provided g(σm) is
defined for tensile stresses as well). As g(σm) is a monotonously increasing
function, and g(0) > 0, the sufficient condition for g(σm) and b+(σm) to
intersect in the region σm ≥ 0 is

lim
sm→∞

dg

dσm

(sm) < 1− 2k, (22)

where k = ν for plane strain and k = 0 for plane stress.

5. Coulomb criterion

Most often, we encounter the formulation of the Coulomb criterion in
terms of the envelope of the Mohr circles, i.e., the formulation of type (5):

τ = f(σ) = S0 + σ tanφ, (23)

where S0 is the cohesive strength of the material, and φ is the angle of
internal friction (Jaeger and Cook, 1979).
For our purposes, we have to, using (8), turn it into a formula of type

(6), which yields:

τm = S0 cosφ+ σm sinφ. (24)

Then we can proceed with the construction of the function gC(σm) (13).
The implicit formulae (18), (19), can be easily arranged into explicit ones,
so that in the end, the compound criterion gC(σm) reads:

gC(σm) =















































2S0 cosφ

1 + sinφ
+

(

1− 2k (1− sinφ)

1 + sinφ

)

σm, τm ≤ (−1 + 2k)σm ,

S0 cosφ+ σm sinφ, τm ≥ (−1 + 2k)σm ∧ τm ≥ (1− 2k) σm ,

2S0 cosφ

1− sinφ
−

(

1− 2k (1 + sinφ)

1− sinφ

)

σm, τm ≤ (1− 2k)σm .

(25)

Using (9), we can construct the Mohr envelopes f−(σ), f+(σ) correspond-
ing to g−(σm), g+(σm), respectively:
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f−(σ) =
2S0 cosφ+ ((1 + 2k) sinφ+ (1− 2k))σ

2
√

k cos2 φ − k2 (1− sinφ)2
, (26)

f+(σ) =
2S0 cosφ+ ((1 + 2k) sinφ − (1− 2k))σ

2
√

k cos2 φ − k2 (1 + sinφ)2
. (27)

Nevertheless, let us be aware that the broken line of f−(σ), f(σ), f+(σ)
differs slightly (Fig. 4a) or considerably (Fig. 4b) from the true Mohr enve-
lope corresponding to gC(σm) in the vicinity of “corners” of gC(σm). The
envelope which respects the corners has to be constructed numerically.

The formula σ1 = hC(σ3) can be obtained easily:

hC(σ3) =



















































2S0 cosφ+ (1− k + (1 + k) sinφ)σ3
k (1− sinφ)

, σ1 ≤
kσ3
1− k

,

2S0 cosφ+ (1 + sinφ)σ3
1− sinφ

, σ1 ≥
kσ3
1− k

∧ σ1 ≥
(1− k)σ3

k
,

2S0 cosφ+ k (1 + sinφ) σ3
1− sinφ − k (1 + sinφ)

, σ1 ≤
(1− k) σ3

k
.

(28)

Into the illustrative examples to this criterion, we will input typical values
of the Poisson ratio ν = 0.3, the internal friction angle φ = π/6, and the
cohesive strength S0 = 1, which can be scaled to any actual value in [Pa].
In the examples to all the other criteria, we will find equivalent material
parameters, so that throughout the paper, the “rock” remains (almost) the
same.

First, let us investigate the plane strain problem. After substitution of
k = ν, and the material parameter values given above, we can see that the
intersection of g−(σm) and g(σm) lies beyond the region of shear failure and
that g+(σm) and g(σm) do not intersect in the region of σm ≥ 0. So, as (22)
tells us, for φ > arcsin(1− 2ν) (for ν = 0.3, φ > 23.6◦), we do not need to
consider the effect of out-of-plane stress in this case, at all.

In the plane stress problem (k = 0), the out-of-plane stress, however,
plays a role, as can be seen from the plot in Fig. 4b.
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Fig. 5. The Tresca criterion with out-of-plane stress taken into account: left (5a) in plane
strain, right (5b) in plane stress. Notice the change of axes compared to Fig. 4.

A special case of the Coulomb criterion for φ = 0 is the Tresca criterion.
The plots revealing the effects of the out-of-plane stress are shown in Fig. 5.
Obviously, here we have to care about it even in the plane strain problem.

6. Hoek-Brown criterion

Most common is its formulation in terms of σ1, σ3. For our illustrative
purposes, the original quadratic form of the criterion (Hoek and Brown,
1980) is the most suitable one:

σ1 = hHB(σ3) = σ3 + σci

√

m
σ3
σci

+ s. (29)

Here σci is the uniaxial compressive strength of the intact rock, m and s are
material parameters, s = 1 for intact rock. First, let us find the least-squares
Hoek-Brown approximation to the Coulomb criterion with the introduced
tensile cut-off σt, σt < 0, i.e., to

hCt(σ3) =

(

2S0 cosφ

1− sinφ
+
1 + sinφ

1− sinφ
σ3

)

H(σ3 − σt), (30)
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where H(σ3) is the unit step function. If we fix s (s = 1) and the same
tensile cut-off σt for both functions (i.e., hHB(σt) = 0), then σci can be
eliminated:

σci =
2σt

m
(

1−
√

1 + 4s/m2
) , (31)

and for 4s/m2 � 1 simplified to

σci ≈ −mσt/s. (32)

Then, for the chosen upper bound σ3max, we obtain by variation of
σ3max

∫

σt

(hHB(σ3)− hCt(σ3))
2dσ3:

m =

8

√

s

(

1− σ3max
σt

)

(5S0 cosφ+ (3σ3max + 2σt) sinφ)

15 (σ3max − σt) (1− sinφ)
. (33)

The result of fitting for σt = −0.5, σ3max = 5 (m = 7.28, σci = 3.64) is
shown in Fig. 6. For the sake of brevity, we will omit formulae of gC(σm),
hC(σ3) and present the results only graphically in Fig. 7.

7. Drucker-Prager criterion

The criteria (originally) used as criteria of yield of elasto-plastic materials
are often (independently) used in brittle failure of elastic solids (and vice
versa). This is the case of the Drucker-Prager criterion, as well (Drucker
and Prager, 1952, cf. Jaeger and Cook, 1979, p. 91, eq. 6). We will respect
the common practice of using this criterion in the new context under its old
name (e.g. Al-Ajmi, 2006). As we can see from its formula,

τoct = κ+ µσoct, (34)

where

τoct =
1

3

√

(σ1 − σ2)
2 + (σ1 − σ3)

2 + (σ2 − σ3)
2 ,
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Fig. 6. The Hoek-Brown criterion fitting the Coulomb criterion with tensile cut-off.

Fig. 7. The Hoek-Brown criterion with out-of-plane stress taken into account: left (7a)
in plane strain, right (7b) in plane stress.

σoct =
1

3
(σ1 + σ2 + σ3),

this three-dimensional criterion is completely insensitive to whether σ1 ≥
σ2 ≥ σ3, σ2 ≥ σ1 ≥ σ3 or σ1 ≥ σ3 ≥ σ2. Thus, no piecewise function will
complicate our lives. For σ2 = σ3, and for the parameter values:

κ =
2
√
2S0 cosφ

3− sinφ
, µ =

2
√
2 sinφ

3− sinφ
, (35)
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the criterion reduces to the Coulomb criterion (24), and the equivalents of
S0 = 1 and φ = π/6 are then κ = 0.98 and µ = 0.57.
The compound criterion gC(σm) for both planar problems can be ob-

tained by substitution of σ2 = k (σ1 + σ3), σ1 = σm + τm, σ3 = σm − τm.
The result is presented graphically in Fig. 8.

Fig. 8. The Drucker-Prager criterion with out-of-plane stress taken into account: left
(8a) in plane strain, right (8b) in plane stress.

8. Linear Mogi criterion

The linear Mogi criterion (Mogi, 1967), called the Mogi-Coulomb crite-
rion in Al-Ajmi (2006)

τoct = a+ bσm, (36)

where

τoct =
1

3

√

(σ1 − σ2)
2 + (σ1 − σ3)

2 + (σ2 − σ3)
2 ,

σm =
1

2
(σ1 + σ3),

is similar to the Drucker-Prager, but has something in common with the two-
dimensional criteria: the two principal stresses with the biggest difference
determine the plane of failure, and the failure is inhibited by their mean.
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Thus, as with the two-dimensional criteria, we have to construct for our
planar problems a piecewise function (13) covering all the possible couples
of principal stresses with the biggest difference. Again, we will leave the
reader to do this task and present only the graphical outcome.

After the substitution of equivalent material parameters

a =
2
√
2S0 cosφ

3
, b =

2
√
2 sinφ

3
, (37)

which are obtained analogically to (35), cf. Al-Ajmi (2006), (numerical
values a = 0.82, b = 0.47), we can see the surprising result: whereas in all
other criteria, the compound criterion could have been constructed simply
as

gC(σm) = min
{

g−(σm), g(σm), g+(σm)
}

, (38)

where σm can take any value of the definition region of g(σm), here this
“alternative method” of construction fails – see the intersection of g(σm)
and g−(σm) (Fig. 9). This teaches us to adhere strictly to the reliable
piecewise manner of construction (13).

Fig. 9. The linear Mogi criterion with out-of-plane stress taken into account: left (9a) in
plane strain, right (9b) in plane stress. Notice that the points A, B lie on the line σ3 = σt,
where h (σt) = 0 (dashed), and C, D on the line σ1 = h (0) (dashed) – similarly to the
here presented two-dimensional criteria (cf. Fig 4b, 5b, 7b).
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9. Conclusions

For typical geomaterials and for most of the failure criteria, the “threat”
posed by forgetting to account for the out-of-plane stress in plane strain
problem is negligible: in the plots of criteria, covering all possible values of
principal stresses, the graphs g(σm) and b−(σm) (or b+(σm), respectively)
do not cross within the region of our interest, the exception being the Tresca
criterion (which is not very realistic anyway).

The plots of the studied criteria in plane stress problems probably do
not surprise anyone. It has to be said, however, that here the extension of
the criteria into both the quadrants σ3 < 0 ∧ σ1 < 0 and σ3 > 0 ∧ σ1 > 0
is highly problematic: in the former, the actual mechanism of failure is not
shear, in the latter, the real-world problem is not planar: if a thin plate or
free surface is subject to coplanar compressive stresses, it has a tendency to
bend and thus, present a problem of another category.

Moreover, our considerations are relevant only to purely planar problems,
where the magnitude of out-of-plane principal stress is dictated solely by
the magnitudes of the two in-plane principal stresses. In practice, however,
quite frequent are the superimposed problems where the solution of the
planar problem only modifies the “virgin” stress field with all the three
principal stresses (independently) determined by tectonics, as it is in the
case of boreholes (Al-Ajmi, 2006).
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