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A b s t r a c t : Several neural network (NN) models for the prediction of the Kp index
have been proposed recently. Usually only solar wind data are used as inputs. In this
paper an attempt is made to consider ground-based observations of geomagnetic variations
as input to the NN model. The horizontal component H variations of the geomagnetic
field from the Hurbanovo Geomagnetic Observatory were used for this purpose. The
modeled geomagnetic activity level within the stormy intervals obtained by means of
the modified NN model was compared with previous results to judge how the additional
input information on a current state of the magnetosphere improves the accuracy of
modeling. The results reveal that the November 2004 superstorm with a more complicated
development is replicated better when the information on H component variations is taken
into account.
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1. Introduction

The geomagnetic activity level does directly reflect the occurrence of
disturbances observed on the Earth’s surface as magnetic storms. They are
1 947 01 Hurbanovo, Slovak Republic; e-mail: fridrich@geomag.sk; magdi@geomag.sk
2 Dúbravská cesta 9, 845 28 Bratislava 45, Slovak Republic; e-mail: geofpria@savba.sk
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caused by interaction processes between the variable solar wind and the
Earth’s magnetosphere. The geomagnetic activity level, enhanced during
magnetic storms and intense substorms, is dynamically controlled by the
impinging solar plasma.

Valach and Prigancová (2006) proposed the NN model (thereafter NN1
model) for the prediction of the Kp enhanced level (due to generated mag-
netic storms) on the basis of one-hour averages of IMF Bz (the north-south
component of the interplanetary magnetic field), N (solar wind density), V
(solar wind velocity) measured at libration point L1. A number of inter-
vals with some 1997–1998 storms and the 7–11 November 2004 superstorm
were considered. Four of them were used for the training and validation
of the NNs. The final test was performed using further three storms. The
earlier results for the NN1 model include the comparison of the modeled
Kp with the results obtained on the basis of the three-hour averages for the
same input parameters. In this reference model, the same structure of the
training patterns and the same number of hidden neurons were used as in
the so-called hybrid model (Boberg et al., 2000) with their expert network
specialized in the Kp prediction during periods of magnetic storms. This ex-
pert network was also shortly described in (Valach and Prigancová, 2006).
As follows from their comparison, the one-hour input data may yield better
results. However, the Kp prediction for the interval including the November
2004 superstorm appeared to be less reliable, both for the NN1, as well as
for the reference models.

In this paper we try to improve the NN1 model taking into consideration
not only the solar wind data Bz , N , and V , but also information about the
ring current effect, the signatures of which can be followed in the ground-
based measurements. For this purpose the data on horizontal component
variations of the geomagnetic field from the Hurbanovo Geomagnetic Obser-
vatory (47.88◦N, 18.20◦E) are employed as an additional input parameter
to the modified NN model (thereafter NN2 model).

2. Data and method

The changing geomagnetic activity level within the intervals of seven
magnetic storms on 14–18 May 1997, 1–7 May 1998, 26–29 August 1998,
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24–27 September 1998, 18–22 October 1998, and 7–11 November 2004 used
for Kp prediction in (Valach and Prigancová, 2006) are considered in this
paper. As previously, for the description of geomagnetic activity, we used
Kp index as reported by Adolf-Schmidt Observatory for Geomagnetism,
Niemegk, Germany. In the earlier NN1 model solar wind data measured by
WIND and ACE satellite at libration point L1 were taken via CDAWeb Data
Service to generate one-hour averages of the IMF Bz component, proton
number density N , and solar wind velocity V . In Fig. 1 their development
is shown for the November 2004 superstorm.

In the modified NN2 model we employed the horizontal component H
variations (1–minute data) as mentioned above on the basis of hourly means.
The H variations were computed as ∆H deviations according to

∆H = H −H0, (1)

where H is an observed value and H0 is a characteristic quiet value for a
given hour (and for an appropriate portion of a day). The H0 value is cal-
culated as an average using ten quietest days in a given month (moreover,
the correction for secular variation is done). In such a way the data were
prepared for the final test, too. As seen in Fig. 1 the ∆H profile is in a
good consistence with the development of the Sym-H storm variation and
hence can be used as a measure of the ring current development. Mean-
while, Sym-H as a high-time resolution version of the well-known Dst index
describing the ring current dynamics is available at the World Data Center
for Geomagnetism (Kyoto).

To obtain the NN2 model, we needed, as earlier, one set of patterns for
training the neural networks (NNs) and one storm at least for validation. In
addition, an independent set of patterns for the final test of the NN2 model
is required. As before (Valach and Prigancová, 2006), we took the storms
of May, June and September 1998 as the training patterns, the storm of
May 1997 was used for the validation. The final test was performed using
the storms of August and October 1998, and November 2004.

According to the approach applied in (Valach and Prigancová, 2006) we
used three-layer feedforward NNs (Kundu, 1996) with one output node (for
the predicted Kp value). The number of input nodes is 3τ , where τ is the
history of input parameters. The outputs of the NNs were calculated using
the formula
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Fig. 1. Space weather conditions (hourly means) in the Sun-Earth system (ACE data):
the IMF — total field B and Bz component, proton number density N , and solar wind
velocity V . The profile of ∆H obtained on the basis of magnetic ground-based measure-
ments from the Hurbanovo Geomagnetic Observatory during 7–11 November 2004, when
2 intense magnetic storms occurred is also shown along with the corresponding Sym-H
storm variation (original 1–minute data).
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where Ω is the number of hidden nodes, xj are inputs to the NN (j =
1, 2, ..., 3τ), wij and Wi (i = 0, 1, ...,Ω) are weights determined from the
training process. The backward-propagation algorithm (Gurney 1996, Kundu
1996) was used for training. In (2) f denotes the activation function for in-
dividual nodes f(z) = (1 + e−z)−1.

The estimation of the optimal Ω and τ values is based on the training
processes for NNs within reasonable ranges of Ω and τ values. The consider-
ation of pairs with Ω ≤ 8 and τ ≤ 3 proved to be sufficient. Always five NNs
with randomly initialized weights were used to obtain the averaged values
and thus to quantify the validation test by means of a root mean square
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error (RMSE) and correlation coefficient (CC) values for each pair (Ω, τ).
The results of the validation test are shown in Tables 1 and 2. The RMSE
values calculated for individual pairs (Ω, τ) are presented as averages and
medians of RMSE in Table 1. In a similar way CC values (averages and
medians of CC) are displayed in Table 2.

Only the pairs of (Ω, τ) with the most proper statistical characteristics
were used for the further process of modeling. In other words, in Tables 1
and 2 we selected the individual pairs of (Ω, τ), for which the NNs were
most successful. It is worth noting that to obtain the NN2 model, the pairs
(Ω, τ) considered are not the same as in the NN1 model.

As the next step, altogether 34 new NNs were trained to obtain the
NN2 model. The distribution of NNs with regard to (Ω, τ) is shown in
Table 3. The number of NNs considered for individual pairs of (Ω, τ) is
chosen according to the results of the validation test: the better RMSE
and CC values, the more NNs were considered. The proper number of the
hidden nodes was estimated to be less than six. The time history of input
parameters is taken within the range from one to three hours. The modelled
Kp index is a result of averaging of Kp values from individual NNs.

3. Results and discussion

The NN1 model was tested using three magnetic storms, namely: 26–29
August 1998, 18–22 October 1998, and 7–11 November 2004. The quality of
performance for this model was controlled considering the RMSE and CC
statistical measures. The calculated RMSE values for individual magnetic
storms mentioned are 1.23, 1.00, and 1.95, respectively. Those of CC are
0.83, 0.72, and 0.67, respectively. The comparison of these values shows
that the prediction for the November 2004 storm is less reliable. A quite
complicated development is characteristic for this unusually intense storm
due to their drivers (Yermolaev et al., 2005; Valach and Prigancová, 2006).
The maxima in the Kp profile related to the two-step distinctive enhance-
ment of the ring current effect are apart of approximately three days. This
time interval is not enough for the magnetosphere to recover. Moreover,
the second maximum of the geomagnetic activity level is comparable to the
first one and occurred on the background of the still disturbed conditions
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Table 1. Results of the validation test: the averages and medians of the RMSE calculated
for subsets of NNs, consisting of five NNs initially trained (altogether 24 subsets of NNs
were considered).

Averages of RMSE Medians of RMSE
Ω τ = 1 τ = 2 τ = 3 Ω τ = 1 τ = 2 τ = 3

0 1.14 1.16 1.13 0 1.14 1.16 1.13
2 0.97 1.25 1.51 2 0.96 1.18 1.39
3 1.33 1.37 1.38 3 1.29 1.34 1.39
4 1.18 1.21 2.16 4 1.15 1.19 2.00
5 1.15 1.60 2.10 5 1.16 1.68 2.48
6 1.33 1.85 2.70 6 1.30 1.79 2.64
7 1.52 1.89 2.42 7 1.44 1.84 2.25
8 2.14 2.15 2.99 8 1.88 2.56 2.76

Table 2. Results of the validation test: the averages and medians of the CC calculated
for subsets of NNs, consisting of five NNs initially trained (altogether 24 subsets of NNs
were considered).

Averages of CC Medians of CC
Ω τ = 1 τ = 2 τ = 3 Ω τ = 1 τ = 2 τ = 3

0 0.83 0.83 0.85 0 0.83 0.83 0.85
2 0.85 0.79 0.62 2 0.86 0.77 0.72
3 0.69 0.65 0.78 3 0.66 0.80 0.79
4 0.75 0.77 0.56 4 0.76 0.79 0.62
5 0.81 0.60 0.30 5 0.82 0.65 0.12
6 0.56 0.62 0.44 6 0.64 0.72 0.45
7 0.64 0.51 0.45 7 0.73 0.46 0.60
8 0.41 0.63 0.38 8 0.38 0.65 0.37

Table 3. Distribution of altogether 34 new NNs trained for the modified NN2 model using
pairs (Ω, τ) chosen according to the validation test results.

Ω τ = 1 τ = 2 τ = 3

0 4 3 4
2 6 3 2
3 2 2 2
4 2 2 —
5 2 — —
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Table 4. Quality of performance for the NN1 model fed with solar wind data only (Valach
and Prigancová 2006).

Measure 26–29 Aug 1998 18–22 Oct 1998 7–11 Nov 2004

RMSE 1.23 1.00 1.95
CC 0.83 0.72 0.67

Table 5. Quality of performance for the NN2 model fed with both the solar wind and ∆H
data.

Measure 26–29 Aug 1998 18–22 Oct 1998 7–11 Nov 2004

RMSE 1.25 1.01 1.83
CC 0.80 0.70 0.71

Table 6. Comparison of the performances of NN1 and NN2 models for the first and second
portions of the 7–11 November 2004 superstorm.

Measure First portion Second portion
(RMSE and/or CC) of the storm of the storm

RMSE in case of NN1 model 1.64 2.29
RMSE in case of NN2 model 1.69 1.99

CC in case of NN1 model 0.82 0.46
CC in case of NN2 model 0.78 0.59

in the magnetosphere. Since there was no complete recovery, yet it appears
to be reasonable to take into account the current state of the disturbed
magnetosphere, when predicting the Kp level.

The modified NN2 model described above is used to predict (post fac-
tum) the Kp values for the time intervals, when three magnetic storms on
26–29 August and 18–22 October 1998, and 7–11 November 2004 occurred.
To compare the accuracy of prediction of Kp within the intervals of these
stormy conditions, the statistical characteristics calculated (RMSE and CC)
are compared for both NN1 and NN2 models and can be followed in Tables
4 and 5. The quality of performance for the NN1 and NN2 is generally com-
parable in case of two storms (26–29 August 1998 and 18–22 October 1998).
That can be seen in modeled profiles obtained by means of the NN1 and
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Fig. 2. Comparison of modeled Kp profiles for the 26–29 August 1998 storm: in case of
the NN1 model based on solar wind data only (shaded line) and in case of the NN2 model
based on both solar wind data and ground-based observations of the geomagnetic field
(dotted line). The comparison of the observed Kp profile was discussed in Valach and
Prigancová (2006).
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Fig. 3. As Fig. 1, but for the 18–22 October 1998 storm.
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Fig. 4. Comparison of Kp profiles for the 7–11 November 2004 superstorm: observed
values (solid lines) and model values in case of the NN1 model based on solar wind data
only (shaded line) and in case of the NN2 model based on both solar wind data and
ground-based observations of the geomagnetic field (dotted line).

NN2 for this stormy interval (Fig. 2 and 3). It seems to be confirmed that
the Kp profiles during magnetic storms and intense substorms are dynami-
cally controlled by the solar wind (Gleisner and Lundstedt, 1999) and that
the NN model fed with only solar wind data (Boberg et al., 2000; Valach
and Prigancová, 2006) is sufficient for the prediction of the Kp index.

On the other hand, the November 2004 superstorm is predicted better
using the new NN2 model. Since this storm is of a quite complicated devel-
opment that was considered as 2 successive stormy portions. Actually, it is
of interest to divide the November 2004 storm into two portions as shown
in Fig. 4. A separating line is chosen at the moment at which predictions
by the NN2 model become better than those by the NN1 model. The first
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portion of the storm is predicted to some extent better when only the solar
wind data are considered. In fact, both the RMSE and CC values are better
in case of the NN1 model. But the second portion of the storm is predicted
more adequately when also an additional information from ground-based
observations of the geomagnetic field is considered. The performance of the
NN1 and NN2 is compared for the first and second portions of the storm
in Table 6. As seen, the reliability of prediction of the first portion of the
storm is comparable, although both RMSE and CC values in the case of
the NN2 are slightly poorer, which gives evidence of some noisy effect of the
added input parameter (∆H) in this case. However, the NN2 output for
the second portion of the storm reveals the predicted Kp level to be more
adequate than the NN1 output. Actually, as seen in Table 6, the RMSE and
CC values are more accurate in case of NN2 model. That can be followed
in Fig. 4, too. In the shaded portion of the storm the influence of not only
the external forcing, but also of the disturbed conditions in the magneto-
sphere (still far from recovery) is replicated in a better way. In other words,
in the case of the still disturbed magnetosphere, the additional ∆H input
quantifying the current state of the magnetosphere is useful.

4. Conclusion

The analysis of a number of time intervals, when magnetic storms oc-
curred, was carried out in order to assess the quality of prediction of the
geomagnetic activity level (expressed by the Kp index) by means of the
Neural Network model. The modified NN2 model based on both the so-
lar wind data and ground-based observations of the geomagnetic field is
compared with the previous NN1 model based on the solar wind data only.
In the case of storms with a regular development the ∆H data, as input
of the NN2 model, appear to be rather unnecessary, and even to supply
an additional noise to the NNs input parameters. The significance of ad-
ditional information is apparent when a storm occurs on the background
of the disturbed magnetosphere. The information on the current state of
the magnetosphere expressed by the horizontal component variations ∆H
of the observed geomagnetic field at a given point, improves the quality of
performance and a more adequate Kp prediction is obtained by means of
the modified NN2 model.
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