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Magnetic anomaly due to elliptic
cylinder in the uniform exciting field

M. Hvoždara, A. Kaplíková
Geophysical Institute of the Slovak Academy of Sciences1

A b s t r a c t : The paper presents exact calculation of magnetic field anomaly induced
by the uniform geomagnetic field in the presence of two dimensional body with elliptic
cross-section. The solution is performed by means of separation of variables in Laplace
equation, using orthogonal elliptic cylindrical co-ordinates. The angle between main axis
of generating ellipse and inducing field is general. The calculations of ∆T and inclination
anomaly are presented for two important cases: i) magnetic cylinder embedded in non
magnetic medium, ii) non magnetic elliptic cylinder hollow (e.g. gallery) embedded in un-
bounded magnetic medium. The comparison of results (profile curves ∆T,∆I) calculated
by means of derived analytical formulae and those calculated by means of the boundary
integral method used in our previous papers is presented also. Their coincidence is good,
namely in the region where the anomalies are most pronounced.
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1. Introduction

The exact calculation of the magnetic anomalies by means of analytical
methods represents till now theoretical basis of geophysical magnetometry.
The two-dimensional perturbing body with general elliptic cross-section cov-
ers a variety of interesting approximations of geological bodies, having e.g.
almost circular surfaces, or narrow elongated ore veins. Some interesting
theoretical results for ribbons can be found in e.g. (Grant and West, 1965)
or (Logachev and Zacharov, 1979), but theoretical formulae are incomplete
or omitted. The exact solution for similar dielectric problem by means of
conformal mapping in complex variable plane can be found in (Smythe,
1950).

1 Dúbravská 9, 845 28 Bratislava 45, Slovak Republic; e-mail: geofhvoz@savba.sk

153



Hvoždara M., Kaplíková A.: Magnetic anomaly due to elliptic cylinder. . . , (153–170)

In our paper we present the exact solution of this magnetic induction
problem using the Fourier method of separation of variables in the orthog-
onal elliptic-cylinder co-ordinate system. The obtained exact solution can
be used for various bodies of concern in applied magnetometric methods.

2. Formulation of the magnetic potential problem

Let us consider an unbounded space “1” of uniform magnetic permeabil-
ity µ1, in which there is situated a two-dimensional cylinder of constant
elliptic cross-section and permeability µ2. The axis of the cylinder coincides
with the y-axis, so the x, z plane intersects it in the ellipse with semiaxes
a, b, as shown in Fig. 1. The angle between inducing field B0 (in nT) and
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Fig. 1. Geometrical parameters of the magnetic body with elliptic cross-section.

axis x is denoted as α, so the potential for the intensity of the unperturbed
field is:

U0(x, z) = −H0(x cosα+ z sinα), (1)

where H0 = µ−1
1 B0. Due to the presence of the magnetic body “2” the

potential outside is U1(x, z) and inside U2(x, z), both are different from (1)
their perturbing parts being denoted by the asterics: U1, U2, respectively.
Then we have potentials in regions “1” and “2”:
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U1(x, z) = U0(x, z) + U∗1 (x, z), (2)

U2(x, z) = U0(x, z) + U∗2 (x, z). (3)

Since the magnetic field is static, its intensity H is calculated by means of
gradU :

H1,2 = − gradU1,2(x, z), (4)

and magnetic induction B:

B1,2 = µ1,2 ·H1,2. (5)

From the Maxwell equation we know that divH = 0, so potentials U1,2

obey Laplace equations:

∇2U1,2 = 0. (6)

The potential U0(x, z) of the uniform magnetic intensity given (1) satisfies
the Laplace equation automatically, the perturbing potentials U ∗1,2 must
obey it too:

∇2U∗1,2(x, z) = 0. (7)

It is clear, that for infinite distant points P (x, z) from the cylinder, we must
have zero limit of U∗1 :

lim
P→∞

U∗1 (x, z) = 0. (8)

On the boundary L of the cylinder we must have continuous transition of
potentials U1,2 and continuous transition of normal component of B, which
is equal µ∂U/∂n.

3. Calculation of the boundary value problem in the elliptic
cylinder co-ordinates

We shall transform the Carthesian (x, z) co-ordinates into elliptic-cylinder
curve linear co-ordinates (ξ, η) using slightly modified formulae from Angot
(1957):

x = c ch ξ cos η, z = c sh ξ sin η,

ξ ∈ 〈0,+∞), η ∈ 〈0, 2π〉. (9)

The Lamé’s metrical coefficients are:
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hξ = hη = c(sh2 ξ + sin2 η)1/2 = c(ch2 ξ − cos2 η)1/2, (10)

where c is the geometrical parameter of transformation. The Laplace equa-
tion for the potential U(ξ, η) is simple:

∂2U

∂ξ2 +
∂2U

∂η2 = 0, (11)

where we have omitted the multiplicative factor (hξhη)−1.
The advantage of co-ordinates (ξ, η) lies in the property that the cir-

cumference of the ellipse is the co-ordinate line ξ = ξ0, which follows from
(9):

x = c ch ξ0 cos η, z = c sh ξ0 sin η.

Then we have the canonical equation of the ellipse:

x2

[c(ch ξ0)]2
+

z2

[c(sh ξ0)]2
= 1. (12)

Now we match the lengths of semiaxes a, b:

a = c ch ξ0, b = c sh ξ0, (13)

which gives important relations:

c =
√
a2 − b2, (14)

eξ0 = (a+ b)/c, e−ξ0 = (a− b)/c. (15)

The region “1” is now ξ > ξ0, and “2” is ξ < ξ0. These relations match the
co-ordinate system (ξ, η) to our case of elliptical contour. The unperturbed
potential (1) is expressed in (ξη) variables in the following formula:

U0(ξ, η) = −H0c[ch ξ cos η cosα + sh ξ sinα sin η]. (16)

One can easily find that the particular solution of the Laplace equation (11)
for U(ξ, η) is:

Un(ξ, η) =

{
enξ

e−nξ

}{
cosnη
sinnη

, n = 0, 1, 2, . . . (17)
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Since in unperturbed potential (16) we have the dependence on η via cos η
and sin η, we can show that from particular solution (17) we must use only
terms for n = 1 i.e.:

U∗(ξ, η) =

{
eξ

e−ξ

}{
cos η
sin η

. (18)

The perturbing potential outside the cylinder is:

U∗1 (ξ, η) = −H0 c e−ξ[C1 cos η + F1 sin η]. (19)

The perturbing potential inside the cylinder ξ < ξ0 is found in the form:

U∗2 (ξ, η) = −H0 c[A1 ch ξ cos η + E1 sh ξ sin η]. (20)

The selection of ch ξ and sh ξ will ensure the continuity of both components
in gradU∗2 on the x axis (x ∈ 〈−a,+a〉), which is identical with ξ = 0 and
η = 0 or η = π. On the surface of the cylinder we must use the boundary
conditions:

[U1]ξ=ξ0 = [U2]ξ=ξ0 , (21)

[∂U1/∂ξ]ξ=ξ0 = µr [∂U2/∂ξ]ξ=ξ0 , (22)

where

µr = µ2/µ1 = (1 + κ2)/(1 + κ1), (23)

where κ1, κ2 is magnetic susceptibility of “1” or “2”. Using these conditions
we obtain a system of two equations for cosine coefficients:

− e−ξ0 C1 = −A1 ch ξ0,

− sh ξ0 cosα + e−ξ0 C1 = −µr sh ξ0 cosα− µrA1 sh ξ0.

The solution is:

A1 =
(1− µr)b cosα

a+ bµr
, (24)

C1 = A1 eξ0 ch ξ0 = eξ0
(
a

c

)
(1− µr)
a+ bµr

b cosα, (25)
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where we have used relations (13). For coefficients at sin η we have similar
equations:

F1 e−ξ0 = E1 sh ξ0,

− ch ξ0 sinα + F1 e−ξ0 = −µr ch ξ0 sinα − µrE1 ch ξ0.

The solution gives:

E1 =
1− µr
b+ aµr

a sinα, (26)

F1 = E1(b/c) eξ0 . (27)

In this manner we know the necessary coefficients for the perturbing po-
tentials. The total potential inside the cylinder is expressed clearly in x, z
variables:

U2(x, z) = U0(x, z) + U∗2 (x, z) = −H0(x cosα + z sinα)−

−H0(1− µr)
[

b

a+ bµr
x cosα+

a

b+ aµr
z sinα

]
=

=−H0

{[
1 +

(1− µr)b
a + bµr

]
x cosα +

[
1 +

(1− µr)a
b+ aµr

]
z sinα

}
. (28)

The Carthesian components of the H2 field are equal to − gradU2:

H2x = H0
a+ b

a + bµr
cosα, H2z = H0

a+ b

b+ aµr
sinα. (29)

We can see an interesting result, that the magnetic intensity inside the
cylinder is a uniform vector field, but its inclination angle is β, generally
different from α, as shown in:

tg β = H2z/H2x =
a+ bµr
b+ aµr

tgα. (30)

This property was often in magnetometry qualitatively quoted, but without
explicit formula. Let us introduce a factor of modification of angle α into
β:
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Qα(v) =
a+ bµr
b+ aµr

=
1 + vµr
v + µr

, (31)

where v = b/a characterizes “ellipticity”. We can easily find its limit prop-
erties:

lim
v→1

Qα(v) = 1,

which is the case of circular cylinder, in which the isolines preserve inclina-
tion angle α. Similarly we have

lim
v→0

Qα(v) = 1/µr,

which is the case of thin magnetic strip in the interval x ∈ (−a,+a), having
permeability µr. In Figs. 2a,b there are plotted values of Qα(v) for v ∈ 〈0, 1〉
and various µr in the interval 〈0.9, 1.1〉. The curves in Fig. 2b show values
of β for the outer field inclination α = 75◦. Using these curves, we can
determine the direction of the magnetic line forces inside the cylinder. The
intensity component of this uniform magnetic field can be calculated from
(29). The perturbing potential outside the cylinder can be expressed by as:

U∗1 (ξ, η) = −H0(1− µr)ab e−(ξ−ξ0) ·
[

cosα cos η
a+ bµr

+
sinα sin η
b+ aµr

]
, (32)

which shows that it is zero at µr = 1 (no magnetic contrast of the cylinder).
This formula can be easily derived with respect to ξ or η, which enables us
to calculate the curvilinear components of the intensity H∗1:

H∗
1ξ = − 1

hξ

∂U∗1
∂ξ

, H∗
1η = − 1

hη

∂U∗1
∂η

, (33)

where

hξ = hη = c
[
ch2 ξ − cos2 η

]1/2
(34)

are Lame’s coefficients. The Carthesian components H∗1x, H
∗
1z are obtained

using the formulae of transformation vector components between curvilinear
(ξ, η) and Carthesian co-ordinate systems (e.g. Angot, 1957).

H∗1x = − c

h2
ξ

[
∂U∗1
∂ξ

sh ξ cos η − ∂U∗1
∂η

ch ξ sin η
]
,
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Fig. 2. Modification factor Qα(v) for various permeabilities µr (top panel) and calculated
angle β = inclination of the magnetic field inside the cylinder for α = 75◦ (inclination of
outer field with respect to the main axis of the ellipse) – bottom panel.

H∗1z = − c

h2
ξ

[
∂U∗1
∂ξ

ch ξ sin η +
∂U∗1
∂η

sh ξ cos η
]
. (35)

For completeness we must also give formulae for calculating co-ordinate
system (ξ, η) from (x, z). For this purpose we use the known property of
points (x, z) on the ellipse with semiaxes A,B:
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x2

A2 +
z2

B2 = 1. (36)

On the other hand, using transformation formulae (9),

x2

c2 ch2 ξ
+

z2

c2 sh2 ξ
= 1, (37)

which gives for pertinent constant the co-ordinate ξ:

A = c ch ξ, B = c sh ξ, (38)

where c =
√
a2 − b2, which matches the entire family of confocal ellipses

ξ = const. contours to the basic ellipse ξ0. From the geometrical definition
of the ellipse points (x, z) we know, that the sum of their distances from the
foci at points x = ±c is constant and equals to 2A, i.e.

2A =
√

(x− c)2 + z2 +
√

(x+ c)2 + z2 = 2c ch ξ. (39)

Using relation sh ξ =
√

ch2 ξ − 1 = B/c we obtain

eξ = (A+B)/c, e−ξ = (A− B)/c, (40)

which enables us to calculate the ξ co-ordinate. The angle co-ordinate η
will be determined from relation:

tg η = (z/x) · (A/B) . (41)

It is clear that η = 0 for z = 0 and x > 0, η = π for z = 0 and x < 0. Along
the axis z > 0 we have η = π/2. In this manner we can use the calculation
of (ξ, η) co-ordinates for required network of points (x, z).

4. Numerical calculation for some models

For the geophysical purposes we must generalize the derived formulae for
the case when the axis of the cylinder is buried at some depth h and the
main axis is inclined by the angle γ ∈ (0, π/2〉 with respect to the surface
plane, as shows Fig. 1.

The transformation relations are:
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x = x′ cosγ + (z′ − h) sinγ, z = −x′ sinγ + (z′ − h) cosγ. (42)

These (x, z) must be used for calculations of (ξ, η). If the angle of inclination
of unperturbed field with respect to the x′ axis is I0, we have to put into
previous formulae

α = I0 − γ. (43)

In this manner we can link the “elliptic formulae” to the more general co-
ordinate system. It is also interesting to determine the co-ordinates (x′0, z

′
0)

which correspond to the point nearest to the surface. Using the formulae of
analytical geometry in the (x, z) variables we have:

x = a cosϕ, z = b sinϕ,

where the angle ϕ is reckoned from the x axis. Using transformation (42)
we obtain:

z′ = h + a sinγ cosϕ+ b cosγ sinϕ. (44)

The extremum of the value z′ with respect to ϕ is determined using condition
∂z′/∂ϕ = 0, and for the value ϕ0 we have:

tgϕ0 = (b cosγ)/(a sinγ). (45)

Because from the geometrical analysis of Fig. 3 there must be π ≤ ϕ0 ≤ 3
2π,

thus:

sinϕ0 = −(b/p) cosγ, cosϕ0 = −(a/p) sinγ, (46)

where p =
[
b2 cos2 γ + a2 sin2 γ

]1/2. Substitution of cosϕ0 and sinϕ0 into
(44) gives minimum of z′ for the circumference of the ellipse:

z′0 = h −
[
a2 sin2 γ + b2 cos2 γ

]1/2
= h− p. (47)

Similarly we obtain for the horizontal co-ordinate of the minimum:

x′0 =
[
(a2 − p2)/p

]
· tg γ. (48)
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The FORTRAN 90 program of our computations was designed for the cal-
culation of ∆T,∆I,∆Z along x′ profiles running at various levels of z′ above
the cylinder. If we calculate the components of anomalous field: (H ∗1x, H

∗
1z)

in co-ordinate system (x, z), we transform these components into “measur-
ing” co-ordinate system (x′, z′) using relations:

H∗1x′ = H∗1x cos γ −H∗1z sinγ, H∗1z′ = H∗1x sinγ +H∗1z cosγ. (49)

The most interesting characteristics of the geomagnetic anomaly are the
anomaly of total field (∆T ) and the anomaly of inclination ∆I . These are
calculated as follows:

∆T = µ0

[
(H0x′ +H∗1x′)

2 + (H0z′ +H∗1z′)
2
]1/2 −

− µ0

[
(H2

0x′ +H2
0z′)

]1/2
, (50)

∆I = arctg [(H0z′ + H∗1z′)/(H0x′ +H∗1x′)]− I0. (51)

Here H0x′ , H0z′ denote the horizontal and vertical components of the un-
perturbed geomagnetic field intensity corresponding to B0.

For numerical calculations we chose an elliptic cylinder with semiaxes
a = 10 m, b = 5 m and slope angle γ = 0◦ or γ = 30◦. The relative
permeability µr = 1.1 corresponds to the magnetic ore body and µr = 0.9
corresponds to the case of non-magnetic cavity (gallery) µ2 = µ0, which is
excavated in the weakly magnetic space µ1 = µ0(1 + κ1) of susceptibility
κ1 = 0.1111 = 1/9. The value of normal field was taken as B0 = 47000nT,
its inclination I0 = 75◦. The vector B0 was supposed perpendicular to the
strike axis y of the cylinder. In Figs. 3a,b we can see the curves of ∆T and
∆I along x′ profiles above the elliptic cylinder at the depths z ′/d = −0.6,
−0.3, 0, 0.3, 0.6. The anomalies are weak far from the body z ′/d = −0.6,
−0.3 and increase when the observation profile approaches to the top of
the body (the length norm d put d = a). The maxima of ∆T occur at
x′/d ≈ −0.5, minima in the far zone x′/d > 1. It is interesting that the
inclination anomalies obtain values of few tens of angle minutes.

The effect of non-magnetic elliptic cylinder cavity (µr = 0.9) can be seen
in Figs. 4a,b. The course of curves ∆T and ∆I is approximately of negative
values in comparison to the magnetic case presented in Figs. 3a,b.

It is interesting also to compare the presented “analytical” results for
the elliptic cylinder with results obtained by the boundary integral method
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Fig. 3a. Profile curves of ∆T and ∆I for magnetic elliptic cylinder, γ = 0◦.
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Fig. 3b. Profile curves of ∆T and ∆I for magnetic elliptic cylinder, γ = 30◦.
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Fig. 4a. Profile curves of ∆T and ∆I for non-magnetic elliptic cylinder, γ = 0◦.
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Fig. 4b. Profile curves of ∆T and ∆I for non-magnetic elliptic cylinder, γ = 30◦.
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Fig. 5a. Profile curves of ∆T and ∆I for magnetic elliptic cylinder, γ = 0◦ – calculated
by boundary integral method.
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Fig. 5b. Profile curves of ∆T and ∆I for magnetic elliptic cylinder, γ = 30◦ – calculated
by boundary integral method.
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(BIM) presented in (Hvoždara and Kaplíková, 2005). For this purpose we
approximated the elliptic contour by the equilateral polygon with 20 ver-
tices. In Figs. 5a,b we present results from the BIM approximation of
the elliptic cylinder with parameters corresponding to Figs. 3a,b. We can
see that the profile curves ∆T , ∆I match very well. There occurs only a
small ripple at the points very distant from the axis of the cylinder. This is
caused by using approximation of the anomalous field components as finite
differences of anomalous potential. From the practical point of view we can
accept the BIM algorithm as well confirmed, and use it for more general
anomalous magnetic bodies with irregular cross-sections.
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