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A b s t r a c t : The linear stability of compositional and thermal convection in the
Earth’s rotating outer core was investigated. We have identified the values of Takens–
Bogdanov bifurcation points and codimension-two bifurcation points by plotting graphs of
neutral curves corresponding to stationary and oscillatory convection for different values
of physical parameters relevant to rotating compositional and thermal convection in the
Earth’s outer core. We have also derived a nonlinear one–dimensional Landau–Ginzburg
equation near the onset of stationary convection at a supercritical pitchfork bifurcation,
and nonlinear one-dimensional coupled Landau–Ginzburg type equations near the onset
of oscillatory convection at a supercritical Hopf bifurcation. We have also discussed the
stability regions of standing and travelling waves.
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1. Introduction

Recent developments in both theoretical and experimental fluid dynam-
ics have stimulated widespread interest in nonlinear fluid dynamical prob-
lems. Thermohaline convection, compositional, and simultaneously thermal
convection, magnetoconvection and rotating thermal convection, etc., in the
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Earth’s outer core are examples of double diffusive systems. In thermohaline
convection, the temperature and the salt concentration provide two diffusive
ingredients. In magnetoconvection, the temperature and the magnetic field
provide two diffusivities.

Convection due to thermal and compositional buoyancy in the Earth’s
outer core is similar to the thermohaline convection, except for the fact
that the compositional buoyancy in the core is due to the light ingredient
(e.g. silicon) releasing at the inner/outer core boundary at solidification
process, when the heavier iron only goes into the solid phase in the inner
core. Therefore, the source of the outer core compositional buoyancy is
lighter than the accompanying iron. Thus it is not like in thermohaline
convection of salty water, where the salt, the source of buoyancy, is heavier
than the water. The convection due to thermal and compositional buoy-
ancy is often termed “thermohaline convection”. However, e.g. the Earth’s
core conditions may be the reason to term it “thermosolutal convection”
or “thermoconcentration convection”. The latter is usually used in Russian
literature.

In salty solutions temperature gradient can drive also mass currents and
not only the thermal flows. This, the so called Soret effect, however, can-
not be excluded in the Earth’s outer core. Despite lacking experiments and
experience corresponding to the core conditions, it would be heuristically
successful to study the Soret effect influence on the Earth’s outer core con-
vection. A phenomenological relation between the mass current ~jC and the
local gradients can be written as

~jC = −
(
D∇C +D

KT

T0
∇T

)
, (1)

where T is the temperature, KT is the Soret coefficient which measures the
cross coupling between temperature gradients and mass fluxes, therefore
also called the thermodiffusion coefficient. KT can be negative, as well as
positive. D is the mass diffusivity, C is the concentration of the lighter
component of the liquid. The mass conservation law

∂tC +
(
~V · ∇

)
C +∇ · ~jC = 0,

gives the diffusion equation for the concentration field in the form

∂tC +
(
~V · ∇

)
C = D∇2C + D

KT

T0
∇2T. (2)
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The temperature diffusion is not affected by the thermo-diffusion coefficient.
The temperature diffusion equation then becomes

∂tT +
(
~V · ∇

)
T = κ∇2T. (3)

Here κ is thermal diffusivity of the fluid, and we have a set ∂η = ∂/ ∂η with
η = {x, z, t, q, X, T}. The last term in Eq. (2) represents the Soret effect.
Hurle and Jakeman (1971) have considered a nonlinear Soret effect. Owing
to the two-component nature of the compositional and thermal convection
in Earth’s rotating outer core, one has the Soret effect which leads to the
additional control parameter besides the Rayleigh number Ra, namely the
separation ratio ψ. It is a measure of the stabilizing or destabilizing effect as-
sociated with concentration gradients. Schöpf and Zimmerman (1993) have
studied the near-threshold behaviour for thermal convection in a binary liq-
uid heated from below for realistic boundary conditions at the top and bot-
tom. Both compositional and thermal convections in Earth’s rotating outer
core, and Rayleigh–Benard convection in rotating fluid are capable of show-
ing stationary convection at pitchfork bifurcation, oscillatory convection at
Hopf bifurcation (both pitchfork and Hopf bifurcations are primary bifurca-
tions), and stationary convection at Takens–Bogdanov bifurcation point and
codimension two point (Takens–Bogdanov bifurcation point and codimen-
sion two point are secondary bifurcations). Takens–Bogdanov bifurcation
point is one at which the neutral curve of oscillatory convection intersects the
neutral curve of the stationary convection and the frequency on the neutral
curve of oscillatory convection approaches zero. This Takens–Bogdanov bi-
furcation point (where Rayleigh number for oscillatory convection coincides
with Rayleigh number for stationary convection at the same wave number)
is different form codimension two point (where Rayleigh number for the on-
set of oscillatory convection coincides with Rayleigh number for the onset of
stationary convection, but at different wave numbers). The onset of insta-
bilities in rotating thermohaline convection has been considered by Pearl-
stein (1981), and in rotating magnetoconvection by Tagare (1997), Tagare
and Rameshwar (2003). These rotating double-diffusive convective systems
are expected to show a curve of Takens–Bogdanov bifurcation points which
cumulates into a tertiary bifurcation point (corresponding to a triple zero
eigenvalue). The problem, where the Taylor number is chosen so that there
is a triple zero eigenvalue has been investigated for rotating thermohaline
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convection by Arneodo et al. (1985).
In Section 2, we write basic equations of compositional and thermal con-

vection in Earth’s rotating outer core. In Section 3, we study the linear
stability analysis. Since the bifurcation is a continuous one, only a slow mod-
ulation of the convective roll pattern is allowed by the fluid equations near
the onset. The time evolution of general pattern is developed in Section 4
for a region |ψ| > |ψ∗|(where ψ = ψ∗ corresponds to a critical value of
separation parameter in rotating compositional and thermal convection at
a Takens–Bogdanov bifurcation point) by means of multiple scale analysis
developed by Newell and Whitehead (1969) and Segel (1969) for a weakly
nonlinear case. In a weakly nonlinear analysis performed in Section 4 and
Section 5, a small amplitude convection cell is imposed on the basic flow. If
this amplitude is of O(ε), then the interaction of the cell with itself forces a
second harmonic and a mean state of correction of O(ε2), and these in turn
drives an O(ε3) correction to the fundamental component of the imposed
roll. A solvability criterion for this last correction yields an equation for the
scale amplitude (which is called Landau–Ginzburg equation). In Section 4,
we derive a nonlinear one-dimensional, time-dependent Landau–Ginzburg
equation in complex amplitude, A(X, T ) with real coefficients near a super-
critical pitchfork bifurcation. The phase of the complex amplitude A(X, T )
describes changes in the position and direction of rolls and its magnitude
modulates the intensity of the convective motion. In Section 5, we derive a
nonlinear one dimensional, time dependent coupled Landau–Ginzburg type
equations in complex amplitudes A1R (X, τ, T ) and A1L (X, τ, T ) with com-
plex coefficients. Here A1R, and A1L stand for right hand and left hand
travelling waves respectively. Following Matthews and Rucklidge (1993), we
have dropped slow space dependence and obtained ODE’s, with complex co-
efficients, termed as Landau equations, and discussed the stability regions of
travelling waves and standing waves. In Section 6, we give the conclusions
of this paper.

2. Basic equations

Consider a horizontal layer of compositional and thermal convection in
Earth’s rotating outer core, of depth d with linear temperature and con-
centration (of the lighter component) gradients, which is kept rotating at
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a constant angular velocity Ω about the z-axis. Following Bhattacharjee
(1987), we have for density

ρ = ρ0 [1− αT (T − T0)− αC (C − C0)] , (4)

where ρ0 is the mean density of the system, αT is the thermal expansion
coefficient and αC describes how the density of the fluid in Earth’s rotating
outer core, changes with changing concentration of the lighter component.
Here αT is a positive constant and αC is positive in Earth’s rotating outer
core. The temperature difference ∆T is related to the concentration differ-
ence ∆C under steady-state conditions by the relation

∆C = −KT

T0
∆T + constant. (5)

We use the Cartesian system of co-ordinates whose dimensionless vertical
co-ordinate z and dimensionless horizontal co-ordinates x, y are scaled with
d. The velocity vector ~V (u, v, w), the density ρ, the temperature θ (devia-
tion from conductive state), the concentration C, the time t and the pressure
P are non-dimensionalized by scales κ/d, ρ0, ∆T, ∆C, d2/κ and ρ0κ

2/d2.
In the Boussinesq approximation one considers the fluid incompressible, ex-
cept when dealing with the buoyancy terms that drives the concentration.
The dimensionless parameters required for the description of the motion
are: Rayleigh number Ra = gαT∆Td3/κν, Taylor number Ta = 4Ω2d4/ν2,
Prandtl number Pr = ν/κ, Lewis number L = D/κ and separation pa-
rameter ψ = −KTαC/T0αT . The basic dimensionless equations for rotating
compositional and thermal convection in the Boussinesq approximation, are:

∇ · ~V = 0, (6)

1
Pr

[
∂t~V +

(
~V · ∇

)
~V
]

= − ∇
(
P − PrTa

8

∣∣∣Ω̂× ~r
∣∣∣
2
)

+∇2~V +

+ Ta
1
2

(
~V × Ω̂

)
+Ra (θ + ψC) ~̂ez , (7)

∂tθ +
(
~V · ∇

)
θ = w +∇2θ, (8)

1
L

[
∂tC +

(
~V · ∇

)
C
]

=
w

L
+∇2C − ∇2θ, (9)
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where Ω̂ is a unit vector along the axis of rotation. Here we consider Ω̂ = ~̂ez .
Eqs. (6–9) can be reduced to a form

Lw = N , (10)

where

L =DκDC
[D2

ν∇2 + Ta ∂2
z

]− RaDν∇2
h

[
(1 + ψ)DC − ψ

L∇2
]
, (11)

N = Pr−1DκDC
{
Ta

1
2∂zAz + Dν~̂ez · ∇ × ~A

}
−

−RaDν∇2
h

{(
DC + ψ∇2

)(
~V · ∇

)
θ +

ψ

L
Dκ
(
~V · ∇

)
C

}
, (12)

and

∇2 = ∂2
x + ∂2

z , ~A =
(
~V · ∇

)
~ω − (~ω · ∇) ~V ,

Dκ = (∂t −∇2), DC = ( 1
L∂t −∇2), Dν = ( 1

Pr∂t −∇2).

3. Linear stability analysis

In this section we study the linear stability analysis of compositional
and thermal convection in Earth’s rotating outer core, by substituting w =
W (z)eiqxx+pt into linearized version of Eq. (10)

Lw = 0,

resulting in
(
D2 − q2 − p) (D2 − q2 − p

L

) [(
D2 − q2) (D2 − q2 − p

Pr

)2 + TaD2
]
W =

=−Raq2 (D2 − q2 − p
Pr

) [(
D2 − q2 − p

L

)
+ ψ

((
D2 − q2) (1 + 1

L

)
− p

L

)]
W.

(13)

In this paper we have considered only the idealized stress-free conditions on
the surface and vanishing of temperature and concentration fluctuations.
Thus W = D2W = D4W = 0 at z = 0, 1. W and its even derivatives
vanish at z = 0 and z = 1 implies that we can assume W = sinπz as
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a solution of Eq. (13). Substituting W = sinπz and ω, the frequency of
oscillations using p = iω, in Eq. (13), we get

q2

K
R a = δ2

[
δ8ψL +

ω2δ4

L2 −
ω2

Pr

{
δ4
(
ψL +

ψ

L2

)
+
ω2

L2 (1 + ψ)

}]
+

+
Taπ2

(
δ4 + ω2

Pr2

)
[
δ8ψL +

ω2δ4

L2 +
ω2

Pr

{
δ4
(
ψL +

ψ

L2

)
+
ω2

L2 (1 + ψ)

}]
+

+ i
ω δ2

(
δ4 + ω2

Pr2

)
(
A1ω

4 +A2ω
2 +A3

)
, (14)

where

δ2 = π2 + q2, ψL = 1 + ψ

(
1 +

1
L

)
, K−1 = δ4ψ2

L +
ω2 (1 + ψ)2

L2 ,

A1 =
δ2

Pr2L2

(
1 + ψ +

1
Pr

)
, (15)

A2 = δ6
[

1
Pr2

{(
1 +

1
Pr

)
+ ψ

[(
1 +

1
L

)(
1 +

1
Pr

)
+

1
L2

]}
+

+
1
L2

(
1 + ψ +

1
Pr

)]
+
Taπ2

L2 (1 + ψ − 1
Pr

), (16)

A3 = δ10
{(

1 +
1
Pr

)
+ ψ

[(
1 +

1
L

)(
1 +

1
Pr

)
+

1
L2

]}
+

+Taπ2δ4
{(

1− 1
Pr

)
+ ψ

[(
1 +

1
L

)(
1− 1

Pr

)
+

1
L2

]}
. (17)

From relation (15), A1 > 0 for ψ > −1− 1
Pr . We consider the following two

cases:

3.1. Stationary convection (ω = 0):

Substituting ω = 0 in (14), we get

Ras =
δ6 + π2Ta

q2ψL
. (18)
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Here Ras is the value of Ra for the stationary convection. The minimum
value of Ras obtained for q = qsc where

2
(
qsc
π

)6

+ 3
(
qsc
π

)4

= 1 +
Ta

π4 . (19)

The wave number is identical to that for the single component fluid, while
the threshold for the onset of stationary convection at pitchfork bifurcation
is given by Eq. (18) with q = qsc. Thus

Rasc =
δ6
sc + π2Ta

q2
scψL

. (20)

3.2. Oscillatory convection (ω2 > 0):

For oscillatory convection ω 6= 0 and from Eq. (14), Ra will be complex.
But the physical meaning of Ra requires it to be real. The condition that
Ra is real implies that the imaginary part of Eq. (14) is zero, i.e.,

A1ω
4 +A2ω

2 +A3 = 0. (21)

If ψ > −
(
1 + 1

Pr

)
then A1 > 0. If

Ta >
δ6 (1 + Pr)

(
1
Pr2 + 1

L2

)

L2π2 (1− Pr) , (22)

and Pr < 1, then A2 > 0 and A3 < 0. In this case there is one real positive
value of ω2 corresponding to the oscillatory convection. Other value of ω2

will be negative. Substituting W = sin πz in Eq. (13), we get a fourth
degree polynomial equation in p of the form

a4p
4 + a3p

3 + a2p
2 + a1p+ a0 = 0, (23)

where

a4 =
δ2

LPr2 ,

a3 = δ4
[

1
Pr2 +

1
LPr2 +

2
LPr

]
,
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a2 = δ6
[

2
Pr

+
2
LPr

+
1
Pr2 +

1
L

]
+
π2Ta

L
− Ra q2

LPr
(ψ + 1) ,

a1 = δ2
{
δ6
(

1 +
1
L

+
2
Pr

)
+
(

1 +
1
L

)
π2Ta−Ra q2

[(
1
Pr

+
1
L

)
+

+ψ

(
1
L

+
1
Pr

+
1
LPr

)]}
,

a0 = δ4
[
δ6 + π2Ta− Ra q2ψL

]
. (24)

Setting p = iω in Eq. (23) and equating its real and imaginary parts to zero,
we get

a4ω
4 − a2ω

2 + a0 = 0, (25)

(a3ω
2 − a1)ω = 0. (26)

From (23), if ω = 0 then a0 = 0 and we get stationary convection and Ras
is determined by putting Ra = Ras in a0 = 0 (see also (18)). Thus ω = 0
and a0 = 0 are the conditions for the pitchfork bifurcation corresponding
to stationary convection. From (26), we can have marginal stability if ω2 =
a1 / a3 (a1 > 0) and

a4a
2
1 − a1a2a3 + a0a

2
3 = 0. (27)

In this case we get oscillatory convection and Rao (the value of Ra for the
oscillatory convection) is obtained by putting Ra = Rao in the expressions
for a0, a1, a2, a3, a4 of the set of Eqs. (24) into Eq. (27). Thus we get a
quadratic equation in Rao.

The codimension two point is determined by the intersection of two lines
a0 = 0 and a1a4 − a2a3 = 0 under the condition a1 > 0 in (ψ, Ra)–space.
This corresponds to the simultaneous occurrence of pitchfork and Hopf bi-
furcation and quasiperiodic solutions of the system can be obtained in the
nonlinear regime.

Takens–Bogdanov bifurcation point is determined by the intersection
of the two curves a0 = 0 and a1 = 0 in (ψ, Ra)–space. Thus Takens–
Bogdanov bifurcation point corresponds to a double zero eigenvalue of the
linear growth rate.

At the codimension two point, we have

Rasc(qsc) = Raoc(qoc) but qsc 6= qoc, (28)
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and at the Takens–Bogdanov bifurcation point, we have

Ras(qs) = Rao(qo) = Rac(qc) and qs = qo = qc. (29)

Eliminating Ra from a0 = a1 = 0, we get Takens–Bogdanov bifurcation
point at

ψ = ψ∗ =
−
[
δ6
c

(
1 + 1

Pr

)
+ π2Ta

(
1− 1

Pr

)]

δ6
c

[(
1 + 1

L

) (
1 + 1

Pr

)
+ 1

L2

]
+ Taπ2

[
1
L2 +

(
1 + 1

L

) (
1− 1

Pr

)] .

(30)

From Eq. (30), ψ∗ is always negative if Pr ≥ 1.
The codimension two point is an intersection between the Hopf bifurca-

tion and pitchfork bifurcation with distinct wave numbers in (ψ, Ra) plane.
At the Takens–Bogdanov bifurcation, the Hopf bifurcation and pitch-

fork bifurcation neutral curves intersect, and only a single wave number
is present. Thus at the Takens–Bogdanov bifurcation point the oscillatory
neutral curve intersects the stationary convection curve and the frequency
on the oscillatory neutral curve approaches zero, as the intersection point
is approached.

In Figs. 1–3, each solid line stands for stationary convection (pitchfork
bifurcation), and dotted line stands for oscillatory convection (Hopf bifur-
cation). In these Figs. 1–3, we have shown the effect of several physical
parameters, like Ta, Pr, L on the onset of both stationary convection and
oscillatory convection. When a physical parameter increases keeping re-
maining parameters fixed, the onset of instabilities increases, i.e. the onset
of stationary convection and oscillatory convection inhibits, when a param-
eter increases with the remaining parameters fixed. Figs. (2b) and (3b)
show both primary bifurcations (pitchfork bifurcation and Hopf bifurca-
tion) and secondary bifurcations (Takens–Bogdanov bifurcation point and
co-dimension two bifurcation point). Figs. (4a), (4b) are plotted in (ψ, Ra)
plane. Each solid and dotted line in Figs. (4a), (4b) represents the station-
ary convection and the oscillatory convection, respectively. In both figures
we showed the effect of the Taylor number on the Takens–Bogdanov bifurca-
tion point (Fig. 4a) and the co-dimension two point (Fig. 4b). In Fig. 4a, the
intersection point of the solid and the dotted line corresponding to the fixed
Taylor number, gives the Takens–Bogdanov bifurcation point. The Rayleigh
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Fig. 1. Numerically calculated marginal stability curves (steady-solid lines, oscillatory-
dotted lines) are plotted for Pr = 0.5, L = 0.1, ψ = −0.01 and (a) Ta = 106 (b)
Ta = 1012 (c) Ta = 1016, (d) Ta = 1020.

number Ra and the separation parameter ψ corresponding to the Takens–
Bogdanov bifurcation point increases as Taylor number increases. We have
ψ = ψ∗ at the Takens–Bogdanov. In the limit ψ −→ ψ∗, the frequency
of the oscillatory instability tends to zero, and weakly nonlinear analysis
in this region gives us a nonlinear equation describing the behavior of the
system near the Takens–Bogdanov bifurcation. In Fig. 4b, critical Rayleigh
numbers are taken on solid lines (stationary convection) and dotted lines
(oscillatory convection) corresponding to Taylor number. In Fig. 4b, the
point of intersection of solid line and dotted line corresponding to Taylor
number is a co-dimension two point (ω 6= 0). The critical Rayleigh number
Ra and the separation parameter ψ corresponds to the co-dimension two
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Fig. 2. Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifur-
cation (dashed lines) near the codimension two point for Ta = 1000, L = 0.1, ψ = −0.01,
(a) Pr = 0.03, (b) Pr = 0.366628 (c) Pr = 0.6.

point increases as the Taylor number increases. At the codimension two
point, let ψ = ψ′ for a Taylor number. If ψ < ψ′, we get first instability
as oscillatory convection. If ψ > ψ′, then we get stationary convection as
a first instability. For a0 = a1 = a2 = 0 which gives ψ = ψ∗∗, ω = 0 is
a triple zero eigenvalue. Thus at ψ = ψ∗∗, which corresponds to a tertiary
bifurcation, we have stationary convection. ψ = ψ∗∗ satisfies a quadratic
equation

ψ2 + µ1ψ + µ2 = 0, (31)

where µ1 and µ2 are functions of L and Pr. We get Eq. (31) by eliminating
Ta and Ra from a0 = a1 = a2 = 0.
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Fig. 3. Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifurca-
tion (dashed lines) near the codimension two point for Ta = 1000, Pr = 0.5, ψ = −0.01,
(a) L = 0.07, (b) L = 0.0984348 (c) L = 0.11.

Fig. 4. Stability diagrams with Pr = 0.5, L = 0.1 (i) Ta = 300, (ii) Ta = 1000.
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4. Onset of stationary convection at supercritical pitchfork
bifurcation

The existence of a threshold (critical value of the Rayleigh number Ra =
Rasc) and the cellular structure (critical wave number, q = qsc) for a fixed
Lewis number L, separation parameter ψ and Taylor number Ta are main
characteristics of the stationary convection in the Earth’s rotating outer core
due to compositional and thermal buoyancy. In this section, we consider
the region near the onset of the stationary convection by introducing ε as

ε2 =
Ras − Rasc

Rasc
� 1. (32)

To simplify the problem, we assume the formation of rolls parallel to the
axis y, i.e. the y-dependence disappears from Eq. (10). The z-dependence
is contained entirely in the sin, cos functions which ensures that the free-
free boundary conditions are satisfied. For values of the control parameter
Ra = Ras close to the threshold valueRasc(ε2 � 1), we assume the solutions
of Eqs. (6–9) in powers of ε:

f = εf0 + ε2f1 + ε3f2 + ...,

where f = (u, v, w, θ, C) with the first approximation is given by the eigen-
vector of the linearized problem:

u0 =
iπ

qsc

[
A(X, T )eiqscx cosπz − c.c.

]
,

v0 =− iπTa
1
2

δ2
scqsc

[
A(X, T )eiqscx cosπz − c.c.

]
,

w0 =A(X, T )eiqscx sinπz + c.c.,

θ0 =
1
δ2
sc

[
A(X, T )eiqscx sinπz + c.c.

]
,

C0 =

(
1 + 1

L

)

δ2
sc

[
A(X, T )eiqscx sinπz + c.c.

]
, (33)

where δ2
sc = π2 + q2

sc. Here c.c. stands for complex conjugate, eiqscx sinπz is
the critical mode for the linear problem at Ra = Rasc, and q = qsc. The
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complex amplitudeA(X, T ) depends on the slow variables. The independent
variables x, z, t are scaled by introducing multiple scales

X = εx, z = z, T = ε2t, (34)

and these formally separate the fast and slow dependent variables in f . The
differential operators can be expressed as

∂x −→ ∂x + ε∂X , ∂z −→ ∂z , ∂t −→ ε2∂T . (35)

Using (35), the operators (11) and (12) can be written as

L= L0 + εL1 + ε2L2 + · · · ,
N = ε2N0 + ε3N1 + · · · , (36)

where

L0 = ∇4
[
∇6 + Ta∂2

z −RascψL∂2
x

]
, (37)

L1 = 2∂x∂XLA, (38)

L2 = −∂T∇2
[(

1 +
1
L

+
2
Pr

)
∇6 + Ta

(
1 +

1
L

)
∂2
z−

−Rasc∂2
x

{(
1
L

+
1
Pr

)
+ ψ

[
1
L

+
1
Pr

(
1 +

1
L

)]}]
+ ∂2

XLA +

+4∂2
x∂

2
X

[
10∇6 + Ta∂2

z −RascψL
(
3∂2

x + 2∂2
z

)]
− RascψL∂2

x∇4, (39)

where LA = ∇2 [5∇6 + 2Ta ∂2
z −RascψL

(
3∂2

x + ∂2
z

)]
. Using (32–35) in

Eq. (10), and using definitions of L and N from (36), we get equating
coefficients of various powers of ε to zero

L0w0 = 0, (40)

L0w1 + L1w0 =N0, (41)

L0w2 + L1w1 + L2w0 = N1. (42)

Substituting the value of w0 from (33) into (40) and using (37), we get

Rasc =
δ6
sc + Ta π2

q2
scψL

. (18)

Substituting the value of w0 into L1w0 = 0, we get
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2
(
qsc
π

)6

+ 3
(
qsc
π

)4

= 1 +
Ta

π4 . (19)

Eq. (17), implies that (∂Ras∂qs
)qs=qsc = 0. In Eq. (41), N0 = 0, L1w0 = 0

implies that Eq. (41) reduces to w1 = 0. Similarly u1 = 0,

v1 =
−iπ2Ta

1
2

4Prq3
scδ

2
sc

[
A2e2iqscx − c.c.

]
,

θ1 = − 1
2πδ2

sc

|A|2 sin 2πz,

C1 =
−(1 + 1

L + 1
L2 )

2πδ2
sc

|A|2 sin 2πz = (1 +
1
L

+
1
L2 ) θ1. (43)

Substituting zeroth order and first order solution in (42) and equating co-
efficient of sinπz in N1 − L2w0 to zero, we get

λ0∂TA− λ1∂
2
XA− λ2A + λ3|A|2A = 0, (44)

where

λ0 = δ2
sc

{(
1 +

1
L

+
2
Pr

)
δ6
sc + Taπ2

(
1 +

1
L

)
−Rascq2

sc

[(
1
L

+
1
Pr

)
+

+ψ
{

1
L

+
1
Pr

(
1 +

1
L

)}]}
,

λ1 = 4q2
sc

{
10δ6

sc + Taπ2 −RascψL
(
3q2
sc + 2π2

)}
,

λ2 = Rascq
2
scδ

2
scψL,

λ3 = −Taπ
4δ2
sc

2Pr2q2
sc

− Rascq
2
scδ

2
sc

2

{
1− ψ

[
1−

(
1
L

+
1
L2 +

1
L3

)]}
. (45)

Eq. (44) is called the Landau–Ginzburg equation, and it is meaningful only
if λ0, λ1, λ2 and λ3 are positive. λ0 = 0 at ψ = ψ∗. This implies that at
the Takens–Bogdanov bifurcation point we have to use different scaling, and
we will get partial differential equation with the second order derivative in
time. λ0 is always positive if |ψ| > |ψ∗|. If ψ > 0 then λ2 is always positive.
If ψ < 0 then λ2 is positive only if

0 < ψ < ψc = − 1(
1 + 1

L

) . (46)
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Here we consider λ2 > 0. λ3 is positive if

Rasc >
Taπ4δ2

sc

Pr2q4
sc

{
δ2
sc + ψ

[
δ2
sc

(
1 + 1

L + 1
L2

)
− 1

]} . (47)

This Landau–Ginzburg equation is valid only for λ3 > 0 (supercritical bi-
furcation). λ3 = 0 gives the tricritical bifurcation point. λ3 changes its
sign at the tricritical point (see Fig. 5). λ1 is positive if the Taylor number
satisfies

Ta >
δ4
sc

(
2π2 − 7q2

sc

)

2π2 . (48)

By using the scaling (34) and A(x, t) = A(X, T )/ε, Eq. (44) can be written
in fast variables as

λ0∂tA− λ1∂
2
xA − ε2λ2A + λ3|A|2A = 0. (49)

Dropping the time dependence from Eq. (49), we get

d2A

dX2 +
ε2λ2

λ1
(1− λ3

ε2λ2
|A|2)A = 0. (50)

Fig. 5. L = 0.1, ψ = −0.01. λ3 is the nonlinear coefficient of Landau-Ginzburg equation
at the onset of stationary convection. The pitchfork bifurcation is supercritical if λ3 > 0
and subcritical if λ3 < 0.
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The solution of Eq. (50) is given by

A(X) = A0 tanh
(
X

Λ

)
, (51)

where

A0 =

√
ε2λ2

λ3
and Λ =

√
2λ1

ε2λ2
. (52)

If we consider the system with finite aspect ratio, and if l is the characteristic
length of the system, then we have

Ra(l) = Rab(qb) = Rasc(qsc) +
λ1Rasc(qsc)π2

λ2l2
+ · · · . (53)

Here Rasc is the critical Rayleigh number of the system corresponding to
l→∞ (qb becomes qsc) and Ra(l) = Rab(qb) is the critical Rayleigh number
of the system of finite length in the horizontal direction, and Rab(qb) has a
minimum value for q = qb. Thus for λ1, λ2 > 0 finite l inhibits the onset of
convection.

5. Derivation of Landau-Ginzburg type equations at the onset
of oscillatory convection

In this section we treat the region near the onset of the oscillatory con-
vection. We recast the hydrodynamic equations, and use the perturbation
theory (multiple scale perturbation theory) in the manner of Newell and
Whitehead (1969). We now consider the Rayleigh number slightly above
the critical value, i.e.,

Ra = Raoc
(
1 + ε2

)
,

where ε � 1. We write the solution of (6–9) in the power series of ε given
as follows

f = εf0 + ε2f1 + ε3f2 + · · · , (54)

where

f = f (u, v, w, ωx, ωy , ωz , θ, C) ,
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with first approximation is given by

u0 =
iπ

qoc

[
A1Le

i(qocx+ωoct) + A1Re
i(qocx−ωoct) − c.c.

]
cosπz,

v0 =−Ta
1
2 iπ

qoc

[
A1Le

i(qocx+ωoct)

δ2
oc + iω

Pr

+
A1Re

i(qocx−ωoct)

δ2
oc − iω

Pr

− c.c.
]

cosπz,

w0 =
[
A1Le

i(qocx+ωoct) + A1Re
i(qocx−ωoct) + c.c

]
sinπz,

ωx0 =−Ta
1
2 iπ2

qoc

[
A1Le

i(qocx+ωoct)

δ2
oc + iω

Pr

+
A1Re

i(qocx−ωoct)

δ2
oc − iω

Pr

− c.c.
]

sinπz,

ωy0 =
−iδ2

oc

qoc

[
A1Le

i(qocx+ωoct) + A1Re
i(qocx−ωoct) − c.c.

]
sinπz,

ωz0 = Ta
1
2π

[
A1Le

i(qocx+ωoct)

δ2
oc + iω

Pr

+
A1Re

i(qocx−ωoct)

δ2
oc − iω

Pr

+ c.c.

]
cosπz,

θ0 =

[
A1Le

i(qocx+ωoct)

δ2
oc + iω

+
A1Re

i(qocx−ωoct)

δ2
oc − iω

+ c.c.

]
sinπz,

C0 =
[
h1A1Le

i(qocx+ωoct) + h∗1A1Re
i(qocx−ωoct) + c.c.

]
sin πz,

where

h1 =

(
δ2
oc

δ2
oc+iωoc

+ 1
L

)

δ2
oc + iωoc

L

, h∗1 =

(
δ2
oc

δ2
oc−iωoc + 1

L

)

δ2
oc − iωoc

L

,

δ2
oc = π2 + q2

oc and c.c. stands for complex conjugate. Here A1L denotes
the amplitude of the left travelling wave of the roll, and A1R denotes the
amplitude of the right travelling wave of the roll, which are dependent on
slow space and time variables (Knobloch and De Luca, 1990)

X = εx, τ = εt, T = ε2t, (55)

and assume that A1L = A1L(X, τ, T ), A1R = A1R(X, τ, T). The differential
operators ∂x, ∂z and ∂t, written as

∂x −→ ∂x + ε∂X , ∂z −→ ∂z , ∂t −→ ∂t + ε∂τ + ε2∂T . (56)

The linear operator L and nonlinear operator N of Eq. (10) can be written
by using Eq. (57) as

L= L0 + εL1 + ε2L2 + · · · , (57)
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N = ε2N0 + ε3N1 + · · · . (58)

Using Eqs. (54, 57) and (58) in Eq. (10), we get by equating the coefficients
of ε, ε2, ε3

L0w0 = 0, (59)

L0w1 + L1w0 =N0, (60)

L0w2 + L1w1 + L2w0 = N1. (61)

Eq. (59) is a linear problem. We get the critical Rayleigh number for the
onset of oscillatory convection by using zeroth order solution w0 into (59).
At O

(
ε2
)
, N0 = 0 and L1w0 = 0 gives

∂τA1L − νg∂XA1L = 0 and ∂τA1R + νg∂XA1R = 0, (62)

where νg = ∂qω at q = qoc is the group velocity which is real. Hence from
Eq. (60) we get w1 = 0. From the equation of continuity we find that u1 = 0.
The relevant first order equations for ωz1 , θ1 and C1 are
(

1
Pr

∂t −∇2
)
ωz1 = Ta

1
2∂zw1 −

1
Pr

[(
~V0 · ∇

)
ωz0 − ( ~ω0 · ∇)w0

]
, (63)

(
∂t −∇2

)
θ1 = Rascw1 −

(
~V0 · ∇

)
θ0, (64)

(
1
L
∂t −∇2

)
C1 =

w1

L
−∇2θ1 −

1
L

(
~V0 · ∇

)
C0. (65)

By using zeroth order solutions in Eqs. (63, 64) and (65), we get

ωz1 =
Ta

1
2π2

Pr


h2A

2
1Le

2i(qocx+ωoct) + h∗2A
2
1Re

2i(qocx−ωoct) +

+
δ2
oc

q2
oc

(
δ4
oc +

ω2
oc

Pr2

)−1

A1LA1Re
2iqocx + c.c.


 ,

ωx1 = 0, ωy1 = 0,

v1 =−Ta
1
2 iπ2

2qocPr


h2A

2
1Le

2i(qocx+ωoct) + h∗2A
2
1Re

2i(qocx−ωoct) +
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+
δ2
oc

q2
oc

(
δ4
oc +

ω2
oc

Pr2

)−1

A1LA1Re
2iqocx − c.c.


 , (66)

θ1 =−π
[(
|A1L|2 + |A1R|2

) δ2
oc

2π2 (δ4
oc + ω2

oc)
+

+ h3A1LA
∗
1Re

2iωoct + c.c.

]
sin 2πz,

C1 =−
{

1
4π

[
(h1 + h∗1)

L
+

2δ2
oc

δ4
oc + ω2

oc

] (
|A1L|2 + |A1R|2

)
+

+π
(
h1

L
+ 4π2h3

)(
2π2 +

iωoc
L

)−1

A1LA
∗
1Re

2iωoct + c.c.

}
sin 2πz,

h2 =
[(
δ2
oc +

iωoc
Pr

)(
2q2
oc +

iωoc
Pr

)]−1

,

h3 =
[(
δ2
oc + iωoc

)(
2π2 + iωoc

)]−1

.

Eq. (61) is solvable when L0w0 = 0, one requires that its right hand side be
orthogonal to w0, which is ensured, if the coefficients of sin πz in N1−L2w0

are equal to zero. This implies that

Λ0∂TA1L + Λ1 (∂τ − νg∂X)A2L − Λ2∂X2A1L − Λ3A1L +

+Λ4 |A1L|2A1L + Λ5 |A1R|2A1L = 0, (67)

Λ0∂TA1R + Λ1 (∂τ + νg∂X)A2R − Λ2∂X2A1R − Λ3A1R +

+Λ4 |A1R|2 A1R + Λ5 |A1L|2A1R = 0. (68)

It should be noted that A1L, A1R are of order ε and A2L, A2R are of order
ε2. If ωoc = 0 in Λ0,Λ2,Λ3 and Λ4 then the expressions match with the
coefficients λ0, λ1, λ2, and λ3 of Landau-Ginzburg equation at the onset of
stationary convection.

From Eqs. (62), we get A1L(ξ′, T ) and A1R(η′, T ), where ξ′ = νgτ + X ,
η′ = νgτ −X . Eqs. (67, 68) can be written as

2νgΛ1∂η′A2L =−Λ0∂TA1L + Λ2∂X2A1L + Λ3A1L −
−
(
Λ4 |A1L|2 + Λ5 |A1R|2

)
A1L, (69)

2νgΛ1∂ξ′A2R =−Λ0∂TA1R + Λ2∂X2A1R + Λ3A1R −
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−
(
Λ4 |A1R|2 + Λ5 |A1L|2

)
A1R. (70)

Let ξ′ ∈ [0, l1], η′ ∈ [0, l2], where l1, l2 are periods of A1L, A1R, respectively.
Expansion (54) remains asymptotic for times t = O(ε−2) only if an appro-
priate solvability condition holds. This condition obtained by integrating
Eq. (69) over η′ and Eq. (70) over ξ′, we get

Λ0∂TA1L = Λ2∂X2A1L + Λ3A1L −
(
Λ4 |A1L|2 + Λ5 |A1R|2

)
A1L, (71)

Λ0∂TA1R = Λ2∂X2A1R + Λ3A1R −
(
Λ4 |A1R|2 + Λ5 |A1L|2

)
A1R. (72)

The Eqs.(71, 72) are correct asymptotic evolution equations when νg =
O(1).

5.1. Travelling wave and standing wave convection

To study the stability regions of travelling waves and standing waves we
proceed as follows:

On dropping slow space variable X from Eqs. (71) and (72), we get a
pair of first order ODE’s

dA1L

dT
=

Λ3

Λ0
A1L −

Λ4

Λ0
A1L |A1L|2 −

Λ5

Λ0
A1L |A1R|2 , (73)

dA1R

dT
=

Λ3

Λ0
A1R −

Λ4

Λ0
A1R |A1R|2 −

Λ5

Λ0
A1R |A1L|2 . (74)

Put

β =
Λ3

Λ0
, γ = −Λ4

Λ0
and δ = −Λ5

Λ0
.

Then Eqs. (73) and (74) take the following form

dA1L

dT
= βA1L + γA1L |A1L|2 + δA1L |A1R|2 , (75)

dA1R

dT
= βA1R + γA1R |A1R|2 + δA1R |A1L|2 . (76)

Consider A1L = aLe
iφL and A1R = aRe

iφR (we can write a complex number
in the amplitude and phase (angle) form), where

aL = |A1L| , φL = arg(A1L) = tan−1
(=m(A1L)
<e(A1L)

)
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and

aR = |A1R| , φR = arg(A1R) = tan−1
(=m(A1R)
<e(A1R)

)
.

aL, aR, φL, and φR are functions of time T since A1L and A1R are functions
of T . Thus aL and aR are positive functions.

Substituting the definitions of A1L and A1R and β = β1 + iβ2, γ =
γ1 + iγ2, δ = δ1 + iδ2 into Eqs. (75) and (76), we get

daL
dT

= β1aL + γ1aL |aL|2 + δ1aL |aR|2 , (77)

dφL
dT

= β2 + γ2 |aL|2 + δ2 |aR|2 , (78)

daR
dT

= β1aR + γ1aR |aR|2 + δ1aR |aL|2 , (79)

dφR
dT

= β2 + γ2 |aR|2 + δ2 |aL|2 . (80)

Eqs. (77) and (79) do not contain a phase term, so we take these two equa-
tions for the future discussions. We have Eqs. (77) and (79) as

daL
dT

= β1aL + γ1a
3
L + δ1aLa

2
R,

daR
dT

= β1aR + γ1a
3
R + δ1aRa

2
L,

since aL and aR are positive functions. Put

daL
dT

= F1(aL, aR),
daR
dT

= F2(aL, aR). (81)

Now we discuss the stability of the equilibrium points of the above Eqs. (81).
We get four equilibrium points like (aL, aR) = (0, 0) [conduction state],
(aL, aR) = (aL, 0) [aL=amplitude of left travelling waves, here we get F2 =
0, and we get one condition from F1 = 0, i.e., a2

L = −β1
γ1

(
= |A1L|2

)
],

(aL, aR) = (0, aR) [aR = amplitude of right travelling waves, here F1 = 0
and from F2 = 0, we get a2

R = −β1
γ1

(
= |A1R|2

)
], and for aL 6= 0 and aR 6= 0

we get (aL, aR) =
(
− β1

(γ1+δ1) ,−
β1

(γ1+δ1)

)
[this gives condition for standing

waves]. At standing waves we have A1L = A1R, so aL = aR.
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Now the Jacobian of F1 and F2 is given by



∂F1
∂aL

∂F1
∂aR

∂F2
∂aL

∂F2
∂aR


 .

If real parts of all eigenvalues of the Jacobian are negative at an equilib-
rium point, then that point is a stable equilibrium [Lyapounov’s theorem
or principle of linearized stability]. Some valuable conditions for travelling
waves and standing waves are: Travelling waves are stable if β1 > 0, γ1 < 0
and δ1 < γ1 < 0. Standing waves are stable if β1 > 0, γ1 < 0 and (i) if
δ1 > 0, then − γ1 > δ1 > 0, (ii) if δ1 < 0, then − γ1 > −δ1 > 0.

The problem of compositional and thermal convection in Earth’s rotat-
ing outer core, with periodic boundary conditions, is studied by using a
standard perturbation technique. Weakly nonlinear theory must be used
to resolve which of the standing or travelling waves will occur at the on-
set of convection. The coefficients in Eq. (73) and (74) are complicated
functions of the parameters Ta, qoc, L, Pr and ψ, so it is not possible to
give a simple criterion for the stability of the travelling and standing waves.
The conditions for the travelling waves are given by A1R = 0, |A1L|2 =
−β1/γ1. The conditions for standing waves are given by A1L = A1R 6= 0,
|A1L|2 = |A1R|2 = −β1/ (γ1 + δ1) . For each set of parameter values, the
linear problem was solved to determine whether stationary or oscillatory
mode becomes unstable first, as Ra is increased. If it was found that the
oscillatory mode became unstable, the coefficients Λ0, Λ1, Λ2, Λ3, Λ4 were
determined at the value of qo that minimized Rao, to investigate the sta-
bility of travelling or standing waves. Figs. 6a-6c, show the results as a
function of Ta, ψ at L = 0.1, Pr = 0.4, 0.1, 0.03. In Fig. 6a, for Pr = 0.4,
there is an intersection between travelling waves and standing waves. Let
ψ = ψ′′ at this intersection point. For some fixed value of ψ < ψ ′′, as Ta
increases, we get initially the travelling waves, then the standing waves. For
ψ > ψ′′, for some fixed value of ψ, we get only standing waves. In Fig. 6b,
for Pr = 0.1, for some fixed value of ψ, as Ta increases, we get initially the
travelling waves, and then the standing waves. In Fig. 6c, for Pr = 0.03,
there are repeated stability regions. For large values of Ta (Ta > 1015), we
get <e(γ) = <e(δ).
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Fig. 6. Stability regions of stationary convection (SS), travelling waves (TW) and standing
waves (SW), for L = 0.1, ψ = −0.01, (a) Pr = 0.4; (b) Pr = 0.1; (c) Pr = 0.03.

6. Conclusions

In this paper we have studied the compositional and thermal convection
in the Earth’s rotating outer core. The compositional and thermal con-
vection in Earth’s rotating outer core is an example of a double diffusive
system, like the magnetoconvection and thermohaline convection. In fact,
the thermohaline convection and the compositional and thermal convection
in Earth’s rotating outer core are examples of the double diffusive system,
where density depends on two diffusive mechanisms, like ρ = ρ0[1− α(T −
T0) − β(C − C0)], where we have thermal diffusivity and concentration or
saline diffusivity in magnetoconvection; density does not depend on diffusive
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mechanism due to magnetic field. In this paper the stability of compositional
and thermal convection in Earth’s rotating outer core has been investigated.
We have obtained the values of the Takens-Bogdanov bifurcation points and
the codimension two points by plotting graphs of neutral curves correspond-
ing to stationary convection and oscillatory convection for different values of
physical parameters relevant to the compositional and thermal convection
in Earth’s rotating outer core. We have derived one dimensional Landau-
Ginzburg equation at the onset of the supercritical pitchfork bifurcation and
the one dimensional nonlinear coupled Landau-Ginzburg type equations at
the onset of the supercritical Hopf bifurcation. We have also studied the
stability regions of the travelling waves and standing waves in the (Ta, ψ)
plane, and observed that when Pr decreases, then we get repeated stability
regions (standing waves and travelling waves).

It is interesting to note that in the non-magnetic case with Pr → ∞,
L → 0 and ψ → ∞, the problem studied in this paper reduces to that of
the compositional convection in the rotating mushy layers, as considered
recently by Guba and Bod’a (1998) in the linear, and by Guba (2001) in
the nonlinear regimes. The mushy layer is a region of coexisting liquid and
solid phases, forming as a consequence of constitutional supercooling, when
a binary alloy solidifies directionally (Worster, 1997). The rotational con-
straint, the effects of which are of particular interest in the present study,
as well, was found to control the nature of the bifurcation to convection
with both the oblique-roll planform and the planform of hexagonal symme-
try. Thus, the results of the present study might be, in principle, used to
draw qualitative conclusions regarding the nature of the Hopf bifurcation
in mushy layers.
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