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Modeling of electromagnetic field
in the Earth-ionosphere resonator
(Transmission Line Method)

P. Kostecký, A. Ondrášková, L. Rosenberg
Department of Astronomy, Physics of the Earth and Meteorology, Faculty
of Mathematics, Physics and Informatics, Comenius University1

I. Kohút
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A b s t r a c t : The Schumann resonances – electromagnetic eigenmodes of the resonator
bounded by the Earth’s surface and lower ionosphere, permanently excited by the global
lightning activity – are now widely monitored experimentally. To relate the obtained data
with ionospheric parameters the computer modeling of such a resonator is necessary. The
various approaches to this task are surveyed and some new insights are suggested.
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1. Introduction

The electromagnetic (E.M.) resonator, formed by the Earth’s surface
and lower ionospheric layers (separated by practically insulating tropo- and
stratospheric air), is permanently excited by global lightning activity. There
are about 200 discharges every second over the whole Earth – the majority
at the three principal thunderstorm foci, namely central Africa, Indonesian
archipelago and the Amazonia. Because the lower part of clouds obviously
bears negative charge with respect to ground, a return current must be ex-
cited from the ground upwards. In fair weather, a quasistatic current flows
with an average current density of the order of 10−12 A.m−2.
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Global electromagnetic resonances were predicted and theoretically ex-
plained by W. O. Schumann (Schumann, 1952) who calculated the eigenfre-
quencies of the Earth-ionosphere cavity and suggested that global lightning
activity was the source of these oscillations. First experimental evidence
was obtained by Balser and Wagner (Balser and Wagner, 1960) in the form
of separate peaks in the spectrum.

The eigenfrequencies fall into the ELF band: the fundamental mode at
about 7.8 Hz, next – 14.1, 20.3, 26.0, 32.5 Hz and so on. The measuring
and data acquisition technique for monitoring Schumann Resonance (SR)
components (magnetic and electric) is described in (Kostecký et al., 2000).
The SR modes are regularly monitored at several observatories worldwide,
for example at the Modra observatory, and their main parameters – peak
frequency, damping factor and amplitude – have been evaluated.

The SR spectra from the Modra observatory (the Astronomical and
Geophysical Observatory of the Comenius University, Faculty of Mathe-
matics, Physics and Informatics, at Modra) can be viewed in real time at:
http://147.175.143.11/.

2. Geophysical significance of SR

At present, the geophysical significance of SR monitoring has been es-
tablished by numerous researchers. involving the following items:

– the monitoring of global lightning activity and its intensity,
– the determination of electrical parameters of lower ionosphere,
– the influence of Solar activity, especially solar flares and solar proton

events,
– the global variations of temperature and humidity in troposphere.

The principal parameters of SR eigenmodes (the peak frequency fn, the am-
plitudeA and the quality factorQ) exhibit many variations – quasiperiodical
(diurnal, semiannual, annual) and also irregular. Typical daily variation of
the first mode peak frequency based on Modra observatory measurements is
presented in Fig. 1. Numerous literature – e.g. Price (1993), Greenberg and
Price (2004) – is devoted to relations between global geophysical quantities
(asymmetric width of the cavity, presence of geomagnetic field, anisotropic
conductivity of the ionosphere) and SR parameters.
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Fig. 1. Diurnal variation of the first SR mode obtained by averaging from October 2001
data.

But, for determination of these relations, it is necessary to compare SR
mode parameters (quoted above) to theoretical predictions. Therefore, it
is necessary to propose and numerically compute (as precise as possible)
models of real Earth-ionosphere resonator.

3. Model of the ideal resonator

In the simplest model, both resonator boundaries (Earth’s surface and
the lower ionospheric boundary) were considered as perfectly conducting
and spherical, the space inside the cavity as perfect insulator. Even at such
simplification, the computation of eigenfrequencies is not so simple. Be-
cause the resonator is composed of two separate conducting surfaces (there
is no lower cut-off frequency), the eigenmodes can be transverse electric or
transverse magnetic ones. The detailed analysis (Bliokh et al., 1977) pre-
dicts the eigenfrequencies of TM (magnetic transverse – Hr = 0) modes as
roots of transcendental equation:

j ′n(kR) y′n[k(R+ h)]− j ′n[k(R+ h)] y′n(kR) = 0, (1)
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where the R is the Earth’s radius, h is the height of the lower ionospheric
boundary and propagation constant k = 2π/λ (the frequency is given by
usual f = ck/2π). The spherical Bessel functions jn and yn of index n are
differentiated with respect to complete argument.

Under the assumption h � R it is possible to solve (1) approximately
and the theoretical eigenfrequencies for the first five modes can be obtained
as 10.54, 18.26, 25.84, 33.34 and 40.82 Hz – well over the observed ones: 7.8,
14.1, 20.3, 26.2 and 32.5 Hz (average values). The principal cause of this
discrepancy is the resonator damping, mostly due to the finite ionospheric
conductance.

Due to the perfect symmetry of ideal resonator, the eigenmodes - which
can be classified by (n,m)- couple of indices (n = 1, 2, . . . ; m = −n, . . . , n)
– are completely degenerated with respect to m.

4. The lossy resonator

In the real Earth-ionosphere resonator, the damping is very high com-
pared to technical resonators. The corresponding Q-factor for individual
eigenmodes is of the order 5 – 10 only. If we calculate the eigenfrequencies
(physically fictitious!), their values will be complex with comparable mag-
nitudes of real and imaginary parts.

The simplest way to model such a situation is to develop real field am-
plitudes into the series of ideal resonator eigenmodes:

~E =
∞∑

n=1

n∑

m=−n
αn,m. ~En,m

~H =
∞∑

n=1

n∑

m=−n
βn,m. ~Hn,m. (2)

Using the Leontovich impedance condition at the outer (ionospheric) res-
onator boundary, a following (doubly infinite) linear system for the “mode
mixing coefficients” αn,m and βn,m (Bliokh et al., 1977) can be written:

ωαn,m − ωnβn,m = 0,

ωnαn,m − ωβn,m + ic
∞∑

p=1

p∑

q=−p
βp,qLn,m,p,q = 0, (3)
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(dimension of the system is n2 + 2.n, if truncation at n = nmax is used),
where ωn are the frequencies of subsequent eigenmodes of the ideal resonator
and the term

Ln,m,p,q =
∫

r=(R+h)

∫
~Hn,m · Z ·

[
~nr ×

[
~Hn,m × ~nr

]]
dS (4)

reflects the mutual coupling between (n,m) and (p, q) ideal resonator eigen-
modes. Vector ~nr is the unit radial vector and integration is performed
over the ionospheric boundary in the spherical coordinate system and Z
is the impedance tensor. The cumulative influence of such terms in (3) is
responsible for the energy loss at the lower ionosphere boundary, which is
prevailing (the dissipative properties of Earth’s surface and tropospheric air
are in most cases much less significant).

As described in Eq. (4) the dissipative properties of the lower ionosphere
can be simply characterised by the dimensionless surface impedance pa-
rameter Z = ε−1/2 (ε stands for the relative permittivity at the ionosphere
boundary). In general, this quantity must be complex to take into account
the conductivity and will be tensorial, if the geomagnetic field is considered
and the ionospheric plasma exhibits a gyrotropic properties. This approach
is, in principle, an application of the perturbation theory. The doubly in-
finite linear system (3) must be taken as finite by suitably choosing the
upper limit values of (n,m). Because the system of the equations (3) is
homogeneous (the excitation of resonator is not considered yet), the eigen-
values of its matrix will give us the new (complex) eigenfrequencies of lossy
resonator, taking some preliminary assumptions about quantity Z . If there
is some kind of angular symmetry of the ionospheric conductivity, some of
the “coupling factors” Ln,m,p,q become exactly zero.

In numerous literature, e.g. (Nickolaenko and Hayakawa, 2002), there
were corroborated various models (angularly non-homogeneous, but partly
symmetric), such as ionospheric polar caps model, day-night asymmetry
model, or models taking into account the geomagnetic field (symmetric or
asymmetric dipole models). As a rule, the real parts of eigenmode frequen-
cies result satisfactory close to measured values, but the damping factors
were obviously overestimated. Moreover, when the geomagnetic field is con-
sidered, the degeneracy in m is completely vanishing (Zeeman effect!) and
the value of fundamental mode frequency splitting is of real order of mag-

77
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nitude. It is worth mentioning that, due to the quadratic terms in matrix
elements of the system (3), resulting amplitude-frequency characteristics for
all modes are of Lorentzian type. The typical graphs are given in Kostecký
et al., (2005). After fitting of FFT spectrum (obtained from raw data) by
Lorentz function, the three basic parameters (peak frequency, amplitude
and Q-factor) can be determined for each mode. A typical FFT spectrum
of raw data is given in Fig. 2.

Fig. 2. A typical spectrum of the electric SR component obtained at Modra observatory
August 12, 2004, 07:00 UT.

The result of Lorentzian line fitting is depicted in Fig. 3. for the first four
subsequent modes calculated from the electric component measurements at
Modra observatory. The principal parameters are given, too. Analogical
result of fitting of the first four modes from magnetic component measure-
ments can be found in Price and Melnikov (2004).
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Approximation of the spectrum
1.mode: f= 7.88 Hz, A= 17.06,Q=4.27
2.mode: f=13.97 Hz, A= 12.99,Q=3.59
3.mode: f=20.14 Hz, A= 7.98, Q=8.78
4.mode: f=26.09 Hz, A= 4.40, Q=5.68
5.mode: f=33.70 Hz, A= 1.79, Q=6.28
Sum of the 5 Lorenzians
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Fig. 3. Fitting of the first five electric SchR eigenmodes by Lorentz line profiles performed
on electric component data from Modra observatory.

5. Excitation of the resonator

In this theoretical survey, the excitation conditions have not been consid-
ered yet. A single (radial) current ~J(~r) = J(r) · ~nr can be presumed as the
simplest source of excitation. In this case, the first set of linear equations
in (3) will have a non-zero right-hand side, namely:

ωαn,m − ωnβn,m = 4πi
∫ ∫

R≤r≤(R+h)

∫
Jω(~r). ~E∗n,mdV, (5)

where the current term under the integral represents the component of ex-
citation current, the asterisk denotes the complex conjugate.

As the illustrative example, let us consider the excitation current as a
vertical line (of length l � h) situated at the pole of coordinate system
(θ= 0). In this very simple case, only two field components of each (n-th)
mode are non-zero:
– radial electric Er, with angular dependence as d/dθ[Pn(cos θ)];
– tangential magnetic Hϕ, proportional directly to Pn(cos θ).
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The expressions for both field amplitudes contain in the denominator the
Lorentzian factor (Nickolaenko and Hayakawa, 2002):

(ω2
n − ω2) + iωc

Z(ω)
h

(6)

It must be stressed that – in the case of a resonator characterised by a very
low quality factor – the physical notion of “eigenmodes” is partly obscured.
Depending on excitation, the density of field energy as a function of fre-
quency can vary from point to point. It would be more realistic to quote as
“eigenfrequency” a value of ω for a maximum of total (whole volume) field
energy density. Unfortunately, this value is immeasurable.

The spatial dependence of “local” eigenfrequencies is discussed, for ex-
ample, in Morente et al. (2004).

6. The more complex models

The approach shown above gives, in some sense, a satisfactory reflection
of real Earth-ionosphere resonator properties. But it suffers from general
limitations of perturbation theory, namely the implicit assumption of per-
turbation smallness and the oversimplification of the boundary condition
at the ionosphere. Moreover, for even a moderate precision of numerical
calculation it is necessary to maintain the order of linear system (2) high,
because we express the longitudinal (TM) waves by means of radial ones
(spatial harmonics).

The direct numerical solution of Maxwell’s equations with appropriate
boundary conditions, considering all inhomogeneities in the model would be
only physically adequate. Just the boundary conditions complicate the cal-
culations in the finite ionospheric conductance case. The tangential (θ, ϕ)
components of ~E must be zero at the Earth’s surface, taken as a perfect
conductor. On the contrary, at the lower ionospheric boundary (r = R+h)
the tangential components of both ~E and ~H must remain continuous, and
by the Sommerfeld radiation condition the field amplitudes must vanish for
r→∞.

The precise formulation of conditions at finite conductive boundary is
practically unfeasible and often would be approximated by surface impe-
dance condition, as mentioned above.
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The full solution of the problem is principally possible by the FDTD
method – for example (Yang and Pasko, 2005) and (Simpson and Taflove,
2002), or by the FEM (Finite Element Method). In the FEM, the volume
of resonator must be discretized into subdomains (finite elements) and un-
known field amplitudes in each element are expressed by linear combination
of prescribed shape functions (usually of polynomial type). The coefficients
of these linear combinations are the unknowns (degrees of freedom) and can
be recovered by solving very large linear system of equations for which the
system matrix is, as a rule, sparse and with band structure. Naturally, the
inter-element continuity (of C0 or C1 type) and the conditions at the overall
domain boundary are fulfilled.

Respecting the spherical geometry, the natural shape of finite element
would be “a spherical brick”: ∆V = r2 sin θ∆r∆θ∆ϕ. The situation com-
plicates at the poles of the sphere – it is possible to use special-type elements
there, or simply neglect the very small “polar caps”.

In the classical FEM, the shape functions and degrees of freedom are
scalar quantities, separately for all components of the vector fields. There-
fore, the boundary conditions have very complicated formulation. A remedy
was found in the vector finite element formulation (Kostecký and Kohút,
2002; Harutyunyan et al., 2004). In this approach, the shape functions and
degrees of freedom are vectors, which simplifies the formulation of bound-
ary conditions. Moreover, the vectorial character of E.M. fields is naturally
incorporated into the model (the div and rot conditions).

7. The Transmission Line Method (TLM)

TLM is a numerical method availing of close analogy between the de-
scription of E.M. phenomena by field quantities (E,H) and by means of
electrical circuit quantities (U, I – voltages and currents). The distributed
parameter system (say, E.M. resonator) is substituted by the lumped pa-
rameter one (RLC circuit of very complicated topology).

In a simpler variant of TLM model (Madden and Thompson, 1965), the
spatial domain in question (the spherical shells of Earth’s surface and iono-
sphere, together with resonator inner region) is subdivided into “spherical
bricks” or “cells” of thickness ∆r and width ∆θ and ∆ϕ in angular coordi-
nates.
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The geometric center of each cell is considered to be a node of electric
circuit. This circuit (of complicated, essentially non-planar topology) is
formed by connecting adjacent nodes by branches. The circuit branches
in various directions (parallel lines, meridional and vertical) are composed
of inductive, capacitive and real (resistive) impedances, as can be seen in
Fig. 4. The values of equivalent circuit elements – the inductances Lk , the
capacitances Ck and the conductances Gk are determined by geometrical
parameters of the k-th cell (the coordinates of its central point and its di-
mensions) and by physical properties of the material inside (permittivity
ε, permeability µ and conductivity σ). In the simple geometry described
above, these values are given by:

Lk = µ
r2
k

∆r
sin θk∆θ∆ϕ,

Ck = ε
r2
k

∆r
sin θk∆θ∆ϕ, (7)

Gk = σ
r2
k

∆r
sin θk∆θ∆ϕ,

where (rk, θk) stand for the coordinates of the cell center, and (∆r,∆θ,∆ϕ)
for the cell dimensions.

The complex electrical circuit generated by this procedure can be ex-
cited by a prescribed voltage waveform between two selected nodes – or by
a current impulse forced into one selected branch. The standard procedures
and codes for electrical circuit analysis allow to compute the voltage or cur-
rent waveforms resulting in any part of circuit and corresponding frequency
spectra.

In this model, the spatial inhomogeneities can be taken into account
naturally, by putting various values of ε, µ and (or) σ in different cells of
resonator volume. It is worth mentioning that even the gyrotropic charac-
ter of the ionosphere conductivity can be taken into account, if we align the
axis of coordinate system parallel with the magnetic dipole axis and take
the different values of inductances into the meridional (ϕ’ = const.) and lon-
gitudinal (θ’ = const.) branches (the primes denote the new coordinates).

If the division of the resonator volume into cells is sufficiently fine, the
computed peak frequencies for subsequent SR eigenmodes (the frequencies
of maximum ~E or ~H amplitudes) will be pretty close to real values, as well
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Fig. 4. A part (one spherical shell) of a distributed parameter model of a spherical
resonator (Madden and Thompson, 1965).

as their variations over the entire globe (these variations can be of the order
0.2 Hz for the fundamental SR mode). This simple variant of the TLM
method can be programmed relatively easily and allows using the standard
electrical circuit analysis packages. Some – but not insurmountable – com-
plications may arise at the poles of the sphere. In this method, the implicit
discretization of field equations is only spatial. The time variable is consid-
ered continuous, due to transfer to frequency domain through the Fourier
transform. The principal disadvantage of this method is in the artificial
(non-physical) frequency dispersion, which is an inevitable consequence of
the lumped parameters model in general (the same appears, in more or less
degree, in every variant of the FDTD computation).

Another difficulty arises in the necessary transition from node voltages
and branch currents – results of model calculation – to intensities of electric
and magnetic field at selected points. While restoration of the vertical elec-
tric field intensity is relatively simple, it is not so for the horizontal magnetic
intensity.

In a more elaborate variant of the TLM method (Morente et al., 2003),
the implicit discretization of field equations is performed as spatial and tem-
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poral, too. The division of the domain under question (resonator volume)
will be performed analogically (into “spherical bricks”). Model nodes are
selected in the same manner. But, their connections are made not by sim-
ple branches containing model impedances (L,C, and G, as was described
above). Instead, nodes are connected by sections of the transmission lines.

This allows to make true discretization both in space and time. The
series of equidistant (in time) voltage (or current) pulses are injected into
the excitation node (nodes). Their time difference is equivalent to the time
step (∆t) in the FDTD method.

In order to fulfil the time synchronism between excitation in adjacent
nodes, the section of transmission lines connecting nodes must be of equal
length (∆L) and equal characteristic (wave) impedance Z0. In such config-
uration alone, it would be impossible to consider different values of material
parameters (ε, µ and σ) in different subdomains (cells). This can be over-
come by connecting new (additional) transmission line sections to each node.
Each section (stub) is connected only to a single node. Their second ends
are open, short-circuited or (formally) infinitely long. The input impedance
of such stubs simulates capacitive, inductive or real (resistive) impedance,
maintaining these parameters (C,L or G) at each node in accordance with
material parameters of appropriate subdomain (cell).

The detailed description of model construction and computation will be
given in the article in preparation.

8. Conclusion

In this article, a survey of modeling techniques appropriate to the Earth-
ionosphere resonator problem is given. The FDTD method and the TLM
method (in the more elaborate variant) have common roots and can be
mutually transformed. The FEM approach seems to be physically more
straightforward, at the expense of computing labour. An optimal compro-
mise would be the first variant of the TLM method, employing the lumped
elements approximation in the global circuit (if the space discretization will
be sufficiently fine).

At the Modra observatory of Comenius University, the monitoring of the
SR parameters has been performed for a rather long interval (more than 4
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years, for the electric component). This amount of data will be used for the
Earth-ionosphere resonator modeling, which is in preparation.
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