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Abstract: The paper deals with at-site flood frequency estimation in the case when
also information on hydrological events from the past with extraordinary magnitude are
available. For the joint frequency analysis of systematic observations and historical data,
respectively, the Bayesian framework is chosen, which, through adequately defined likeli-
hood functions, allows for incorporation of different sources of hydrological information,
e.g., maximum annual flood peaks, historical events as well as measurement errors. The
distribution of the parameters of the fitted distribution function and the confidence in-
tervals of the flood quantiles are derived by means of the Markov chain Monte Carlo
simulation (MCMC) technique.
The paper presents a sensitivity analysis related to the choice of the most influential

parameters of the statistical model, which are the length of the historical period h and the
perception threshold X0. These are involved in the statistical model under the assumption
that except for the events termed as ‘historical’ ones, none of the (unknown) peak dis-
charges from the historical period h should have exceeded the threshold X0. Both higher
values of h and lower values of X0 lead to narrower confidence intervals of the estimated
flood quantiles; however, it is emphasized that one should be prudent of selecting those
parameters, in order to avoid making inferences with wrong assumptions on the unknown
hydrological events having occurred in the past.
The Bayesian MCMC methodology is presented on the example of the maximum dis-

charges observed during the warm half year at the station Vltava-Kamýk (Czech Republic)
in the period 1877–2002. Although the 2002 flood peak, which is related to the vast flood-
ing that affected a large part of Central Europe at that time, occurred in the near past, in
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the analysis it is treated virtually as a ‘historical’ event in order to illustrate some crucial
aspects of including information on extreme historical floods into at-site flood frequency
analyses.

Key words: flood frequency analysis, historical floods, Bayesian inference, Markov chain
Monte Carlo simulations, likelihood function, confidence intervals

1. Introduction

The hydrologic and hydrometeorological extremes and critical thresholds
derived from complex hydrological and meteorological events for engineer-
ing design are usually obtained on the basis of single site characteristics
(e.g., the annual maximum daily rainfall or discharge). Therefore, hydro-
logical and meteorological frequency analyses have also mainly focused on
one characteristic value (e.g., Cunnane, 1987; Bobée and Rasmussen, 1994;
Brunovský et al., 2009 ). Various methods have been proposed to reduce the
uncertainties of at-site flood frequency analyses and produce more robust
flood quantile estimates based on larger sample sizes. Two main families of
approaches can be distinguished (Merz and Blöschl, 2008a,b):

(i) ‘spatial extension’ of information on floods through regional flood fre-
quency methods based on aggregating statistically homogeneous data
to build large data samples (e.g., Hosking and Wallis, 1997 ), and

(ii) ‘temporal extension’ of information on floods through at-site flood fre-
quency studies on gauged streams extended by historical floods or pa-
leofloods (e.g., Reis and Stedinger, 2005 ).

To overcome the problem of relatively short data series for frequency anal-
ysis the need to investigate extremes also spatially was traditionally widely
acknowledged in the hydrological community. The very basic paradigm of
this approach originates from the index flood method introduced by Dal-
rymple (1960) and it is commonly used to implement a regional frequency
analysis for a particular variable of interest. The aim of regional frequency
analysis is to increase the information content of the analysis and to reduce
the uncertainty of the design values estimates by ‘trading space for time’. To
address this issue, spatial (regional) properties of extremes are studied and
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regional frequency analysis is typically applied. The regional approaches
usually involve two major steps: the delineation of homogeneous regions
(sometimes referred to as ‘pooling groups’) and the estimation of extreme
value quantiles at the sites of interest using information from all sites in
the region. Traditionally, homogeneous pooling groups were formed based
on geographical position or administrative boundaries (NERC, 1975; Beable
and McKerchar, 1982; Wiltshire, 1986; Podolinská et al., 2005 ). Therefore,
Acreman and Wiltshire (1989) suggested a pooling approach with no need
of having adjacent members in groups, i.e., groups defined in a flexible way.
This concept was further developed in different ways: Burn (1990a,b) intro-
duced the region of influence (ROI) focused pooling method, while various
clustering techniques (e.g., Burn, 1997; Burn and Goel, 2000 ) and canon-
ical correlation analysis (Ouarda et al., 2001) have been proposed to form
homogeneous pooling groups. An important role among the various regional
frequency analysis methods has the one based on the L-moments (Hosking
and Wallis, 1997). Numerous authors contributed to refinements of these
directions of research (e.g., Meigh et al., 1997; Institute of Hydrology, 1999;
Soĺın, 2002; Merz and Blöschl, 2003; Castellarin, 2007; Guse et al., 2010 );
thus, further details will not be given here.
A large part of our knowledge on extreme flood discharge values is

based on inventories of data regarding extraordinary events (e.g., UNESCO,
1976; Rodier and Roche, 1984; Mimikou, 1984; Costa 1987; Svoboda and
Pekárová, 1998; Alcoverro et al., 1999; Herschy, 2005; Costa and Jarrett,
2008; Soĺın, 2008; Pekárová, 2009; Gaume et al., 2009 ). Since such extraor-
dinary events are important source of information on the flood extremes,
attempts were undertaken to include these into at-site frequency analyses
(e.g., Hosking and Wallis, 1986; Stedinger and Cohn, 1986; Parent and
Bernier, 2002 ).
This is obtained in this paper by including past historical extreme val-

ues in flood frequency analyses by the Bayesian Markov chain Monte Carlo
(MCMC) framework (Kuczera, 1999; Reis and Stedinger, 2005 ). Let us
illustrate the principles of the inclusion of historic data in at-site flood fre-
quency analyses. Suppose that the information on historical hydrological
events consists of m extraordinary floods, and the joint data sample of
systematic and historical observations is stationary. In order to properly
account for the historical information, the evaluation of the m historical
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peak discharges is not sufficient. It is also important to consider the num-
ber of years h in which these events were the major floods and to evaluate
the threshold X0 which has certainly not been exceeded during this period
by the other floods. In other words, the historical information consists not
only in the m extreme discharge values but also in h − m years of non-
exceedance of the threshold X0. The choice of h and X0 should meet the
criterion of “exhaustiveness” (i.e., no other major floods should have ex-
ceeded X0 in the period of time h), which is a necessary condition for a
proper statistical inference with censored data (Leese, 1973; Gaume et al.,
2010). The Bayesian MCMC procedure (Reis and Stedinger, 2005) is a
flexible tool, which can handle the information both on the historical and
systematic observations through adequately defined likelihood functions in
a straightforward way, and more importantly, can account for uncertainties
in the measurements of the hydrologic extremes, and provides estimates of
confidence bounds for the estimated quantiles. It has been demonstrated
that the inclusion of the historic period leads to a clear reduction of the
confidence intervals (Reis and Stedinger, 2005).
This paper aims at demonstrating that this method, although it may

bring a significant added value in flood frequency analyses, is still not free
from subjectiveness and both skill and care have to be exercised when ap-
plied. Several choices that have to be made are not trivial. The paper ends
with some suggestion for the users of the method.

2. Methodology

Bayesian Markov chain Monte Carlo (MCMC) methods provide a compu-
tationally convenient way to fit frequency distributions for flood frequency
analysis by using different sources of information as large flood records,
historical floods, uncertainties (particularly measurement errors), regional
information and other hydrologic information. They also provide an attrac-
tive and straightforward way to estimate the uncertainty in parameters and
quantile metrics (e.g., Robert and Casella, 2004 ).
Since a flood frequency analysis with information on historical events

included is a relatively complex methodology, in the next couple of sub-
sections we will shed light on the most relevant details and settings of the
procedure.
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2.1. Parameter estimation by means of the maximum
likelihood methodology

The maximum likelihood estimation (MLE) is a popular statistical method
when a mathematical model is to be adjusted to the observed data. For
a given data sample D (where I is the length of the data sample) and a
probabilistic model � (D|θ) with parameters θ, the MLE aims at determining
the parameters θ that maximize the probability (likelihood) of the data
sample D. The function � (D|θ) is called likelihood function.
Under the assumption that the data are independent and identically

distributed (iid), the likelihood function of the whole data sample � (D|θ)
may be written as a product of the likelihood functions of the particular
events di:

� (D|θ) =
I∏

i=1

� (di|θ). (1)

Using a logarithmic transformation, the product in Eq. (1) changes to a
sum

log � (D|θ) =
I∑

i=1

log � (di|θ). (2)

The maximum value of the expression in Eq. (2) may then be found nu-
merically, using any of a wide range of optimization algorithms.

2.2. Inclusion of historical information

For the estimation of parameters of a distribution function, Stedinger and
Cohn (1986) presented a MLE methodology that – through properly de-
fined likelihood functions – can also take into consideration information on
historical hydrological events.
Suppose that the following hydrological information is available:

• s – length of the systematic observations X with realizations
{x1, ..., xi, ..., xs},

• h – length of the historical period,

• n – total length of the analyzed time period: n = s+ h,
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• X0 – a perception threshold, below which the h−m non-recorded flood
maxima are assumed to lie;

• m – number of events exceeding the threshold X0 during the historical
period h,

• c – number of events exceeding the threshold X0 during the period
with systematic records s,

• k – the total number of extraordinary events Y that exceed the thresh-
old X0 during the whole analyzed period, with realizations
{y1, ..., yj, ..., yk}; k = c+m.

A sketch of a hypothetical combination of systematic and historical infor-
mation is presented in schematic figures below, with the following settings:
s = 50 years, h = 150 years (⇒ n = 200 years), X0 = 1400 m3/s, m = 3,
c = 1 (⇒ k = 4).
Furthermore, let fX (·) and FX (·) denote the probability distribution

function (PDF) and the cumulative distribution function (CDF) of the vari-
able X, respectively; θ is a parameter of fX (·) and FX (·), and D denotes
the data. Moreover, let us suppose that both variables X and Y are iid,
thus fX (·) and FX (·) may be used for taking into account the information
on historical events Y .
Through two simple examples, we demonstrate how to combine system-

atic and historical information in the framework of likelihood estimation.

Example #1. Let us suppose that the magnitudes of the historical events
yj, j = 1, ..., e are exactly known (Fig. 1). The joint likelihood function
of the systematic and historical data � (D|θ) can then be expressed as a
product of the following three terms:

a) �a – the likelihood of observingm historical events exceeding the thresh-
old X0,

b) �b – the likelihood of observing the other h−m historical events below
the perception threshold X0, and

c) �c – the likelihood of observing the s systematic records:

�a =
m∏

j=1

fX (yj), (3)
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�b = [FX (X0)]
h−m, (4)

�c =
s∏

i=1

fX (xi), (5)

� (D|θ) = �a�b�c =
m∏

j=1

fX (yj) [FX (X0)]
h−m

s∏
i=1

fX (xi). (6)

Fig. 1. A sketch of systematic and historical data where it is supposed that the latter
ones are known exactly. Notation: s – length of the systematic observations; h – length
of the historical period; y1, y2, y3 – historical events; X0 – perception threshold; Qmax –
annual maxima of flood peaks.

Example #2. When compared to the previous example, the only change
is that the magnitudes of the historical events are known with some uncer-
tainty, i.e., they are bounded by the lower and upper limits yLj and yUj,
j = 1, . . . ,m (Fig. 2). Such a change affects the expression for �a, which
takes a form

�a =
m∏

j=1

[F (yLj)− F (yUj)], (7)

127



Gaál L. et al.: Inclusion of historical information in flood. . . (121–147)

and accordingly

� (D|θ) = �a�b�c =
m∏

j=1

[F (yLj)− F (yUj)] [FX (X0)]
h−m

s∏
i=1

fX (xi). (8)

Fig. 2. A sketch of systematic and historical data where it is supposed that the latter ones
are known with some uncertainty. Notation: s – length of the systematic observations; h
– length of the historical period; yL1, yL2, yL3 (yL1, yL2, yL3) – lower (upper) uncertainty
bounds of historical events; X0 – perception threshold; Qmax – annual maxima of flood
peaks.

In the case when flood events exceeding the perception threshold X0 occur
among the systematic data (i.e., c �= 0, analogously to the sketch in Fig. 2),
the events are virtually removed from the period s and are treated as his-
torical data (cf. Bayliss and Reed, 2001 ). Having this situation, Eqs. (6)
and (8) are slightly modified in the following way:

� (D|θ) =
k∏

j=1

fX (yj) [FX (X0)]
h−m

s−c∏
i=1

fX (xi), (9)

and
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� (D|θ) =
k∏

j=1

[F (yLj)− F (yUj)] [FX (X0)]
h−m

s−c∏
i=1

fX (xi). (10)

2.3. Bayesian inference

The Bayesian approach is a branch of statistical analysis that is based
on a unique philosophy: the statistical inference is drawn in the way that
the initial beliefs on the subject of the interest are modified according to
the observed data. Thus, the Bayesian inference combines two kinds of
information: (i) the prior knowledge (belief, hypothesis) on the unknown
parameters that may come from other data sets, logical intuition or the
past experiences of the analyst and (ii) the information encapsulated in the
observed data, which are represented by the likelihood function (Reis and
Stedinger, 2005 ).
A Bayesian inference is based on the application of the Bayes’ theorem:

P (θ|D) = P (D|θ) P (θ)
P (D)

, (11)

where P (θ) is the prior (marginal) distribution of the parameters θ (it does
not take into account any information contained in the observed data D);
P (θ|D) is the posterior distribution of the parameters θ, having the data
D observed; P (D|θ) is the conditional probability of the data, given the
parameters θ; and P (D) is the prior (marginal) distribution of the data D.
P (D) only serves as a normalization constant in order to obtain a unit area
under the posterior PDF P (θ|D).
The conditional probability where the second argument is considered as

a parameter is also called likelihood function: p (θ|D = d) or � (D|θ = Θ)
(see also Sect. 2.1). Bayes’ theorem, using the aforementioned notation and
having a continuous variable θ can be rewritten as follows:

p (θ|D) = � (D|θ) p (θ)∫
Ω � (D|θ) p (θ) dθ

, (12)

where integral in the denominator is computed through the entire parame-
ter space Ω.
Eqs. (11–12) are the mathematical formulation of the way the hypothesis
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of the statistical properties of the parameters θ (the existing/prior beliefs)
is updated by having observed the data D (in the light of new pieces of
knowledge). Naturally, the final posterior distribution may serve as a prior
distribution in a further Bayesian inference.
One of the main advantages of the Bayesian inference is that it results

in a full posterior probability of the parameters: one may easily derive
the credible intervals (counterparts of the traditional confidence intervals)
of the parameters or any of their functions. Compared to this, the tradi-
tional methods of statistical analysis that are usually based on asymptotical
assumptions, look at the parameters of a distribution function as fixed (un-
known) constants, and the result of a statistical analysis is usually a point
estimate of the parameters (i.e., Coles, 2001 ).

2.4. Markov Chain Monte Carlo simulations

In general, an analytical computation of the integral in the denominator of
Eq. (12) is very hard if not impossible; thus, that is the main reason why
statistical methods based on the Bayesian inference have not been used
frequently in the past (e.g., Coles, 2001; Gelman et al., 2004; Reis and
Stedinger, 2005 ). The rapid development of computers in the past 2–3
decades, however, has opened wide perspectives for numerical evaluation
of complex mathematical problems. Markov chain Monte Carlo (MCMC)
methods represent a class of such algorithms. By means of Monte Carlo sim-
ulations, the Metropolis-Hastings algorithm (e.g., Tierney, 1994; Gelman et
al., 2004 ) generates a Markov chain, which results in a sample, distribution
of which converges to the posterior distribution P (θ|D). In other words,
MCMC simulation draws samples from the posterior distribution of the pa-
rameters without having computed the normalization constant of Eq. (12)
analytically (Reis and Stedinger, 2005). The quality of the sample improves
as a function of the number of steps of the Markov chain. The resulting
data sample then serves for the estimation of marginal distributions of the
joint probability distribution function, mean values, standard deviations,
and confidence intervals not only for the parameters themselves but also for
their arbitrary functions such as the required quantiles (design values) of
the analyzed hydrological extremes (Reis and Stedinger, 2005).

130



Contributions to Geophysics and Geodesy Vol. 40/2, 2010 (121–147)

2.5. Plotting position formulae

There are several plotting position formulae (PPF) that are used in fre-
quency analysis to get a quick glance on the empirical distribution of the
data sample analyzed: to check whether they follow a particular distribu-
tion, if there are some errors or outliers etc. (e.g., Rao and Hamed, 1999 ).
One of the most frequently used PPFs is the one of Cunnane:

pi =
i− 0.4
n+ 0.2

, (13)

where n denotes the sample size, i is the rank of the observations in an
ascending order, and pi is the cumulative probability of non-exceedance of
the i-th data.
In the case of a joint frequency analysis of systematic and historical data,

the PPF (Eq. 13) should be slightly modified according to the number of the
historical events k that occurred during the whole n-year period analyzed
(Bayliss and Reed, 2001). For the historical events, one should apply

pj =
k

n

j − 0.4
k + 0.2

, j = 1, ..., k, (14)

and for the systematic data

pi = 1− n− k

n

(
1− i− 0.4

s− c+ 0.2

)
, i = 1, ..., s− c, (15)

where the notation is in accordance with the one introduced in Sect. 2.2 as
well as with the formulae presented by Bayliss and Reed (2001, p. 34). In
the paper, we apply Eqs. (14–15) for the visualization of the observed flood
peak data on the probability plots (Sect. 5).

2.6. Probability distribution function

To demonstrate different aspects of joint probability modelling of the sys-
tematic and the historical data, we employ the 3-parameter log-normal dis-
tribution (LN3). The selected distribution function is one of the most fre-
quently used statistical models in flood frequency analyses (e.g., Hosking
and Wallis, 1997 ).
The cumulative distribution function of the LN3 distribution is
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F (x) = Φ (y) , (16)

where Φ is the CDF of the standard normal distribution and

y =

{
−k−1 log [1− k (x− ξ)/α], k �= 0
(x− ξ)/α, k = 0,

(17)

where ξ, α and k are the location, scale and shape parameters, respectively
(Hosking and Wallis, 1997, p. 197). The special case with k = 0 yields the
standard normal distribution.

3. Data

The frequency analysis is performed at the station Vltava-Kamýk, which is
situated at the Vltava River on the south of the Czech Republic. One of
the most important features of the station Vltava-Kamýk is the fact that it
is located near the hydroelectric power dam Orĺık, which is the largest one
in the country, and which also plays a key role in the flood prevention of
Prague, the capital city of the country.
We analyze the peak discharge values measured in the summer season

(May – October) that are available in the period from 1877 to 2002. The
2002 event, however, is an exceptional one in the data records since it is
one of the largest floods of the last decade that affected not only the Czech
Republic but also the Central Europe, and which resulted in a number
of fatalities and huge infrastructural damages (e.g., Ulbrich et al., 2003;
Kundzewicz et al., 2005 ). The exceptional magnitude of the 2002 flood was
also confirmed by analyses of the specialists of the Czech Hydrometeorolog-
ical Institute (Drbal et al., 2003; Boháč and Kulasová, 2005). Note that
since an antecedent flood wave filled up all the smaller reservoirs upstream
the Vltava River, the extraordinary flood wave on 13 August 2002 was prac-
tically unaffected.
Due to the fact that the peak discharge value of this extraordinary 2002

event at station Vltava-Kamýk has nearly exceeded two times the maximum
of the rest of the flood peak records from the period 1877–2001, we treat
this event as a historical one.
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4. Settings of the frequency model

In Sect. 2.2, we introduced a number of parameters to characterize various
features of a hypothetical data set consisting both of systematic measure-
ments and historical data. Herein, we apply this notation on the records of
flood peaks from the station Vltava-Kamýk as follows:

• The length of the systematic observations is unequivocally given: s =
126 years.

• The 2002 flood event is exceptional in the light of the other flood peaks
observed during the whole period with the systematic observations;
thus, we consider this flood as historical one. Moreover, this is the
only extraordinary event that appears in the analysis; therefore, c = 1.

• The perception threshold X0 is unknown. Nevertheless, we suppose
that X0 lies somewhere between the absolute maximum of the system-
atic records (4390 m3/s, recorded in 2002) and the secondary maximum
(2309 m3/s, recorded in 1890). Since a) we do not have any information
on flood peaks having occurred before the systematic observations, and
b) we would not like to put much restriction on these unknown events,
we set the value of the perception threshold level X0 just below the
magnitude of the historical event, i.e., let X0 = 4000 m3/s. We then
also perform a sensitivity analysis related to the choice of this value
(Sect. 5.2).

• The length of the historical period h is also unknown. We only suppose
that the extraordinary 2002 event has not been exceeded during the
whole analyzed period n = h+ s. In other words, we have to make an
initial estimate of the return period of this extraordinary event, and
assume that the magnitudes of all the unknown events that have oc-
curred in the ‘historical’ period do not exceed the perception threshold
X0 (i.e., m = 0). A sensitivity analysis regarding the choice of h is also
carried out in the paper (Sect. 5.1).

• Since the magnitude of the historical flood event is very well known,
it is incorporated into the statistical model using the methodology
presented in ‘Example # 1’ in Sect. 2.1. Uncertainties in the magnitude
of this event (similarly to ‘Example # 2’) are not considered in the
analysis herein.
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• The Bayesian approach allows for choosing any prior distribution p (θ)
of the parameters θ of the selected distribution function (Sect. 2.3,
Eq. 12). Since an arbitrary choice is allowed, we choose the simplest
solution: we do not put any stress on the priors of θ, i.e., we use uniform
initial distribution p (θ) = const., which does not have effects on the
evaluation of Eq. (12).

5. Results

All the simulations were carried out within the R environment, which is an
open-source software for statistical computing and visualization (http://
www.r-project.org/), and using the library nsRFA (Viglione, 2009), which
has specifically been developed for flood frequency analyses.
The main results of the frequency analysis are presented in terms of fig-

ures (probability plots) and tables, where the main focus was set to the
flood quantiles corresponding to return periods T = 100, 1000 and 10000
years. The latter value, although it may seem unreasonably high, is justified
by the fact that the flood quantile corresponding to the return period of T
= 10000 years has been defined as the critical design value for the safety of
the power dam Orĺık.
In the next sub-sections, we present sensitivity analyses, which examine

the effects of the choice of the most important parameters of the statistical
model (the length of the historical period h, the threshold X0 and the length
of the systematic records s) on the quantile estimates and the width of their
confidence intervals.

5.1. Selection of the length of the historical period

The way the choice of the length of the historical period h affects the quantile
estimates of peak discharges in a joint flood frequency analysis of systematic
and historical flood events is presented in Fig. 3 and Table 1. The panel of
Fig. 3 consists of 6 subplots. The plot in the top left corner displays the
case with the historical event excluded (‘No historical information’ in its
title), i.e., a frequency analysis only based on the records from the period
1877–2001. The other plots are related to a joint analysis of systematic and
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historical information with different estimates of the parameter h, namely
h = 500, 1000, 1500, 2000 and 3000 years. The solid line in the middle
of the plots is the fitted distribution function, while the dashed line above
(below) it is the upper (lower) bound of the 5-95% confidence intervals of
flood quantiles. The systematic data are represented by empty circles, while
the historical information is depicted by a solid black circle. The percep-
tion threshold has been set to X0 = 4000 m3/s in all simulations related to
Fig. 3.
Comparing the first subplot with no historical information included, and

the rest of the plots corresponding to different h values it is discernible
that the inclusion of the historical event with an extraordinary magnitude
reduces the width of the confidence bounds. This fact is underpinned by
the numerical evaluation of the confidence intervals (CIs) of the representa-
tive flood quantiles: both the absolute and relative widths of the CI (ΔCI
and ΔCI/QT , respectively) for the highest value of the parameter h are
approximately half of the widths of the corresponding CI for the alternative
with no historical information involved (Table 1). This holds for all three
return periods considered. From Fig. 3 it is also clear that the value of h
controls the slope of the fitted CDF: higher values of h are associated with
less steeper CDFs.
The inclusion of historical information evidently reduces the uncertainty

in the quantile estimates. Nevertheless, one of the most important questions
still remains open: which of the selected h values should be preferred? In a
traditional flood frequency analysis that is only based on systematic data,
different goodness-of-fit tests (such as the test of χ2, test of Kolmogorov and
Smirnov or the Z-test; see, e.g.,Wilks, 1995; Hosking and Wallis, 1997 ) can
be applied in a simple way to assess the ‘closeness’ of the fitted distribution
to the observed data. Nevertheless, as soon as any historical information is
incorporated, testing the goodness of the fit becomes a difficult business. As
far as we know, there are no methods in the literature to accomplish such
a task. Therefore, we decided to use a visual inspection method. We check
whether 90% of the observed data visualized through the modified plotting
position formulae (Eq. 15) lie or do not lie within the 90% confidence inter-
val estimated by the MCMC simulation procedure. Although the method
is subjective, it can indicate with respect to the CDF where the fit is not
sufficiently good, the presence of changes of slopes (e.g., due to threshold

135



Gaál L. et al.: Inclusion of historical information in flood. . . (121–147)

Fig. 3. Three-parameter log-normal distribution function (LN3) fitted to the warm-season
maxima of peak discharges at the Vltava-Kamýk (Orĺık) station: sensitivity analysis
related to the selection of the length of the historical period h. DF stands for distribution
function.
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Table 1. Estimation of the discharge quantiles QT and their confidence intervals corre-
sponding to the return periods T = 100, 1000 and 10000 years at the station Vltava-
Kamýk, with no historical information involved, and various assumptions concerning the
length of the historical period h, respectively. CI0.05 (CI0.95) is the 5% (95%) confidence
limit of the estimates QT , ΔCI = CI0.95 – CI0.05

effects) or whether another type of distribution would be more suitable. For
these reasons, as for other visual techniques, our visual inspection method
could be used in the engineering practice.
Based on the visual inspection, we eliminated the two highest estimates

of h (2000 and 3000 years; see two bottom plots in Fig. 3) since in these
two cases, a larger number of data points (which belong to the highest flood
peaks observed during the period with systematic records, and therefore,
are of enhanced importance) get outside the confidence bounds. In order to
find the only acceptable h value, we also fitted another distribution functions
(e.g., generalized extreme value, 3-parameter log-Pearson, 2-parameter log-
normal etc.) to the same data set with the same settings of the statistical
model (Szolgay et al., 2008). The results are not reported herein; however,
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taking into consideration the visual check of other distribution functions we
conclude that the most acceptable estimate of the length of the historical
period is about h = 1000–1500 years.

5.2. Selection of the perception threshold

Due to the facts that a) the magnitude of the historical plod peak is
4390 m3/s, and b) the maximum of the rest of the flood peak records is
2309 m3/s, we selected 6 different values for the sensitivity analysis related
to the threshold X0:

• 4300 m3/s,
• 4000 m3/s (i.e., the ‘basic’ estimate of X0, used also in Sect. 5.1),
• 3600 m3/s,
• 3200 m3/s,
• 2800 m3/s,
• 2400 m3/s.

On the other hand, the length of the historical period is set to a constant
value, h = 1000 years.
The graphical outputs of the analysis are presented through a panel of

plots in Fig. 4 where the different threshold values are accentuated by a
corresponding horizontal line. The characteristics of the selected quantiles
and their CIs are summarized in Table 2.
The outcomes indicate that the gradual lowering of the perception level

results in two effects: a) narrower uncertainty bounds, and b) less steep
slope of the fitted distribution function. Both effects can easily be explained.
Case a) means that by setting the thresholdX0 lower and lower, one assumes
that the unknown past values were not particularly high, i.e., they varied
in a narrower range. At the same time, case b) means that having a lower
threshold X0, the magnitudes of the unknown peak discharges that have
occurred in the past are supposed to be lower, therefore, the distribution
function is also fitted towards the lower values. While the first effect could,
in principle, be beneficial for the quantile estimates by having narrower
CIs, this theoretical advantage is outweighed by the second effect, which –
similarly to the one discussed in Sect. 5.1– puts several data points outside
the confidence bounds. Based on these considerations we conclude that the

138



Contributions to Geophysics and Geodesy Vol. 40/2, 2010 (121–147)

Fig. 4. Three-parameter log-normal distribution function (LN3) fitted to the warm-season
maxima of peak discharges at the Vltava-Kamýk (Orĺık) station: sensitivity analysis re-
lated to the selection of the perception threshold X0. DF stands for distribution function.
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Table 2. Estimation of the discharge quantiles QT and their confidence intervals cor-
responding to the return periods T = 100, 1000 and 10000 years at the station Vltava-
Kamýk, with various assumptions concerning the perception thresholdX0. CI0.05 (CI0.95)
is the 5% (95% ) confidence limit of the estimates QT , ΔCI = CI0.95 – CI0.05

initial selection of the perception threshold (X0 = 4000 m3/s) is acceptable
for the recent analysis. It also can be higher; however, it definitely should
not be set considerably lower.

5.3. The effect of the record length on the results

In the report by Szolgay et al. (2008), the collective of authors raised con-
cerns about the appropriateness of the flood peak measurements made in
the last decades of the 19th century (possible inhomogeneities present in
the data series; details not reported herein). Due to this fact we decided to
exclude the problematic part of the data series and restrict the analysis to
the supposedly homogeneous data set belonging to the period 1900–2002.
The results of this analysis are presented in Fig. 5 and Table 3.
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Fig. 5. Three-parameter log-normal distribution function (LN3) fitted to the warm-
season maxima of peak discharges at the Vltava-Kamýk (Orĺık) station: analysis based
on a shorter period of systematic observations s (1900–2002). DF stands for distribution
function.
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Table 3. Estimation of the discharge quantiles QT and their confidence intervals corre-
sponding to the return periods T = 100, 1000 and 10000 years at the station Vltava-
Kamýk, based on a shorter based on a shorter period of systematic observations s
(1900–2002). CI0.05 (CI0.95) is the 5% (95%) confidence limit of the estimates QT ,
ΔCI = CI0.95 – CI0.05

Keeping the settings of the statistical model applied so far, and having
a shorter period of systematic observations, the MCMC simulations lead to
lower quantile estimates compared to the results based on the whole data
records (Sect. 5.1, Table 1). It is likely that this is only a sampling effect
since the eliminated period 1877–1899 contains a number of flood events of
a relatively high magnitude. On the other hand, the effect of the shorter
period s on the uncertainty of the estimated quantiles is unclear (Table 3).
Lower quantile estimates QT are accompanied with narrower absolute width
of the confidence intervals ΔCI; however, these effects result in enhanced
relative width of the CIs ΔCI/QT (cf. Table 3 and Table 1).
At the present stage of the analysis it is evident that the two parameters

h and X0 are the most dominant controls of the width of the CIs. In order
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to derive further information on the role of s in the statistical model, a
deeper analysis is needed (possibly accompanied by further Monte Carlo
simulations), and such a task is beyond the scope of the recent study.

6. Summary and conclusions

In this paper, a method how to incorporate historical floods into the at-site
flood frequency analysis has been reviewed. It is based on Bayesian infer-
ence where a likelihood function is built to properly handle the information
on historical floods.
Despite of the fact that subjective choices cannot be avoided when ap-

plying the method and that some of these (which are necessary to conduct
the computations) may be questionable, the method is transparent to the
users. Most of the subjective choices and hypotheses are explicitly for-
mulated, have hydrological meaning (e.g., m historical peak discharges the
number of years h in which these m events were the major floods and the
threshold X0 which has certainly not been exceeded during this period by
the other floods) and their effect can be evaluated, discussed and modified
based on sensitivity analyses, which can be conducted to test the influence
of these hypotheses on the results, as it was shown in this paper.
As the particular results of the case study indicate, among the num-

ber of parameters of the statistical model to be chosen, the length of the
historical period h and the perception threshold X0 have the most remark-
able influence on the width of the confidence intervals of the estimated flood
quantiles. The higher the assumption of h (i.e., analysis reaches further back
to the past) and/or the lower the assumption of X0 (i.e., the unknown peak
discharges from the past are assumed to be generally low), the narrower are
the confidence bounds of the estimated quantiles. Nevertheless, selecting
high values of h and/or low values of X0 for the model yields a great risk
that the analyst may be wrong of not considering all the (unknown) extreme
events that might have occurred during the period of length h in the past.
It is therefore advised to be rather prudent in selecting the model parame-
ters to have confidence intervals only moderately narrower compared to the
alternative with no historical information, instead of having considerably
narrower confidence intervals but making wrong inference on “unknown”
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historical data that are not well estimated.
A particularly satisfying result of this case study was that the outcomes

of the method are relatively robust when considering the uncertainties in
the estimated historical flood discharges and the subjective choices in the
parameterizations of the method.
In a similar study (Gaume et al., 2010), the idea of inclusion of extraor-

dinary flood events into frequency analysis is further discussed: based on
the analogy with a temporal extension of at-site data with historical flood
extremes, a methodology for a spatial extension of regionally pooled data
with flood extremes observed in ungauged catchments is developed. Gaume
et al. (2010) emphasizes that the choice of the parameters h and X0 is
crucial also in that case.
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teorological Institute. 14 p. (in Czech).
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Ulbrich U., Brücher T., Fink A. H., Leckebusch G. C., Krüger A., Pinto J. G., 2003:
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