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Evaluation of selected gravity field
parameters from local high resolution
gravity and elevation data
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A b s t r a c t : Theory and numerical evaluation of selected parameters of the gravity
field over a region in Central Europe, namely of the geoidal heights, deflections of the
vertical and anomalous vertical gradients of gravity, are discussed in this manuscript. In-
put values for their numerical evaluation represent a detailed and accurate gravity and
elevation database GOP30x30, that contains discrete values of mean gravity and eleva-
tion data on a homogeneous geographical grid with spacing of 30 × 30 arcsec, and the
global geopotential model EGM96. Local gravity and elevation data are used for eval-
uation of high-frequency components of the sought parameters using discretized integral
equations of Greens’s kind. Discrete numerical integration is applied within a spherical
cap centered at each computation point. The effect of gravity data outside the spherical
cap is computed by the Molodensky approach using the spectral description of the global
gravity field. The Stokes function is modified according to Vańıček and Kleusberg (1987)
to minimize the effect of gravity data outside the spherical cap. The Vening-Meinesz func-
tion and the integration function in the gravity gradient integral are not modified due to
their relatively fast attenuation with the increasing spherical distance. The low-frequency
components of the same parameters are synthesized using the EGM96 spherical harmonic
coefficients. Obtained results can be used in geodesy and geophysics.

Key words: geoid, deflections of the vertical, anomalous gravity gradient,
Central Europe

1. Introduction

Among major tasks of contemporary geodesy an important role plays
global gravity field mapping. New geopotential models are being solved
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through analyzing abundant observation material provided namely by the
satellite missions CHAMP and GRACE. Despite significant advances in the
global gravity field modelling, it is still inevitable to use also local ground
gravity and elevation data since only they can provide the information on the
medium and high-frequency spectrum of different gravity field parameters.
Often local gravity data are combined with the global information in order
to take advantage of their respective spectral properties. This approach is
also used in this contribution, i.e., solved parameters are spectrally decom-
posed into reference (low-frequency) components estimated from a global
geopotential model (GGM) and residual (high-frequency) components com-
puted from local ground gravity and elevation data.

Reference components of selected gravity field parameters, namely geoidal
undulations, deflections of the vertical and vertical gradient of anomalous
gravity, are easily evaluated through the spherical harmonic synthesis. As
input values, the Stokes coefficients in available GGMs can be used. Al-
though many new solutions were published recently, the EGM96 is used in
this study. Determination of the residual components from local ground
gravity relies upon a solution of geodetic boundary-value problems that re-
quire numerical evaluation of surface convolutive integrals. The residual
component of the geoidal undulation requires numerical evaluation of the
adapted Stokes (1849) formula. Molodensky-modified spheroidal Stokes’s
formula is used in this contribution (Vańıček and Kleusberg, 1987; see also
Vańıček and Sjöberg, 1991; Martinec and Vańıček, 1996). The integra-
tion domain for the modified Stokes integral is divided into a spherical cap
centered at the computation point, and the remainder of the sphere. The
contribution of gravity data within the spherical cap is computed by dis-
crete numerical integration. The contribution of gravity data in the region
outside the spherical cap is computed by the spheroidal Molodensky-type
approach (Martinec and Vańıček, 1996). The residual component of the de-
flection of the vertical is computed by the adapted Vening-Meinesz (1928)
formula. Its numerical solution is also obtained by discrete numerical inte-
gration. The spheroidal Vening-Meinesz formula is used in this contribution
(Featherstone et al. 2002). The integration domain is again truncated into
a spherical cap centered at the computation point. Finally, the anomalous
vertical gradient of gravity is computed by the adopted integral formula
(Heiskanen and Moritz, 1967). Contributions of gravity data outside this
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spherical cap are in the last two cases neglected due to their small numerical
values.

Thus two sources of gravity data are used: 1– discrete mean values of
local ground gravity from the database GOP30x30 (Kostelecký jr., 2004)
with the spatial resolution of 30 × 30 arcsec, i.e., approximately 1 × 1 km
for determination of the residual quantities, and 2– geopotential coefficients
up to degree and order 120 of the EGM96 (Lemoine et al., 1998) for de-
termination of the reference quantities. The elevation data represent mean
values distributed over a homogeneous geographical grid with the spatial
resolution of 30×30 arcsec. This geographical grid is identical with the grid
of the ground gravity data.

1. Reduction of local ground gravity data

In this section, a brief description of ground gravity reduction is given.
Our task is to derive residual gravity anomalies that could be used in the po-
tential theory, i.e., they should correspond to the residual disturbing gravity
potential T harmonic everywhere outside the geoid. Positions of points of
interest are given in the geocentric spherical coordinate system using a triad
of spherical coordinates {r, θ, λ} : 0 ≤ θ ≤ π, 0 ≤ λ < 2π. A geocentric di-
rection Ω is given by a pair of the angular coordinates {θ, λ}. It is assumed
that the physical surface of the Earth can be described by a two-dimensional
(2-D) “star-shaped” function rs(Ω) = rg(Ω) +H(Ω) where rg is the geocen-
tric radius of the geoid and H is the orthometric height. Similarly, the
telluroid is given as another 2-D function rt(Ω) = re(θ) +H(Ω) where re is
the geocentric radius of the reference ellipsoid. Although the orthometric
height does not refer exactly to the geocentric direction Ω, eventual differ-
ences are neglected in the text. Moreover, the symbol Ω is skipped if the
height function H as well as the other 2-D functions above are used as a
parameter of another function.

Let us start with the standard decomposition of the geopotential V into
the potential components corresponding to the geoid V g , topography V t

and atmosphere V a, i.e.,

T (r,Ω) = V g(r,Ω) + V t(r,Ω) + V a(r,Ω) − U(r, θ) =

= T g(r,Ω) + V t(r,Ω) + V a(r,Ω) , (1)
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where U stands for the normal (Somigliana-Pizzetti) potential. The reduced
disturbing gravity potential T g is harmonic above the geoid and we seek
gravity anomalies associated with this potential. Applying in Eq. (1) the
spherical operator of the fundamental gravimetric equation for the gravity
anomaly yields

∆g(rs,Ω) =
(
− ∂

∂r
− 2

r

)∣∣∣∣
r=rs

[
T g(r,Ω) + V t(r,Ω) + V a(r,Ω)

]
. (2)

The ground gravity anomaly is thus decomposed into three components:
1– gravity anomaly related to the reduced disturbing gravity potential T g

harmonic outside the geoid, i.e., a reduced ground gravity anomaly

∆gg(rs,Ω) = − ∂T g(r,Ω)
∂r

∣∣∣∣
r=rs

− 2
rs
T g(rs,Ω) , (3)

2– topographical component including so-called direct and secondary indi-
rect topographical effects

− ∂V t(r,Ω)
∂r

∣∣∣∣∣
r=rs

− 2
rs
V t(rs,Ω) = At(rs,Ω) + St(rs,Ω) , (4)

and finally, 3– atmospheric component with direct and secondary indirect
atmospheric effects

− ∂V a(r,Ω)
∂r

∣∣∣∣
r=rs

− 2
rs
V a(rs,Ω) = Aa(rs,Ω) + Sa(rs,Ω) . (5)

Using the standard definition of the ground gravity anomaly as a differ-
ence of ground gravity and normal gravity at the telluroid, i.e.,

∆g(rs,Ω) = g(rs,Ω) − γ(rt, θ) , (6)

one gets for evaluation of the reduced ground gravity anomaly

∆gg(rs,Ω) = g(rs,Ω) − γ(rt, θ) − At(rs,Ω) − St(rs,Ω) −
− Aa(rs,Ω) − Sa(rs,Ω) . (7)

Following the spectral decomposition of the gravity field, the residual gravity
anomaly can be obtained through additional reduction for the reference
(low-frequency) gravity anomaly synthesized from the global geopotential
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model (GGM) that again contains a signal generated by masses inside the
geoid, topography and atmosphere, i.e.,

∆g`(rs,Ω) = ∆gg` (rs,Ω) + At`(rs,Ω) + St`(rs,Ω) +

+ Aa` (rs,Ω) + Sa` (rs,Ω). (8)

The maximum degree ` = 120 for the reference field will be used in all
computations presented in this article. Reasoning for this selection is given
in Section 3. The residual reduced ground gravity anomaly is then

∆gg,`(rs,Ω) = ∆g`(rs,Ω) − At,`(rs,Ω) − St,`(rs,Ω) −
− Aa,`(rs,Ω) − Sa,`(rs,Ω) . (9)

The disturbing gravity potential corresponding to ∆gg,` is defined and solved
in Section 3.1. Thus, only the residual direct and secondary indirect to-
pographical and atmospheric effects are required for the reduction. As a
consequence of using the residual quantities, the residual atmospheric ef-
fects Aa,` and Sa,` are neglected in this study. The reduced residual ground
gravity anomalies can be then written

∆gg,`(rs,Ω) .= g(rs,Ω) − γ(rt, θ) − ∆g`(rs,Ω) −
− At,`(rs,Ω) − St,`(rs,Ω) . (10)

In the remaining part of this section, the evaluation of the individual com-
ponents in Eq. (10) is discussed.

Observed values of ground gravity g were taken from the gravity database
GOP30x30 with mean values given in the grid of geographical coordinates
with the resolution of 30 × 30 arcsec. The magnitude of normal gravity
at the telluroid rt can easily be obtained by the upward continuation of
normal gravity γ that is an analytical function and thus expandable into a
convergent Taylor power series with the point of expansion at the reference
ellipsoid re

γ(rt, θ) = γ(re, θ) +
∂γ(r, θ)
∂h

∣∣∣∣
r=re

H(Ω) +

+
∂2γ(r, θ)
∂h2

∣∣∣∣∣
r=re

H2(Ω)
2

+ O(H3) . (11)
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H stands for the known topographical height corresponding to the geocen-
tric direction Ω and h is the direction of the ellipsoidal surface normal at
co-latitude θ (differences between the geocentric and ellipsoidal co-latitudes
are neglected). Landau’s symbol O represents the order of magnitude of
the first neglected term in the infinite power series. Normal gravity at the
reference ellipsoid can be computed using the Somigliana-Pizzetti formula
(Pizzetti, 1911; see also Somigliana, 1929 and Moritz, 1984)

γ(re, θ) = γε
1 + k cos2 θ

(1− e2 cos2 θ)
1
2

, (12)

where γε is the magnitude of normal gravity at the ellipsoidal equator, k
is a numerical constant of the normal gravity formula, and e is the first
numerical eccentricity of the reference ellipsoid GRS80 (Moritz, 1984). It is
acknowledged that at least the linear and the quadratic terms of the Taylor
power series in Eq. (11) should be used to obtain satisfactory accuracy for
normal gravity at the telluroid. The first-order vertical derivative of normal
gravity reads (Heiskanen and Moritz, 1967)

∂γ(r, θ)
∂h

∣∣∣∣
r=re

= − 2
γ(re, θ)

a
( 1 + f sin 2θ + m ) + O(f2) , (13)

and the second-order vertical derivative

∂2γ(r, θ)
∂h2

∣∣∣∣∣
r=re

= 6
γ(re, θ)

a2 (1− f cos2 θ)2 + O(f2) . (14)

The geodetic parameter m in Eq. (13) is defined as follows (Grossmann,
1976)

m
.=
a ω2

γε
, (15)

where a stands for the major semi-axis of the reference ellipsoid, f for
its flattening, and ω for the mean angular velocity of the Earth’s rotation
(Moritz, 1984). Neglecting higher-order terms, the final expression for the
evaluation of normal gravity at the telluroid is

γ(rt, θ)
.= γε

1 + k cos2 θ

(1− e2 cos2 θ)
1
2

[
1 − 2 H(Ω)

a
(1 + f sin 2θ + m) +

+
3 H2(Ω)

a2(1− f cos2 θ)2

]
. (16)
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The reference gravity anomaly ∆g` can be synthesized

∀ µ =
R

rs(Ω)
≤ 1 : ∆g`(rs,Ω) =

GM

R2

∑̀

n=2

(n− 1) µn+2 Tn(Ω) , (17)

where GM is the product of the Newtonian gravitational constant G and
the mass of the Earth M , and R is the radius of the geocentric sphere
upon which the spherical harmonic expansion of the coefficients Tn reduces
to the Laplace harmonics. Using the polar coordinates {α, ψ}, Laplace’s
harmonics of degree n can be computed as follows

Tn(Ω) =
n∑

m=−n
Tn,m Yn,m(Ω) =

=
2n+ 1

4π

∫ 2π

0

∫ π

0
T (R, α, ψ) Pn(cosψ) sinψ dψ dα . (18)

The corresponding spherical distance ψ is defined by the law of cosine

cosψ = cos θ cos θ
′

+ sin θ sin θ
′
cos (λ− λ′) . (19)

Similarly, the azimuth α can be computed by spherical trigonometry

tanα =
sin θ

′
sin(λ

′ − λ)
sin θ cos θ′ − cos θ sin θ′ cos(λ′ − λ)

. (20)

Fully-normalized, unitless spherical harmonic coefficients Tn,m of degree n
and order m are obtained from the EGM96 coefficients reduced for their
counterparts representing the normal gravity field. Spherical harmonic func-
tions Yn,m read (Hobson, 1931)

∀ n ≥ m : Yn,m(Ω) = eimλ Pn,m(cos θ) , (21)

with the associated trigonometric Legendre function Pn,m of the first kind
(Hobson, 1931).

The residual direct topographical effect At,` as well as the residual sec-
ondary indirect topographical effect St,` should be computed through their
respective total values reduced for reference components. This requires de-
manding computations involving global topographical data. The alternative
approach used in this article is based on the assumption that local topogra-
phy defined as masses within a certain distance from the gravity station is
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responsible mainly for the residual component of the direct and secondary
indirect topographical effects. They are referred to as direct and secondary
indirect terrain effects. It should be emphasized that this distinction holds
only approximately since local topographical masses generate a signal that
covers the entire frequency spectrum. The residual direct terrain effect can
approximately be computed as follows (Novák, 2001):

∀ ν =
rs(Ω

′
)

rs(Ω)
: At,`(rs,Ω) ≈ G% rs(Ω)

∫ 2π

0

∫ ψo

0
K(ν, ψ) sinψ dψ dα , (22)

with the mean topographical mass density % and the integration kernel
(Gradshteyn and Ryzhik, 1980)

K(ν, ψ) =
ν2 cosψ + ν (1 − 6 cos2 ψ) + 3 cosψ

L(ν, ψ)
−

− 1 + 4 cosψ − 6 cos2 ψ

L(ψ)
+ (23)

+ (3 cos2 ψ − 1) ln
∣∣∣∣
ν − cosψ + L(ν, ψ)
1 − cosψ + L(ψ)

∣∣∣∣ .

The normalized Euclidean distance functions between the computation and
integration points read

L(ν, ψ) =
√

1 + ν2 − 2 ν cosψ , L(ψ) = 2 sin
ψ

2
. (24)

The radius ψo should correspond to the maximum degree ` of the reference
field. The secondary indirect terrain effect can similarly be computed as
follows (Novák, 2001):

∀ ν =
rs(Ω

′
)

rs(Ω)
: St,`(rs,Ω) ≈ G% rs(Ω)

∫ 2π

0

∫ ψo

0
N (ν, ψ) sinψ dψ dα , (25)

with the integration kernel (Gradshteyn and Ryzhik, 1980)

N (ν, ψ) = (ν + 3 cosψ) L(ν, ψ) − (1 + 3 cosψ) L(ψ) +

+ (3 cos2 ψ − 1) ln
∣∣∣∣
ν − cosψ + L(ν, ψ)
1 − cosψ + L(ψ)

∣∣∣∣ . (26)

Thus, both the direct and secondary indirect terrain effects used for reduc-
tion of the residual ground gravity anomalies can be computed using one
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integration combining Eqs. (22) and (25). The evaluation of all topographi-
cal effects is very important and the use of the average mass density % = 2.67
g/cm3 is not satisfactory. A new database completed for laterally-varying
mass density is being compiled. In this regards, numerical values presented
at this contribution can be seen as preliminary only. Results based on the
new data will be presented in an independent study.

The final remark concerns approximations involved in the formulations
used throughout this section: there is no doubt that all parameters should be
computed using ellipsoidal coordinates and approximations. This concerns
the reference gravity anomaly, normal gravity, direct topographical effect
as well as other parameters in following sections. The ellipsoidal approach
was also pursued for numerical evaluations either in a form of ellipsoidal
representation directly (normal gravity, topographical effects) or in a form
of appropriate corrections (spherical harmonic expansions).

3. Evaluation of selected gravity field parameters

Ground gravity data usually provide accurate information on the Earth’s
gravity field. However, due to an insufficient ground gravity data coverage,
often restricted availability and long-wavelength biases in observed gravity
data (e.g., due to the drift of gravimeters), the long-wavelength component
of the Earth’s gravity potential cannot be well determined from ground
gravity observations. At present, the reliable global information about the
Earth’s gravity field is available in a form of the GGM. However, due to
an exponential attenuation of the Earth’s gravity field with an increasing
distance from the Earth, see Eq. (17), only the low-frequency component of
the Earth’s gravity field can reliably be detected in this way.

In this manuscript, a spectral form of the Earth’s gravity potential is
used, with a distinction made between the low and high-frequency compo-
nents. The threshold value of ` = 120 is used throughout this manuscript.
This value is selected with respect to the cap radius used in local integration.
It also reflects the assumption that the frequencies up to this degree can cor-
rectly be derived from the GGM and do not have to be further improved
by ground gravity data.
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3.1. Geoidal undulations

Based on the above frequency decomposition of the gravity data, the
geoid can similarly be decomposed into the reference geoid N` and the
residual geoid N `. The reference geoid can be computed in spherical ap-
proximation (Heiskanen and Moritz, 1967)

N`(Ω) =
GM

R γ(re, θ)

∑̀

n=2

Tn(Ω) , (27)

where γ is normal gravity at the reference ellipsoid.

The geodetic boundary-value problem is then used for the solution of the
residual geoid N `. It is assumed that there are no external masses outside
the geoid or, alternatively, that their gravitational effect was removed from
the ground gravity data by the parameter At,` and the reference gravity
anomaly ∆g`, respectively; see Eq. (10). Then the corresponding residual
disturbing gravity potential T g,` is a harmonic function everywhere outside
the geoid and its behaviour is controlled by the Laplace differential equation
(Heiskanen and Moritz, 1967)

∀ r > rg : ∇2 T g,`(r,Ω) = 0 . (28)

A boundary condition to the homogeneous elliptical equation (28) for the so-
lution of the unknown function T g,` in terms of the residual reduced ground
gravity anomaly ∆gg,` in Eq. (10) is the fundamental gravimetric equa-
tion, which reads in the spherical approximation as follows (Martinec and
Vańıček, 1996):

∀ r = rs : − ∆gg,`(r,Ω) .=
∂

∂r
T g,`(r,Ω)

∣∣∣∣
r

+
2
r
T g,`(r,Ω) . (29)

The solution of Eqs. (28) and (29) for the unknown function T g,` exists and
is unique when T g,` is regular at infinity and when ∆gg,` does not contain
first-degree harmonics.

Before the solution for the residual reduced disturbing gravity potential
T g,` at the geoid can be written, reduced residual ground gravity anomalies
in Eq. (10) must be referred to the geoid. This step is the so-called downward
continuation solved by the spheroidal Abel-Poisson integral (Kellogg, 1929)
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∀ µ ≤ 1 : ∆gg,`(rs,Ω) =
µ

4π

∫ 2π

0

∫ ψo

0
∆gg,`(R, α, ψ) ×

× P`(µ, ψ) sinψ dψ dα , (30)

with the spheroidal Abel-Poisson function

P`(µ, ψ) = P(µ, ψ) −
∑̀

n=0

(2n+ 1) µn+1 Pn(cosψ) , (31)

derived from its spherical form

P(µ, ψ) =
µ2 − 1
L3(µ, ψ)

. (32)

The normalized Euclidean distance function L(µ, ψ) is defined in Eq. (24).
Legendre polynomials Pn in Eq. (31) can be generated using the recurrence
relation (Paul, 1973)

∀ n ≥ 1 : Pn+1(cosψ) =
2n − 1

n
cosψ Pn(cosψ) −

− n − 1
n

Pn−1(cosψ) , (33)

with P0(cosψ) = 1 and P1(cosψ) = cosψ, respectively.
The solution for the residual co-geoid is given by the Stokes integral

Ng,`(Ω) =
R

4πγ(re, θ)

∫ 2π

0

∫ ψo

0
∆gg,`(R, α, ψ) S`(ψ) sinψ dψ dα , (34)

where Ω defines the geocentric position of the computation point on the
geoid approximated by the geocentric sphere. Equation (34) combines the
Stokes integral and the Bruns theorem. The spheroidal Stokes function S `
for computation of the residual co-geoid in Eq. (34) reads

S`(ψ) = S(ψ) −
∑̀

n=2

2n+ 1
n− 1

Pn(cosψ) , (35)

with the spherical Stokes function S (Stokes, 1849)

S(ψ) = 1 + csc
ψ

2
− 6 sin

ψ

2
− 5 cosψ −

− 3 cosψ ln ( sin
ψ

2
+ sin2 ψ

2
) . (36)
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The geoid is obtained by the summation of the reference geoidN` in Eq. (27),
the residual co-geoid N g,` in Eq. (34) and the primary indirect terrain effect
N t,`

N(Ω) = N`(Ω) + N g,`(Ω) + N t,`(Ω) = N`(Ω) + N `(Ω) . (37)

Following the same argumentation as in the case of the direct terrain effect
At,` and secondary indirect terrain effect St,` above, the primary indirect
terrain effect can approximately be evaluated as follows (Novák, 2001):

∀ κ′ =
rs(Ω

′
)

R
, κ =

rs(Ω)
R

: N t,`(Ω) =

=
R2G%

2 γ(re, θ)

∫ 2π

0

∫ ψo

0
J (κ′, κ, ψ) sinψ dψ dα , (38)

with the normalized integration kernel (Gradshteyn and Ryzhik, 1980)

J (κ′, κ, ψ) = (κ′ + 3 cosψ) L(κ′, ψ) − (κ + 3 cosψ) L(κ, ψ) +

+ (3 cos2 ψ − 1) ln
∣∣∣∣
κ′ − cosψ + L(κ′, ψ)
κ − cosψ + L(κ, ψ)

∣∣∣∣ . (39)

3.2. Deflections of the vertical

The reference meridian component of the deflection of the vertical at the
geoid can be computed from the reference gravity disturbing potential T`

ξ`(R,Ω) = − GM

R2 γ(re, θ)

∑̀

n=2

∂Tn(Ω)
∂θ

, (40)

and the reference prime vertical component

η`(R,Ω) = − GM

R2 γ(re, θ) sin θ

∑̀

n=2

∂Tn(Ω)
∂λ

. (41)

Similarly to the reference geoid in Eq. (27), these quantities are also derived
from the EGM96 spherical harmonic coefficients Tn,m, see Eq. (18). The
horizontal derivatives of the spherical harmonic function Yn,m read

∀ n ≥ m :
∂Yn,m(Ω)

∂θ
= eimλ

∂Pn,m(sin θ)
∂θ

, (42)
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∀ n ≥ m :
∂Yn,m(Ω)

∂λ
= im eimλ Pn,m(sin θ) . (43)

For their numerical evaluation, see e.g. (Abramowitz and Stegun, 1972).
The residual meridian component of the deflection of the vertical can

be computed by the Vening-Meinesz integral (Heiskanen and Moritz, 1967)
from the corresponding gravity data at the geoid, see Eq. (30). The solution
for the meridian component has the form of the surface integral

ξg,`(R,Ω) =
1

4πγ(re, θ)

∫ 2π

0

∫ ψo

0
∆gg,`(R, α, ψ)M`(ψ) sinψ dψ cosαdα , (44)

and similarly the prime vertical component

ηg,`(R,Ω) =
1

4πγ(re, θ)

∫ 2π

0

∫ ψo

0
∆gg,`(R, α, ψ)M`(ψ) sinψ dψ sinα dα . (45)

The spheroidal Vening-Meinesz integration kernel has the form

M`(ψ) = M(ψ) +
∑̀

n=2

2n+ 1
n − 1

Pn,1(cosψ) , (46)

where M is the spherical Vening-Meinesz kernel (Heiskanen and Moritz,
1967)

M(ψ) = − cos ψ2
2 sin2 ψ

2

+ 8 sinψ − 6 cos
ψ

2
− 3

1− sin ψ
2

sinψ
+

+ 3 sinψ ln
[

sin
ψ

2
+ sin2 ψ

2

]
. (47)

The associated Legendre functions Pn,1 of the order one, that represent
the derivative of the Legendre polynomials, can easily be generated using
another convenient recurrence relation

∀ n ≥ 3 : (n− 1) Pn,1(cosψ) = cosψ (2n− 1) Pn−1,1(cosψ) −
− n Pn−2,1(cosψ) , (48)

with P1,1(cosψ) = − sinψ and P2,1(cosψ) = −3 cosψ sinψ. The indirect
topographical effects on the deflection of the vertical are, see Eq. (38),

ξt,`(R,Ω) = − 1
R

∂N t,`(Ω)
∂θ

, (49)
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ηt,`(R,Ω) = − 1
R sin θ

∂N t,`(Ω)
∂λ

. (50)

The total value of the meridian component of the deflection of the vertical
is then

ξ(R,Ω) = ξ`(R,Ω) + ξg,`(R,Ω) + ξt,`(R,Ω) =

= ξ`(R,Ω) + ξ`(R,Ω) , (51)

and the prime vertical component

η(R,Ω) = η`(R,Ω) + ηg,`(R,Ω) + ηt,`(R,Ω) =

= η`(R,Ω) + η`(R,Ω) . (52)

3.3. Vertical gradients of anomalous gravity

The vertical gradient of the gravity anomaly at the geoid in spherical
approximation can be evaluated by the formula

∆gr(R,Ω) =
∂∆g(r,Ω)

∂r

∣∣∣∣
r=R

, (53)

that will be again divided into two components: 1– vertical gradient of the
reference gravity anomaly

∆gr,`(R,Ω) = − GM

R3

∑̀

n=2

(n− 1) (n+ 2) T (Ω) , (54)

and, 2– vertical gradient of the residual gravity anomaly at the geoid eval-
uated by the integral formula (Heiskanen and Moritz, 1967)

∆g`r(R,Ω) =
1

2πR

∫ 2π

0

∫ ψo

0

[
∆g`(R, α, ψ) −

− ∆g`(R,Ω)
]
K`(ψ) sinψ dψ dα − 2

R
∆g`(R,Ω) . (55)

The spheroidal integration kernel is given by the formula

K`(ψ) = K(ψ) −
∑̀

n=2

P 3
n(cosψ) , (56)
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with the spherical kernel

K(ψ) =
1

8 sin3 ψ
2

. (57)

Note that in this case only the reference and residual gravity anomalies are
considered.

4. Practical considerations

In this section, some practical considerations for numerical evaluation
of the various surface integrals are discussed. Namely, the modification of
the integral functions, evaluation of the cap integration for given discrete
values of mean gravity and the far-zone effects are reviewed in the following
subsections.

4.1. Geoidal undulations

Due to the incomplete coverage or availability of ground gravity data,
the integral in Eq. (34) is evaluated over a limited integration domain rep-
resented by a spherical cap of radius ψo. The influence of the gravity in-
formation from the remainder of the globe is accounted for by using the
truncation errors

Ng,`
fz (Ω) =

R

4πγ(re, θ)

∫ 2π

0

∫ π

ψo

∆gg,`(R, α, ψ) S`(ψ) sinψ dψ dα , (58)

that can be evaluated from the GGM. To minimize this far-zone contribu-
tion, the modified spheroidal Stokes function is often used (Vańıček and
Kleusberg, 1987)

S`(ψ, ψo) = S(ψ) −
∑̀

n=2

2n+ 1
n− 1

Pn(cosψ) −

−
∑̀

n=0

2n+ 1
2

tn(ψo) Pn(cosψ) , (59)
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where tn are the modification coefficients. It can be shown that in order to
minimize the effect of gravity from the far zones, see Eq. (58), the following
integral must be minimized

∀ tn ∈ Rn : min
tn

{ ∫ π

ψo

[
S`(ψ, ψo)

]2
sinψ dψ

}
. (60)

The solution leads to the system of linear equations for the unknown mod-
ification coefficients tn

∑̀

n=0

2n+ 1
2

Rn,m(ψo) tn(ψo) = Q`m(ψo) , (61)

where the coefficients Rn,m are (Paul, 1973)

Rn,m(ψo) =
∫ π

ψo

Pn(cosψ) Pm(cosψ) sinψ dψ . (62)

The spheroidal truncation coefficients in Eq. (61) can then be computed as
(Molodensky et al., 1960; see also Heiskanen and Moritz, 1967; Martinec,
1993)

Q`m(ψo) =
∫ π

ψo

S`(ψ) Pm(cosψ) sinψ dψ =

= Qm(ψo) −
∑̀

n=2

2n + 1
n− 1

Rn,m(ψo) . (63)

The contribution of the spherical cap can be evaluated by discrete sum-
mation over mean values of gravity anomalies on a regular geographic grid
within the cap. After accounting for the contribution of the computation
point (singularity)

Ng,`
ep (Ω) =

R

2γ(re, θ)
∆gg,`(R,Ω)

∫ ψo

0
S`(ψ, ψo) sinψ dψ , (64)

the contribution of the near zone reads

Ng,`
nz (Ω) =

R

4πγ(re, θ)

∫ 2π

0

∫ ψo

0

[
∆gg,`(R, α, ψ) − ∆gg,`(R,Ω)

]
×

× S`(ψ, ψo) sinψ dψ dα . (65)
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Using the mean-value theorem, the integration in Eq. (65) can be replaced
by the summation over (j−1) cells within the spherical cap of the product of
mean values of high-frequency gravity anomalies (Vańıček and Krakiwsky,
1986)

∆gg,`(R,Ωk) =
1

∆Ωk

∫ ∫

∆Ωk
∆gg,`(R,Ω

′
) dΩ

′
, (66)

with corresponding point values of the modified spheroidal Stokes function.
∆Ωk is the surface area of the k-th cell. Eq. (65) then reads

Ng,`
nz (Ω) =

R

4πγ(re, θ)

j−1∑

k

{ ∫ ∫

∆Ωk

[
∆gg,`(R,Ω

′
) − ∆gg,`(R,Ω)

]
×

× S`(ψ, ψo) dΩ
′
}
, (67)

that can approximately be evaluated by quadrature of the integral

Ng,`
nz (Ω) .=

R

4πγ(re, θ)

j−1∑

k

[
∆gg,`(R,Ωk) − ∆gg,`(R,Ω)

]
×

× S`(ψk, ψo) ∆Ωk , (68)

where the value of S`(ψk, ψo) is evaluated for the spherical distance ψk
between the integration point and the centre of the k-th cell.

The contribution of the far-zone gravity in Eq. (58) can be evaluated
using the so-called Molodensky coefficients (weights) to account for the in-
fluence of the far zones omitted from the truncated integration in Eq. (65).
These coefficients for the modified spheroidal Stokes function are (Martinec,
1993)

Q̃`m(ψo) =
∫ π

ψo

S`(ψ, ψo) Pm(cosψ) sinψ dψ =

= Qm(ψo)−
∑̀

n=2

2n+ 1
n − 1

Rn,m(ψo)−

−
∑̀

n=0

2n + 1
2

tn(ψo) Rn,m(ψo) , (69)
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where the spherical truncation coefficients Qm(ψo) are given by

Qm(ψo) =
∫ π

ψo

S(ψ) Pm(cosψ) sinψ dψ . (70)

The contribution of the far zone to the residual geoid can then be evaluated
using a conversion of the spatial form in Eq. (58) to a spectral form based
on the spherical harmonic expansion

Ng,`
fz (Ω) =

R

2

max∑

n=`+1

(n− 1) Q̃`n(ψo) Tn(Ω) , (71)

with the spherical harmonic coefficients of the disturbing gravity potential
Tn up to degree and order max = 360 taken from the EGM96.

The final expression for the determination of the residual co-geoid can
be written as follows:

Ng,`(Ω) = N g,`
ep (Ω) + N g,`

nz (Ω) + N g,`
fz (Ω) .=

.=
R

2γ(re, θ)
∆gg,`(R,Ω)

∫ ψo

0
S`(ψ, ψo) sinψ dψ +

+
R

4πγ(re, θ)

j−1∑

k

[
∆gg,`(R,Ωk)−∆gg,`(R,Ω)

]
×

× S`(ψk, ψo) ∆Ωk +
R

2

max∑

n=`+1

(n− 1) Q̃`n(ψo) Tn(Ω) . (72)

4.2. Deflections of the vertical

Due to the limited data area, the residual meridian component of the
deflection of the vertical was computed by the truncated Vening-Meinesz
integral

ξg,`(R,Ω) =
1

4πγ(re, θ)

∫ 2π

0

∫ ψo

0
∆gg,`(R, α, ψ)M`(ψ) sinψ dψ cosαdα , (73)

and similarly the prime vertical component

ηg,`(R,Ω) =
1

4πγ(re, θ)

∫ 2π

0

∫ ψo

0
∆gg,`(R, α, ψ)M`(ψ) sinψ dψ sinα dα . (74)
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Discretizing the integrals yields

ξg,`nz (R,Ω) =
1

4πγ(re, θ)

j−1∑

k

∆gg,`(R,Ωk) M`(ψk) cosαk ∆Ωk , (75)

for the residual meridian component, and

ηg,`nz (R,Ω) =
1

4πγ(re, θ)

j−1∑

k

∆gg,`(R,Ωk) M`(ψk) sinαk ∆Ωk , (76)

for the residual prime vertical component of the deflection of the vertical,
respectively. The contribution of the computation points was computed
(Heiskanen and Moritz, 1967)

ξg,`ep (R,Ω) = − ψo

2γ(re, θ)
∂∆gg,`(R,Ω)

∂θ

∣∣∣∣∣
θ

, (77)

for the residual meridian component, and

ηg,`ep (R,Ω) = − ψo

2γ(re, θ)
∂∆gg,`(R,Ω)

∂λ

∣∣∣∣∣
λ

, (78)

for the residual prime vertical component, respectively. Horizontal deriva-
tives of the gravity anomalies in the principle directions were computed by
fitting higher-order polynomials into the data distributed along these partic-
ular directions. Taking derivatives of these polynomials, the corresponding
values were evaluated numerically. Due to the fast attenuation of the in-
tegral with the spherical distance, the integration kernel was not modified
and the effect of the far-zone gravity data was neglected, i.e.,

ξ`fz(R,Ω) = η`fz(R,Ω) = 0 . (79)

4.3. Vertical gradients of anomalous gravity

The vertical gradient of the residual gravity anomaly, see Eq. (55), was
evaluated by the discretized formula
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∂∆g`nz(r,Ω)
∂r

∣∣∣∣∣
r=R

=
1

2πR

j−1∑

k

[
∆g`(R,Ωk)−∆g`(R,Ω)

]
K`(ψk) ∆Ωk −

− 2
R

∆g`(R,Ω) . (80)

The contribution of the singularity to the vertical gradient of residual anoma-
lous gravity was computed by the formula (Heiskanen and Moritz, 1967)

∂∆g`ep(r,Ω)

∂r

∣∣∣∣∣
r=R

=
ψo

4

[
∂2∆g`(R,Ω)

∂θ2

∣∣∣∣∣
θ

+
∂2∆g`(R,Ω)

∂λ2

∣∣∣∣∣
λ

]
. (81)

The second-order horizontal derivatives of the gravity anomalies in the prin-
ciple directions were computed by fitting higher-order polynomials into the
data distributed along these particular directions. Taking the second-order
derivatives of these polynomials, the corresponding values were evaluated
numerically. Due to the fast attenuation of the integral with the spherical
distance, the integration kernel was not modified and the effect of far-zone
gravity was again neglected, i.e.,

∂∆g`fz(r,Ω)

∂r

∣∣∣∣∣
r=R

= 0 . (82)

5. Numerical results

Input elevation and gravity data from the database GOP30x30 are de-
scribed in (Kostelecký jr., 2004). The database includes high resolution and
accuracy gravity and elevation data for the area of Central Europe. The
data were compiled from individual sources and checked for their consis-
tency and accuracy in overlapping areas. Although original data entering
the database had a varying resolution and form, the database represents
one of the best sources of available local gravity data for the region. Due
to the different resolution and form of gravity data, it is impossible to char-
acterize their accuracy with simple statistical estimates valid for the entire
data area. Generally, gravity data have the best quality for the territory of
the former Czechoslovak Republic and its neighboring areas. In this par-
ticular case, discrete observations of gravity could be used for computation
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of mean gravity values. The situation is then relatively better concern-
ing elevation data where the global topographical model GTOPO30 (US
Geological Survey) together with national terrain models could be used.
Comparing the local terrain models with the GTOPO, standard deviations
based on their discrete differences at the level of tens of metres were de-
tected (Kostelecký jr., 2004). Reduced residual gravity data were evaluated
according to Eq. (10) at the geographical grid with the spatial resolution of
30× 30 arcsec. The data area selected according to the computational area
spans between parallels of 42 and 58 arcdeg northern latitude, and meridi-
ans of 0 and 30 arcdeg eastern longitude that corresponds to 6,912,000 data
points.

The smaller computation area then covers the territory of Central Europe
with the boundaries at 45 and 55 arcdeg northern latitude, and 6 and 26
arcdeg eastern longitude, respectively. The computation area is smaller due
to various surface integration steps when results are evaluated over a smaller
area to avoid the so-called edge effects in results of the integral formulas.
The computation area corresponds to 2,880,000 points at the resolution
of 30 × 30 arcsec. Numerical results are presented in a form of contour
plots. Due to the best gravity data for the territory of the Czech Republic
and its surrounding areas, the plots cover only the area bounded by 48
and 52 arcdeg northern latitude, and 11 and 20 arcdeg eastern longitude,
respectively. This area corresponds to 518,400 computation points.

The reference geoid N` over this area is shown in Fig. 1 and the residual
geoid N ` in Fig. 2. The geoid represents one particular equipotential surface
of the Earth’s gravity field approximating the mean sea level globally. As
such, it may directly be linked to the gravitational potential with relatively
smooth properties compared to the observed gravity signal. It may not
be the best choice for geophysical investigations concerning mass anomalies
in the upper mantle. However, the geoid is the reference surface (vertical
datum) in one system of geodetic heights with an ultimate physical meaning
– orthometric height as a distance between the geoid (mean sea level) and
the surface of the Earth measured along the plumbline.

The reference meridian component of the deflection of the vertical ξ` is
plotted in Fig. 3 and its residual component ξ` in Fig. 4. Corresponding
values for the prime vertical component of the deflection of the vertical
η are plotted in Fig. 5 and Fig. 6, respectively. Deflections of the vertical
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evaluated at the mean sea level represent the slope of the geoid with respect
to a surface parallel with the reference ellipsoid along the local meridian and
prime vertical: both values represent angles between the actual plumbline
and ellipsoidal surface normal in the respective directions.

Finally, the vertical gradient of the reference gravity anomaly ∆gr,` is
shown in Fig. 7 and its residual component ∆g`r in Fig. 8. This figure is
included only to complete formally figures of other computed parameters
despite its high complexity. The unit of the gravity gradient is 1 Eötvös (E)
= 10−9 s−2 = 0.1 mGal/km. The differential quantity ∆gr is much more
sensitive to smaller features of the gravity field than the above parameters.
Obviously, its correct evaluation is not possible without a complete knowl-
edge of the mass density distribution within topographical masses. Thus
these values must be interpreted with care keeping this deficiency in mind.
However, the same remark applies to all parameters presented in this man-
uscript. Elementary statistics of the results for the computation area shown
at the figures, including total values of the computed parameters, are then
in Table 1.

Table 1. Statistical values of the results (plotted computation area)

function symbol minimum maximum mean sigma rms units
reference geoid N` 32.602 47.913 43.271 3.209 43.391 m
residual geoid N ` −1.451 3.451 1.144 0.839 1.419
geoid N 31.754 49.067 44.416 3.533 44.556
reference deflection ξ` −3.774 9.413 3.290 3.123 4.536 arcsec
residual deflection ξ` −12.832 16.386 0.112 3.195 3.197
deflection ξ −13.739 19.605 3.402 5.385 6.369
reference deflection η` −1.264 4.822 2.324 1.401 2.714 arcsec
residual deflection η` −14.868 9.380 −0.149 2.887 2.891
deflection η −13.038 12.117 2.175 3.608 4.213
reference gradient ∆g`,r −3.732 3.175 0.507 1.375 1.466 E
residual gradient ∆g`r −293.156 161.523 0.032 25.169 25.169
gradient ∆gr −291.992 162.413 0.541 25.223 25.227

6. Conclusions

Evaluation of selected parameters of the Earth’s gravity field using the
high resolution ground gravity and elevation data was discussed in this con-
tribution. Values of the geoidal undulations, deflections of the vertical, and
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vertical gradients of anomalous gravity were computed over the selected area
in Central Europe. High resolution surface gravity and elevation data were
used for evaluation of their residual (high-frequency) components. These
values are the main output of this contribution due to their eventual link to
local features of the Earth’s gravity field in the area. The GGM was then
used for evaluation of the reference (low-frequency) components through the
spherical harmonic synthesis of the Stokes coefficients of the geopotential.
Although the gravity signal cannot strictly be divided spectrally accord-
ing to spatial distribution of these masses, it is mainly the high-frequency
signal that may be linked to various local mass anomalies in the structure
of the upper mantle. Leaving the geophysical interpretations to respec-
tive experts, this contribution was prepared with the intention of showing
capabilities of classical geodetic methods in combination with the newest
generation of high-resolution gravity and elevation data as well as current
computer equipment capable of highly demanding numerical computations.

Despite large progress in global gravity modelling via new satellite mis-
sions dedicated to gravity field mapping (CHAMP and GRACE), local grav-
ity and elevation data still keep their important role for estimation of local
gravity field features. For areas with excellent local gravity observations
(such as the area used in this contribution), interesting information on the
local structure of the gravitational field caused namely by shallow mass
anomalies can be extracted by gravity inversion. Despite large progress
in theory and numerical techniques used for gravity inversion, input data
(gravity, elevation, mass densities) are still essential for obtaining correct
values of computed parameters. While there have been only relatively small
advances in collection of new ground gravity data in the computation area,
new elevation and mass density models are being compiled to be used in
future computations.
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