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Control volume method for hydro-
magnetic dynamos in non-uniformly
stratified spherical shells
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Abs t r a c t : The numerical modelling of hydromagnetic dynamos in a rotating spher-

ical shell using the control volume method is presented. The influence of non-uniform

stratification and viscosity on hydromagnetic dynamo action has been investigated. The

results indicate that the influence of non-uniform stratification of a spherical shell on

hydromagnetic dynamos in the present geometric configuration is noticeable. Convec-

tion is columnar and runs in both stably and unstably stratified sublayers, although it

is slightly suppressed in the stably stratified region. The generated magnetic fields are

mostly dipole dominated. Temperature, pressure, velocity and magnetic fields are signif-

icantly modified mainly close to the outer boundary.
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1. Introduction

Magnetic fields in the universe are most probably generated by hydro-
magnetic dynamos. The geomagnetic field is similarly generated by the
hydromagnetic dynamo (Geodynamo), which acts in the outer liquid Earth’s
core. Numerical modelling of self-consistent dynamos has made noticeable
progress in the last decade due to the progress in computer technology (for
more details, see, e.g., Roberts and Glatzmaier, 2000). Its results are in very
good agreement with the observations of the recent geomagnetic field and
with paleomagnetic research (Kono and Roberts, 2002). In most cases, ther-
mal magnetoconvection constitutes the driving mechanism of the dynamos
(see, e.g., Jones, 2000 and Roberts and Glatzmaier, 2000). In spite of the
huge amount of physical models, almost all of them are based on the same
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Šimkanin J.: Control volume method for hydromagnetic dynamos. . . , (1–15)

numerical method, namely the spectral method. As stated above, the nu-
merical results agree with observations. However, numerical simulations of
the geomagnetic field are not able to run in an Earth-like parameter regime
because of the considerable spatial resolution that is required (Glatzmaier,
2002). At some resolution, grid methods could be more efficient on parallel
computer architectures because only the “nearest neighbour” communica-
tion between the processors would be needed – instead of the global com-
munication necessary for spherical harmonic codes (see Glatzmaier, 2002
and Hejda and Reshetnyak, 2004). The control volume method (Patankar,
1980) is one of the local methods which would be available for dynamo sim-
ulations, and which achieves a given accuracy at high resolutions.
The control volume method was successfully used for self-consistent dy-

namo simulations (Hejda and Reshetnyak, 2003 and Harder and Hansen,
2005) and tested on the standard solution (the dynamo benchmark) for
convection (Hejda and Reshetnyak, 2004). In the present paper an atten-
tion is focused on the study of hydromagnetic dynamos in non-uniformly
stratified spherical shells. The outer liquid Earth’s core and the liquid interi-
ors of Giant planets are namely non-uniformly stratified. The non-uniform
stratification (this means density stratification) results from the compli-
cated processes going on in their interiors. For example, the non-uniform
stratification of the outer Earth’s core (Fearn and Loper, 1981; Šimkanin
et al., 2003 and Šimkanin et al., 2006) is due to chemical homogenisation,
gravitational differentiation, solidification processes acting on the inner core
boundary (e.g., the convection in the mushy layer due to the mentioned so-
lidification processes, see Guba and Worster, 2006), etc. These processes
are also the basic sources of the buoyancy, which constitutes the fundamen-
tal source of (magneto)convection and hydromagnetic dynamos (see, e.g.,
Jones, 2000 or Veĺımský and Matyska, 2000).
It is assumed that the upper part of the outer liquid Earth’s core (close to

the core-mantle boundary2) is stably stratified (subadiabatic radial temper-
ature gradient) and the lower part (towards the inner core boundary3) unsta-
bly (superadiabatic radial temperature gradient). The stably stratified sub-
layer is probably very thin (for more details related to the the non-uniform
stratification of the outer Earth’s core, see, e.g., Fearn and Loper, 1981;

2 hereinafter referred to as CMB
3 hereinafter referred to as ICB
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Šimkanin et al., 2003 and Šimkanin et al., 2006). The models of the non-
uniformly stratified fluid shell (and also horizontal layer) are an acceptable
simplification of the real Earth-like conditions. The results of previous anal-
yses have shown that the hydromagnetic systems are strongly affected by
non-uniform stratification, electromagnetic properties of the boundaries, dif-
fusive processes (the complicated coupling of viscous, thermal and magnetic
processes) and the dynamical coupling of magnetic (Lorentz), Archimedean
and Coriolis forces (Šimkanin et al., 2003 and Šimkanin et al., 2006).
The model and governing equations are given in Section 2. The nu-

merical results are presented in Section 3. Finally, Section 4 provides the
conclusions.

2. Governing equations

The generation of magnetic field B by incompressible flow V in the
Boussinesq approximation in a spherical shell (ri < r < r0) rotating with
angular velocity Ω is described by the system of dimensionless equations:

∂B

∂t
= ∇× (V ×B) + q−1∇2B, (1)

P−1

r E

(

∂V

∂t
+ (V · ∇)V

)

=−∇P − 1z ×V+RaTr1r +

+ (∇×B)×B+E∇2V, (2)

∂T

∂t
+ (V · ∇)T = ∇2T +G, (3)

∇ ·V = 0, ∇ ·B = 0. (4)

The typical length scale is the radius of sphere L, which makes the di-
mensionless radius r0 = 1; the inner core radius ri is, similarly to that of
the Earth, equal to 0.35. (r, θ, ϕ) is the spherical system of coordinates,
1z and 1r are the unit vectors. The typical diffusion time, t, velocity, V,
magnetic field, B, and pressure, P , are then measured in units of L2/κ,
κ/L,

√
2Ωκµρ, ρκ2/L2, respectively. The dimensionless parameters ap-

pearing in (1-4) are the Roberts number q = κ/η, the Prandtl number
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Pr = ν/κ, the Ekman number E = ν/2ΩL2 and the modified Rayleigh
number Ra = αg0δTL/2Ωκ, where κ is thermal diffusivity, η is magnetic
diffusivity, ν is kinematic viscosity, µ is permeability, ρ is density, α is the
coefficient of volume expansion, δT is the drop of temperature through the
shell and g0 is the gravity acceleration at r = r0.
The inner core (r ≤ ri) with surface S can rotate about the axis of

rotation due to the viscous and magnetic torque τ . The evolution of the
angular velocity ω of the inner core is described by the following momentum
equation

EI
∂ω

∂t
= Prri

∮

S

τrϕ

∣

∣

∣

∣

r=ri

sin θ dS , (5)

where I is the moment of inertia of the inner core and τij is the stress-tensor
given by the sum of the viscous and Maxwell stresses

τrϕ = E

(

∂Vϕ

∂r
+

1

r sin θ

∂Vr

∂ϕ
− Vϕ

r

)

+BrBϕ sin θ .

The last term in Eq. (3), G(r), constitutes the heat sources. It enables
to simulate various stratifications of the spherical shell. The outer core was
assumed to be stratified non-uniformly (the shell is divided into stably and
unstably stratified sub-shells) with constant temperature Ti = 1 and T0 = 0
at the inner and outer boundaries of the shell (as traditionally in dynamo
simulations). Thus, the non-uniform stratification was considered by heat
sources in the form:

G(r) = (9rr2ICB − 12r + 6r2r2ICB + 60r
2 − 2r2ICB − 8 + r4ICB −

−12rICBr2 − 6rr3ICB − 18rICBr) / [r(r2ICB − 4)]. (6)

∂T
∂r
changes its sign in the middle of the convective shell, rm = (rICB +

rCMB)/2 (for more details, see Reshetnyak and Steffen, 2005).

Eqs (1-4) are closed by the non-penetrating and no-slip boundary con-
ditions for the velocity field at the rigid surfaces, zero boundary conditions
for temperature perturbations T and vacuum boundary conditions for the
magnetic field. The conductivity of the inner core is assumed to be the same
as that of the liquid part.
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3. Numerical results

Eqs (1-4) were solved using the control volume method (for more details
see, e.g., Hejda and Reshetnyak, 2003). It is assumed that all fields are
defined at the nodes which are the centres of grid cells (control volumes).
The basic strategy of the method is to express the differential equations
in conservative form, integrate them over the control volumes and convert
every such integral into the sum of fluxes over the boundary faces by means
of Gauss’ theorem. It is advantageous to employ a different grid for each
component of the vector fields (and an additional grid for the scalar field).
Then, if we consider, e.g., the heat flux equation, the velocity components
are calculated for the points that lie on the corresponding faces of the control
volumes. The discrete form of the system of linear equations is represented
by the band matrix. Note that it is the flux form of the equations which
allows us to omit the boundary conditions at the axis (and at the centre
of the sphere if the magnetic field is taken into account) because the flux
is zero at the faces with zero area. Nevertheless, extrapolation to the axis
is necessary in some situations. It is well known that convection-diffusion
problems are prone to instabilities for larger Reynolds numbers. Whereas
the simplest remedy for this difficulty is the up-wind scheme, the power-
law scheme of second-order accuracy has been used. The linear system of
equations was solved using the tridiagonal solver in the r−direction and
the Gauss-Seidel iterative algorithm with underrelaxation in the tangential
directions (Patankar, 1980).
Our control volume code was verified on the so-called numerical dynamo

benchmark (see Christensen et al., 2001). Case 0 (the thermal convection in
a rotating spherical shell) has been successfully tested and already presented
(see Hejda and Reshetnyak, 2004) and Case 2 (the dynamo with conduct-
ing and rotating inner core) is also in agreement with it. The solution
of the dynamo benchmark is quasi-stationary, drifting slowly in longitude,
symmetric about the equator (dipole parity) and has fourfold symmetry
in longitude. Convection is columnar and the magnetic field at the outer
boundary is strongly dipolar and dominated by four flux lobes (Christensen
et al., 2001).
Parallelization is carried out using the message-passing interface (MPI).

The computations were performed on an IBM Regatta p690+ cluster of SMP
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nodes in the John von Neumann Institute for Computing, Jülich Research
Centre; SunFire V890 at the Institute of Physics, Academy of Sciences,
Prague and PC clusters.
As stated above, the outer Earth’s core is probably non-uniformly strat-

ified (due to thermodynamic processes acting therein), i.e. it is divided
into two sublayers (see Fearn and Loper, 1981 and Šimkanin et al., 2006).
The upper sublayer (close to CMB) is stably stratified ( ∂T

∂r
> 0) and the

lower one (close to ICB) unstably ( ∂T
∂r

< 0). In the Earth’s core the stably
stratified sublayer is probably very thin (the outer Earth’s core is almost
unstably stratified). However, in the other planets the ratio of the thick-
ness of the appropriate sublayers (e.g., of the stably stratified to unstably
stratified sublayers) and the geometric configuration vary (see Zhang and
Schubert, 2000, Stanley and Bloxham, 2006 and Christensen, 2006). This
is noticeable especially with the Giant planets (for more details, see, e.g.,
Stanley and Bloxham, 2004, Stanley and Bloxham, 2006 and Zhang and
Schubert, 2000). Non-uniform stratification can be simulated thermody-
namically also in the Boussinesq models by means of internal heat sources
(for more details, see Šimkanin et al., 2003 and Šimkanin et al., 2006). If
the stably stratified sublayer is very thin (for a geometric configuration sta-
ble/unstable), it is very similar to the case of uniform stratification when
the whole layer is unstably stratified. However, the effects of non-uniform
stratification are noticeable when the thickness of the stably and unstably
stratified sublayers is comparable (see Šimkanin et al., 2003 and Šimkanin
et al., 2006). Consequently, the change of the sign was located to the middle
of the convective shell (the thickness of both sublayers is the same).
The influence of non-uniform stratification on a hydromagnetic dynamo

(Geodynamo) action was studied for parameters Ra = 550, Pr = 1 and var-
ious values of the Ekman, E, and Roberts, q, numbers (see Table 1). The
forward integration of the equations was possible only with a very small
time step of (from 10−6 to 10−7), even for higher values of the Ekman num-
ber. Consequently, computations had high demands on the computer time.
The spatial resolution was 85×85×160 (Kr ×Kθ×Kϕ), where Kr, Kθ, Kϕ

are the numbers of grid points in the appropriate directions r, θ, ϕ, respec-
tively. The monitored output parameters are the mean kinetic energy, Ek,
the mean magnetic energy in the shell, Em, and in the inner core, E

ic
m, the

mean angular drift of the solution, ω, and the mean angular frequency of
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differential rotation of the inner core, ωic. The results (dependence of the
monitored output parameters on the Ekman number, E, and the Roberts
number, q) are summarized in Table 1. The typical space distribution of
pressure and temperature for the case with E = 10−4 and q = 2 (the lowest
used value of the Ekman number) are presented in Fig. 1, and of the veloc-
ity and magnetic fields in Figs 2 and 3, respectively. All cases (presented
in Table 1) are characterized by columnar convection, solution of fourfold
symmetry in longitude and the magnetic field which is dominated by four
flux lobes. Fig. 2 (the space distribution of the velocity field) presents a
typical example of the multilayer convection mode. The convection runs
in both the stably and unstably stratified sublayers, although it is slightly
suppressed in the stably stratified region and shifted away from the CMB
(Fig. 2). Namely, the positive temperature gradient in the stably stratified
sublayer suppresses convection in the region close to CMB (see Zhang and
Schubert, 2000). In the first case (E = 10−1 and q = 8) the magnetic field
at the outer boundary is non-dipolar, in the remaining ones it is dipolar (as
assumed). These results are in good agreement with the previous analyses
related to systematic parameter studies (but done in the uniformly stratified
spherical shell, see, e.g., Christensen and Aubert, 2006).
As written above, the case with E = 10−4 and q = 2 is presented because

of the lowest used value of the Ekman number. Fig. 1 shows how signifi-
cantly the temperature and pressure are influenced by the positive temper-
ature gradient in the stably stratified sublayer (as assumed, especially close
to CMB, see Fig. 1). As also assumed, the convection is noticeably influ-
enced by non-uniform stratification especially close to CMB (see Fig. 2),
i.e. it is slightly suppressed in the stably stratified region and shifted away
from CMB (Fig. 2). In addition, Fig. 2 provides a typical example of the
multilayer convection mode. Looking at Fig. 2, it possible to observe the
strong Vϕ−component of velocity due to forcing as consequence of a pres-
ence of a stably stratified sublayer (for more details, see Lister, 2004). Such
effect becomes stronger at the low Ekman numbers. The magnetic field is
also noticeably modified, mainly at CMB. Looking at Fig. 3 it is possible to
observe that the stably stratified sublayer visibly modifies the magnetic field
in this region, mainly at CMB, although it remains dipolar. Consequently,
it is possible to conclude that the influence of non-uniform stratification on
the hydromagnetic dynamo in the present geometric configuration is no-
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Table 1. Dependence of the mean kinetic energy, Ek, the mean magnetic energy in the
shell, Em, the mean magnetic energy in the core, Eic

m, the mean drift velocity, ω, and
the mean angular frequency of differential rotation of the inner core, ωic, on the Ekman
number, E, and the Roberts number, q

E q Ek Em Eic
m ω ωic

10−1 8 805.3 3619 3365 -1.6541 -0.9337

10−2 5 773.6 3403 2722 -1.5342 -0.7962

10−3 5 1459 16049 14922 -1.5913 -0.8527

10−4 2 2318 44042 40950 -1.6443 -0.9116

Fig. 1. Pressure, P, (upper line) and temperature, T, (bottom line); equatorial (left
column) and axi-symmetrical meridional (right column) sections, for E = 10−4 and q = 2.
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ticeable, which could be considered as typical for the Earth and probably
also for the Giant planets such as Jupiter and Saturn. Presented results
are certainly influenced also by viscosity (various values of Ekman number)
and various measure of thermal and magnetic diffusive processes (various
values of Roberts numbers). However, the most dominant effects are of the
non-uniform stratification.
Another good example of the influence of stably stratified sublayer pro-

vides the study of a hydromagnetic dynamo action in Mercury (Christensen,
2006). Mercury is characterized by the weak magnetic field. A possible ex-
planation could be given by a hydromagnetic dynamo working in the similar
geometric configuration as at our study (stable/unstable) but in this case
more part of spherical shell is stably stratified (Christensen, 2006). In such
case the (magneto)convection (see Šimkanin et al., 2003 and Zhang and
Schubert, 2000) and dynamo action (Christensen, 2006) are strongly sup-
pressed in the upper stably stratified sublayer (the most part of shell is sta-
bly stratified), i.e. magneto(convection) and dynamo run in the small unsta-
bly stratified sublayer (close to ICB). Consequently, a magneto(convection)
is weak (Šimkanin et al., 2003 and Zhang and Schubert, 2000). Such weak
dynamo action and skin-effect (the magnetic field generated in the unstably
stratified sublayer permeates through the stably stratified sublayer where is
damped due to skin-effect) lead to the weak magnetic field observed on the
surface of Mercury (Christensen, 2006).
For a different geometric configuration this influence can be much stronger

(see, e.g., Stanley and Bloxham, 2004 and 2006). Having assumed reverse
stratification, i.e. the stably stratified sublayer is surrounded by the un-
stably stratified one, the given configuration leads to non-dipolar and non-
axisymmetric magnetic fields, which are typical for instance for Uranus and
Neptune. A similar effect can be achieved if different electromagnetic bound-
ary conditions are considered for the outer (CMB) and inner (ICB) bound-
aries, e.g., the electrical conductivity of CMB is much greater than that of
ICB (Stanley and Bloxham, 2004). The dependence of the hydromagnetic
dynamo (mainly Geodynamo) on electromagnetic boundary conditions of
CMB and ICB is described very well by Wicht (2002).
Let us briefly comment the efficiency of our numerical code. The lowest

used value of the Ekman number is E = 10−4 because the value E = 10−6

constitutes the strong limitation of our dynamo code. From this point of
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Fig. 2. Velocity field components (Vr, Vθ, Vϕ) (from top to bottom); equatorial (left
column) and axi-symmetrical meridional (right column) sections, for E = 10−4 and q = 2.
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Fig. 3. Magnetic field components (Br, Bθ, Bϕ) (from top to bottom); equatorial (left
column) and axi-symmetrical meridional (right column) sections, for E = 10−4 and q = 2.
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view the models presented in Stanley and Bloxham (2006) and Christensen
(2006) are more realistic because the lower Ekman numbers and the greater
Rayleigh numbers were used. Having compared our dynamo code based on
the control volume method with dynamo codes based on spectral methods,
it is possible to conclude that spectral methods are much more effective
than our control volume code.
The presented results are in agreement with previous analyses of non-

uniform stratification (e.g., the simple test in Reshetnyak and Steffen, 2005).
The influence of non-uniform stratification on hydromagnetic dynamo ac-
tion is noticeable. However, it is possible to expect this dependence to be
much stronger in the study of turbulence (Reshetnyak and Steffen, 2005).

4. Conclusions

The control volume method is an other numerical method available for
numerical modelling of a self-consistent dynamo (Hejda and Reshetnyak,
2003; Reshetnyak and Steffen, 2005 and Harder and Hansen, 2005). The
Case 0 (thermal convection in a rotating spherical shell) has been success-
fully tested (see Hejda and Reshetnyak, 2004) and Case 2 (the dynamo with
conducting and rotating inner core) is also in agreement with it. Various
dynamo modes were investigated for various input parameters and geomet-
ric configurations (for more details, see Reshetnyak and Steffen, 2005). The
influence of non-uniform stratification on hydromagnetic dynamo action was
studied for various values of the Ekman and Roberts numbers (see Table 1).
The employed time step had to be very small (from 10−6 to 10−7), even for
higher values of the Ekman number.
All cases are characterized by columnar convection, solution of fourfold

symmetry in longitude and magnetic field which is dominated by four flux
lobes. The magnetic field at the outer boundary is dipolar (see Table 1
and Figs 1–3), except for the case with E = 10−1 and q = 8 when it is
non-dipolar. The influence of non-uniform stratification on the hydromag-
netic dynamo is noticeable for temperature, pressure, velocity and magnetic
fields. They are certainly influenced also by viscosity (various values of Ek-
man number) and various measure of thermal and magnetic diffusive pro-
cesses (various values of Roberts numbers). However, the most dominant
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effects are of the non-uniform stratification. It is visible mainly close to
CMB, where the effects of the stably stratified sublayer are the most sig-
nificant and strongest, i.e. convection is slightly suppressed in the stably
stratified region and shifted away from CMB and the magnetic field is sig-
nificantly modified, particularly close to CMB. Consequently, it is possible
to conclude that the influence of non-uniform stratification on the hydro-
magnetic dynamo in the present geometric configuration is noticeable which
could be considered as typical for the Earth and probably also for the Giant
planets such as Jupiter and Saturn (but is not as significantly strong as in
Stanley and Bloxham, 2004 and Stanley and Bloxham, 2006 where different
geometric configuration leads to magnetic fields typical for Uranus and Nep-
tune). However, it is possible to expect that an influence of non-uniform
stratification on a hydromagnetic dynamo to be much stronger in the study
of turbulence (Reshetnyak and Steffen, 2005).

E = 10−4 was the lowest used value because E = 10−6 constitutes the
limitation of our dynamo code (high demands on the computer time). From
this point of view the models presented in Stanley and Bloxham (2006) and
Christensen (2006) are more realistic because the lower Ekman numbers
and the greater Rayleigh numbers were used. Comparing efficiency of spec-
tral methods with our dynamo code based on control volume method, we
are able to conclude that the spectral methods are much more effective
than control volume method for dynamo modelling when we investigate the
global fields. It is possible to expect that the control volume method will
be more effective at local analyses of turbulence (see, e.g., Reshetnyak and
Steffen, 2005).
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