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1 Research Institute of Geodesy and Cartography
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Abstract: Stokes’ integral, representing a surface integral from the product of terrestrial
gravity data and spherical Stokes’ function, is the theoretical basis for the modelling of the
local geoid. For the practical determination of the local geoid, due to restricted knowledge
and availability of terrestrial gravity data, this has to be combined with the global gravity
model. In addition, the maximum degree and order of spherical harmonic coefficients in
the global gravity model is finite. Therefore, modifications of spherical Stokes’ function
are used to obtain faster convergence of the spherical harmonic expansion. Decomposition
of Stokes’ integral and modifications of Stokes’ function have been studied by many geode-
sists. In this paper, the proposed deterministic modifications of spherical Stokes’ function
are generalized. Moreover, generalized geoidal estimators, when the Stokes’ integral is
decomposed in to spectral and frequency domains, are introduced. Higher derivatives
of spherical Stokes’ function and their numerical stability are discussed. Filtering and
convergence properties for deterministic modifications of the spherical Stokes’ function in
the form of a remainder of the Taylor polynomial are studied as well.
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1. Introduction

In the context of effective measurements using Global Navigation Satellite
Systems (GNSS), the knowledge of the geoidal surface still remains a chal-
lenging problem for geoscientists all over the world. The Stokes’ integral
(a surface convolution integral from the product of terrestrial gravity data
and the spherical Stokes’ function) represents the mathematical basis for the
determination of the local geoid. However, the direct application of Stokes’
integral is restricted due to the lack of terrestrial gravity data. In practical
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determination of the local geoid, the Stokes’ integral is decomposed into
two parts, the truncated integration and the truncated series of spherical
harmonics.
The spherical Stokes’ function in the Stokes’ integral plays a role of an

integration kernel. Its value depends on the distance between the compu-
tation point and integration element on the surface of a reference sphere.
Naturally, behaviour of the spherical Stokes’ function is significant for the
computation of the truncated integration. In addition, spherical Stokes’
function affects the truncated series of spherical harmonics by means of
spectral weights. In order to reduce the amplitudes of spectral weights,
modifications of spherical Stokes’ function (hereinafter referred to as modi-
fications) have been studied by many authors.
Modifications focusing on faster convergence of the truncated series of

spherical harmonics are called deterministic modifications. Mathematical
principles of the deterministic modifications have been studied by Molo-
densky et al. (1962); Wong and Gore (1969); Meissl (1971); Jekeli (1980,
1981); Heck and Grüninger (1987); Vańıček and Kleusberg (1987); Vańıček
and Sjöberg (1991); Featherstone et al. (1998); Evans and Featherstone
(2000). Furthermore, application of least squares principles to modify spher-
ical Stokes’ function has been proposed by Wenzel (1982), Sjöberg (1984,
1991), Sjöberg and Hunegnaw (2000), introducing the group of stochas-
tic modifications. In this case also the stochastic properties of terrestrial
gravity data and spherical harmonic coefficients of the global gravity model
(GGM) have to be taken into account. However, the detailed formula-
tion of modifications depends on the approach used for the decomposition
of the Stokes’ integral. For example, deterministic modifications together
with the remove-compute-restore technique are discussed in Featherstone
et al. (1998), Vańıček and Featherstone (1998), Evans and Featherstone
(2000), Featherstone (2003). On the other hand, decomposition of the
Stokes’ integral in space domain only, when the reference gravity field is gen-
erated by a reference ellipsoid, is considered in Jekeli (1980, 1981), Sjöberg
and Hunegnaw (2000), Sjöberg (2003).
Formal similarity of modifications is a motivation for their generalized

expression. Consequently, the concept of generalization of geoidal estima-
tors can be easily applied. Sjöberg (2003) formulated a general model for
geoid estimators in the case of deterministic and stochastic modifications.

46



Contributions to Geophysics and Geodesy Vol. 40/1, 2010 (45–64)

For this purpose relatively simple integration kernel has been chosen. In
the present paper more complicated integration kernel proposed in Šprlák
(2008b) is used. For the sake of simplicity, only the concept of the general-
ization of deterministic modifications and corresponding geoidal estimators
is proposed. In Section 2 two most common approaches for decomposition of
Stokes’ integral are described considering spherical Stokes’ function. Also
the error and global mean square error of corresponding geoidal estima-
tors are introduced. Universal expression for deterministic modifications of
spherical Stokes’ function is presented in Section 3. In addition, the most
cited deterministic modifications of spherical Stokes’ function are resolved.
Numerical stability for higher derivatives of spherical Stokes’ function is
discussed. In Section 4 general geoidal estimators are derived. An example
of filtering and convergence properties for the modifications in the form of
Taylor polynomial remainder is presented. Significant results of the present
paper are emphasized in conclusions.

2. Geoidal estimators with spherical Stokes’ function

Stokes’ integral is a well known formula for determination of the geoidal
height N . From a mathematical point of view it corresponds to a surface
convolution integral over a unit sphere σ in the form (Hofmann-Wellenhof
and Moritz, 2005, Eq. 2-307):

N =
c

2π

∫∫
σ

Δg S(y) dσ, (1)

where c =
R

2γ
, R is the radius of a reference sphere, γ is the normal gravity

at the surface of a reference ellipsoid,1 S(y) is the spherical Stokes’ function
and Δg is the gravity anomaly for which an expression in a series of spherical

1 Originally, Eq. (1) is based on Bruns’ formula N = T/γ, see e.g. (Hofmann-Wellenhof
and Moritz, 2005, Eq. 2-237), where T is the disturbing potential at the surface of the
geoid and γ is defined above. However the surface of the geoid is approximated by a
reference sphere with radius R. Therefore the integration is performed over a reference
sphere and the normal gravity γ is defined at the surface of a reference ellipsoid.

47
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harmonics is (Hofmann-Wellenhof and Moritz, 2005, Eq. 9-14):

Δg =
∞∑

n=2

Δgn =
GM

r2

∞∑
n=2

(n− 1)
(
a

r

)n n∑
m=0

P̄nm (sinϕ)×

× [
ΔC̄nm cos (mλ) + S̄nm sin (mλ)

]
. (2)

In the last equation, GM is the product of Newtonian gravitational constant
and the mass of the Earth including oceans and atmosphere, (r, ϕ, λ) are
the spherical polar coordinates of the computation point, a is the length
of the semimajor axis of a reference ellipsoid, ΔC̄nm and S̄nm are the fully
normalised spherical harmonic coefficients of degree n and order m reduced
by the corresponding coefficients of the reference gravity field of a reference
ellipsoid, and P̄nm (sinϕ) are the fully normalised Legendre functions of the
first kind. Spectral representation of the spherical Stokes’ function S(y)
(Stokes, 1849) in a series of Legendre polynomials Pn(y) is:

S(y) =
∞∑

n=2

2n+ 1
n− 1 Pn(y), (3)

where y = cosψ and ψ is the spherical distance between the computation
point and integration element.
As mentioned above, direct application of Stokes’ integral Eq. (1) is re-

stricted due to the lack of terrestrial gravity data. This restriction holds
also for another analytical solutions of geodetic boundary value problems
in the form of surface integrals, e.g. Hotine’s and Poisson’s integral. Usu-
ally, only very close terrestrial gravity data, several arc degrees around
the computation area, are available. In addition, global integration is not
reasonable because of time consuming computation and limited computer
memory. For the practical determination of the geoid, geoidal estimators
based on the decomposition of Stokes’ integral in the space and frequency
domains, are formulated. In both cases, integration of terrestrial gravity
data with proper integration radius is performed. The rest of the truncated
integration is expanded into a series of spherical harmonics and computed
by GGM. In the next subsections, two most common approaches of decom-
position of the Stokes’ integral are discussed.
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2.1. Decomposition of Stokes’ integral in space domain

The presented procedure for solving the problem of restricted availability of
gravity data and its combination with spherical harmonic coefficients of the
GGM was originally proposed by Molodensky et al. (1962). Review of this
approach with some important aspects is also presented in Vańıček et al.
(2003). In order to see the main differences between the geoidal estimator
with spherical Stokes’ function and the general geoidal estimator derived
in Section 4, let us describe the decomposition of Stokes’ integral in space
domain. Let us suppose that the Stokes’ integral Eq. (1) is decomposed into
two parts:

N =
c

2π

∫∫
σ0

Δg S(y) dσ +
c

2π

∫∫
σ−σ0

Δg S(y) dσ. (4)

First term on the right hand side of Eq. (4) corresponds to a truncated
integration of gravity data in domain σ0 (termed also as the effect of the
near zone). Truncated integration with integration radius ψ0 around each
computation point is computed by standard algorithms for numerical inte-
gration. Second term in Eq. (4) (called also the effect of the distant zone)
represents the rest of truncated integration in the domain σ − σ0. Because
there are no terrestrial gravity data available in the domain σ−σ0, effect of
the distant zone is expanded into a series of spherical harmonics. For this
purpose, let us define an error kernel ΔK(y) on the interval −1 ≤ y < 1
with y0 = cosψ0 by the following equation:

ΔK(y) =

{
0, y0 ≤ y < 1

S(y), −1 ≤ y < y0
(5)

which can be expanded into a series of Legendre polynomials in the form:

ΔK(y) =
∞∑

n=2

2n + 1
2

Qn(y0) Pn(y), (6)

where the truncation error coefficients Qn(y0) are:

Qn(y0) =

1∫
−1
ΔK(y) Pn(y) dy =

y0∫
−1

S(y) Pn(y) dy. (7)
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It is important to note that neither analytical nor numerical methods for
solving definite integrals are used for computation of truncation error coef-
ficients. Recurrence relations derived in Paul (1973) and Hagiwara (1976)
are preferred. Using the definition of the error kernel according to Eq. (5),
the integration over a reference sphere can be performed. Supposing spec-
tral representation of Stokes’ function and its error kernel according to Eqs.
(3) and (6) and using orthogonality relations for spherical harmonics, the
effect of the distant zone is expressed as:

c

2π

∫∫
σ−σ0

Δg S(y) dσ =
c

2π

∫∫
σ

Δg ΔK(y) dσ = c
∞∑

n=2

Qn(y0) Δgn. (8)

From the last equation one can see that the magnitude of the effect of the
distant zone depends on the n-th surface spherical harmonic of the gravity
anomaly arising from Eq. (2) and the truncation error coefficients Qn(y0).
On the other hand, according to Eq. (7), the size of integration radius ψ0
and behaviour of integration kernel affect the amplitudes of the truncation
error coefficients.
Let us now formulate the practical geoidal estimator in which terres-

trial (with superscript T ) and satellite gravity data in the form of spherical
harmonic coefficients of the GGM (with superscript S) are combined. Due
to measurement and data reduction errors the theoretical (true, errorless)
values of terrestrial gravity data ΔgT must be replaced by their estimates
ΔĝT . The difference between the estimate and theoretical value represents
the error εT = ΔĝT − ΔgT . Similarly, the theoretical value of the gravity
anomaly for n-th surface harmonic ΔgS

n is replaced by its estimate Δĝ
S
n with

the error εSn = Δĝ
S
n −ΔgS

n . Respecting the estimates of the gravity data in
Eqs. (4) and (8) the geoidal estimator has the form:

N̂ =
c

2π

∫∫
σ0

ΔĝT S(y) dσ + c
Mmax∑
n=2

Qn(y0) Δĝ
S
n , (9)

whereMmax is the maximum degree of spherical harmonic coefficients of the
GGM. The geoidal estimator Eq. (9) consists of two analogous terms. The
first term corresponds to a truncated integration in a space domain in which
the significance of terrestrial gravity data is determined by the spherical
Stokes’ function S(y). In the second term, weight of satellite gravity data
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in a truncated series is determined by truncation error coefficients Qn(y0)
or, in general, by spectral weights which are related to spherical Stokes’
function through Eq. (7). Evidently, a reference gravity field is generated
by a reference ellipsoid. Therefore Eq. (9) can be called the geoidal estimator
with the reference gravity field generated by a reference ellipsoid. Using the
difference between the geoidal estimator Eq. (9) and the Stokes’ integral
Eq. (1) the error of geoidal estimator is defined as follows:

εN̂ = N̂ −N = c
∞∑

n=2

[
2

n− 1 −Qn(y0)
]
εTn + c

Mmax∑
n=2

Qn(y0)ε
S
n −

− c
∞∑

n=Mmax+1

Qn(y0)Δg
T
n . (10)

The symbols ΔgT
n and ε

T
n are the spectral components of the theoretical val-

ues for terrestrial gravity data and their corresponding errors. Propagation
of terrestrial and satellite gravity data errors are defined by the first and
second terms in Eq. (10). Omission of higher degree spherical harmonics
above the maximum degree Mmax of the spherical harmonic coefficients of
the GGM is defined by the third term in Eq. (10). Evidently, all terms are
controlled by the spectral weights depending on the integration kernel used
in truncated integration.

2.2. Remove-compute-restore technique

In the previous subsection the gravity anomalies with all their frequencies
are integrated over domain σ0. Let us suppose that the low frequencies
are removed up to degree M in the first term of Eq. (4), i.e. the reference
gravity field is generated by a spheroid to degree M . In this way also the
decomposition in spectral domain is performed and the effect of the near
zone is:

c

2π

∫∫
σ0

Δg S(y) dσ =
c

2π

∫∫
σ0

[
Δg −

M∑
n=2

Δgn

]
S(y) dσ +

+ c
M∑

n=2

[
2

n− 1 −Qn(y0)
]
Δgn. (11)
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Substituting Eq. (11) into Eq. (4), considering the expression for the
effect of the distant zone Eq. (8) and M = Mmax, a geoidal estimator,
widely used in practical determination of the geoid, known as the remove-
compute-restore (RCR) technique Rapp and Rummel (1975); Sansó (2005)
can be derived in the form:

N̂RCR = c
Mmax∑
n=2

2
n− 1 Δĝ

S
n +

c

2π

∫∫
σ0

[
ΔĝT −

Mmax∑
n=2

ΔĝS
n

]
S(y) dσ. (12)

First term on the right-hand side represents a low frequency geoid which
is computed by the GGM. High frequencies of the geoid are obtained by
truncated integration of residual gravity anomalies in the second term of
Eq. (12). From a mathematical point of view, RCR technique is equivalent
to the geoidal estimator Eq. (9). Therefore, the corresponding error of RCR
technique is defined by Eq. (10). In comparison to geoidal estimator Eq. (9),
Sjöberg and Hunegnaw (2000) considered RCR technique as time consuming
and disadvantageous from a data administration point of view. For more
detailed discussion about RCR technique and geoidal estimator Eq. (9) see
also Sjöberg (2005), Ellmann (2005).

2.3. The global mean square error

The error of geoidal estimator according to Eq. (10) depends on the position
of the computation point. For an investigation of significant properties (e.g.
convergence and filtering properties, see also Section 4) of geoidal estimators
more appropriate quantity is the global mean square error (GMSE). It is
defined as a square root of average, over the sphere, of the squared error of
geoidal estimator (Jekeli, 1981). For a square value of GMSE of the geoidal
estimators Eqs. (9) and (12), it takes the form:

m2
N̂
=
1
4π

∫∫
σ

ε2
N̂
dσ = c2

∞∑
n=2

[
2

n− 1 −Qn(y0)
]2
σ2n +

+ c2
Mmax∑
n=2

[Qn(y0)]
2 dcn + c

2
∞∑

n=Mmax+1

[Qn(y0)]
2 cn. (13)
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Terrestrial and satellite gravity anomaly error degree variances σ2n and dcn,
respectively, and gravity anomaly degree variances cn are defined as follows
(Sjöberg, 2003):

σ2n =
1
4π

∫∫
σ

(
εTn

)2
dσ, (14)

dcn =
1
4π

∫∫
σ

(
εSn

)2
dσ, (15)

cn =
1
4π

∫∫
σ

(
ΔgT

n

)2
dσ. (16)

In practical applications, series of spherical harmonic coefficients and their
standard errors, which are available in the current GGMs, are used to com-
pute the quantities cn and dcn, while σ2n is estimated from a covariance
function, see e.g. Ellmann (2005).

3. Deterministic modifications of spherical Stokes’ function

In the previous Section, relation between the truncation error coefficients,
integration kernel and truncation error was demonstrated by Eqs. (7) and
(8). In practice, truncation error is computed by a series of spherical har-
monics and spherical harmonic coefficients of the GGM. Since the maximum
degree and order of the spherical harmonic coefficients is limited, several ap-
proaches in the form of deterministic modifications of the spherical Stokes’
function to obtain more rapid convergence of the truncation error have been
suggested. It should be pointed out that deterministic modifications can be
generalized by the following equation:

S̃B(y) = S̃(y)−
B∑

b=0

(y − y0)b
b!

dbS̃(y0)
dyb

, y0 ≤ y < 1. (17)

The first term in Eq. (17) is:

S̃(y) = S(y)−
P∑

k=2

2k + 1
2

ak Pk(y)−
L∑

k=2

2k + 1
2

bk Pk(y), (18)
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where ak and bk represent the first and second modification coefficients.
From the mathematical point of view, the general integration kernel S̃B(y)
corresponds to the remainder of a Taylor polynomial to degree B at the co-
sine of integration radius (Stein, 1987). Therefore, when only deterministic
modifications with B ≥ 0 are discussed, the term modifications in the form
of Taylor polynomial remainder will be used throughout the text.
Most cited deterministic modifications defined in Table 1 are distin-

guished by a proper choice of modification coefficients ak, bk and degree
B in Eqs. (17) and (18). In the first place, spherical Stokes’ function is
specified when ak = bk = 0. The concept of deterministic modifications was
formerly proposed by Molodensky et al. (1962). Their deterministic modi-
fication is based on a minimization of the L2-norm of the truncation error.
Therefore, one can say that deterministic modification by Molodensky et al.
(1962) has a mathematical criterion from which modification coefficients
bk to degree L arise from the system of linear equations. Conditioning of
the system of linear equations depends on the integration radius, degree L
and the presence of modification coefficients b0 and b1, for more details see
Sjöberg and Hunegnaw (2000), Featherstone (2003). Deterministic modifi-
cation by Molodensky et al. (1962) together with its possible alternatives
are discussed in Jekeli (1980, 1981).
Wong and Gore (1969) proposed an approach with modification coeffi-

cients ak = 2/(k−1). According to Eq. (3), long wavelength part of spherical
Stokes’ function is removed up to degree P . In this way a spheroidal Stokes’
function is defined. The same kernel corresponds to the analytical solution
of the Stokes’ boundary value problem for a higher degree reference grav-
ity field, see Vańıček and Sjöberg (1991). Combination of the previous two
deterministic modifications was proposed by Vańıček and Kleusberg (1987).
The corresponding modification coefficients bk are evaluated from a sys-
tem of linear equations whose numerical stability depends on integration
radius and on degrees L and P . It is important to note that modification
coefficients bk for deterministic modification by Molodensky et al. (1962)
and Vańıček and Kleusberg (1987) differ from each other. However, in
a special case when L = P , modification coefficients are equal and both
kernels are equivalent, see Vańıček and Sjöberg (1991), Sjöberg and Feath-
erstone (2004). Note that the described deterministic modifications, as well
as spherical Stokes’ function, have discontinuity of the corresponding error
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Table 1. Spherical Stokes’ function and its deterministic modifications2

Modification B ak bk

Stokes (1849) – 0 0

Molodensky et al. (1962) – 0
L∑

k=2

2k+1
2 bk enk = Qn(y0)

Wong and Gore (1969) – 2
k − 1 0

Vańıček and Kleusberg (1987) – 2
k − 1

L∑
k=2

2k+1
2 bk enk = Qn(y0)−

P∑
k=2

2k+1
2 ak enk

Meissl (1971) 0 0 0

Jekeli (1980) 0 0
L∑

k=2

2k+1
2 bk enk = Qn(y0)

Heck and Grüninger (1987) 0 2
k − 1 0

Featherstone et al. (1998) 0 2
k − 1

L∑
k=2

2k+1
2 bk enk = Qn(y0)−

P∑
k=2

2k+1
2 ak enk

kernel at y0, see Eq. (5).
On the contrary, the continuity of an error kernel at y0 is an attribute

for modifications in the form of Taylor polynomial remainder. Using the
properties of orthogonal series expansions more rapid convergence for the
amplitudes of the truncation error coefficients and consequently the trunca-
tion error is achieved without the direct criterion of minimization. Reduced
magnitude of the truncation error near zeros of spherical Stokes’ function
was observed by de Witte (1967). Meissl (1971) proposed an integration ker-
nel in the form of algebraic subtraction of spherical Stokes’ function and its
value at integration radius. Heck and Grüninger (1987) used the same idea
for deterministic modification by Wong and Gore (1969). Moreover, Jekeli
(1980) applied this principle to deterministic modification byMolodensky et
al. (1962) and Featherstone et al. (1998) for deterministic modification by
Vańıček and Kleusberg (1987). Evans and Featherstone (2000) considered
continuous error kernels with their derivatives up to an arbitrary order for

2 Integrals enk =
y0∫
−1
Pn(y) Pk(y) dy are termed Paul’s coefficients. Recurrence formulas

for their numerical computation are given in Paul (1973), Jekeli (1980).
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spherical Stokes’ function and deterministic modifications byMolodensky et
al. (1962), Wong and Gore (1969), Vańıček and Kleusberg (1897).
For modifications in the form of Taylor polynomial remainder, a problem

of numerical stability for higher derivatives of the kernel S̃(y) arises. For the
sake of simplicity, let us demonstrate the behaviour of higher derivatives of
spherical Stokes’ function only up to the 4th order which have been derived
in Šprlák (2008a). From Fig. 1 one can see an increasing magnitude of the
absolute values with increasing order of the derivative. When the spherical
distance is decreasing, i.e. y → 1, a higher growth can been seen. For the
derivatives of the 3rd and 4th order, the magnitudes of orders more than
1015 are reached as y → 1. Because of higher frequency of amplitudes for
deterministic modifications by Molodensky et al. (1962), Wong and Gore
(1969), Vańıček and Kleusberg (1897), larger values for their derivatives can
be expected. Numerical experiments in Šprlák (2008b) showed that stable
computation of GMSE is guaranteed for degrees B ≤ 2.

Fig. 1. Absolute value of spherical Stokes’ function and its derivatives up to the 4th order
(logarithmic scale on vertical axis).

4. General geoidal estimators for deterministic modifications

General geoidal estimators can be formulated considering a universal ex-
pression of deterministic modifications. Substituting the integration kernel
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Eq. (17) into Stokes’ integral Eq. (1) and after some manipulation, the
following equation for geoidal height is obtained:

N =
c

2π

∫∫
σ0

Δg S̃B(y) dσ +
c

2π

∫∫
σ−σ0

Δg S̃(y) dσ +

+
c

2π

∫∫
σ0

Δg
B∑

b=0

(y − y0)b
b!

dbS̃(y0)
dyb

dσ +

+
c

2π

[
P∑

k=2

2k + 1
2

ak +
L∑

k=2

2k + 1
2

bk

] ∫∫
σ

Pk(y)
∞∑

n=2

Δgn dσ. (19)

Note that Eq. (19) is equivalent to the Stokes’ integral (1) which can be
easily proved. Also note that Sjöberg (2003) considered only the first two
terms in Eq. (19) to formulate the general geoidal estimator. The first term
in Eq. (19) represents the effect of the near zone and as we know from the
previous Section it is computed by standard algorithms for numerical inte-
gration. Let us now define an error kernel ΔK̃B(y) for general integration
kernel in the interval −1 ≤ y < 1 by the equation:

ΔK̃B(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B∑
b=0

(y − y0)b
b!

dbS̃(y0)

dyb
, y0 ≤ y < 1

S̃(y), −1 ≤ y < y0

(20)

from which ΔK̃B(y0) = S̃(y0) follows. Moreover, we consider that the error
kernel is continuous up to its derivatives of B-th order at y0. In other
words, the error kernel ΔK̃B(y) corresponds to a smooth continuation of
S̃(y) from the interval −1 ≤ y < y0 into the interval y0 ≤ y < 1 by Taylor
polynomial expansion at y0. Using the definition of the error kernel ΔK̃B(y)
by Eq. (20), for the second and third terms in Eq. (19) we have

c

2π

∫∫
σ−σ0

Δg S̃(y) dσ +
c

2π

∫∫
σ0

Δg
B∑

b=0

(y − y0)b
b!

dbS̃(y0)
d

yb dσ =

=
c

2π

∫∫
σ

Δg ΔK̃B(y) dσ = c
∞∑

n=2

Q̃B
n (y0) Δgn. (21)
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The error kernel ΔK̃B(y) can be expanded, in a same way as in Eq. (6),
into a series of Legendre polynomials where the corresponding error coeffi-
cients Q̃B

n (y0) are:

Q̃B
n (y0) =

1∫
−1
ΔK̃B(y) Pn(y) dy =

=

y0∫
−1

S̃(y) Pn(y) dy +

1∫
y0

B∑
b=0

(y − y0)b
b!

dbS̃(y0)
dyb

Pn(y) dy. (22)

Alternative relations suitable for practical computation of truncation er-
ror coefficients Q̃B

n (y0) for B ≤ 2 are given in Šprlák (2008a,b). The fourth
term in Eq. (19) is expressed using a well known integral identity for the
n-th surface spherical harmonics of gravity anomaly in the form (Hofmann-
Wellenhof and Moritz, 2005, Eq. 1-89):

Δgn =
2n+ 1
4π

∫∫
σ

Pn(y)
∞∑

n=2

Δgn dσ. (23)

Then the fourth term is:

c

2π

[
P∑

k=2

2k + 1
2

ak +
L∑

k=2

2k + 1
2

bk

] ∫∫
σ

Pk(y)
∞∑

n=2

Δgn dσ =

= c
P∑

n=2

an Δgn + c
L∑

n=2

bn Δgn. (24)

Consequently the general geoidal estimator with the reference gravity
field generated by the reference ellipsoid can be formulated. Assuming
Eqs. (21) and (24) in (19), considering estimates of the gravity anoma-
lies and a maximum degree Mmax of spherical harmonic coefficients of the
GGM, the resulting equation is:

N̂B =
c

2π

∫∫
σ0

ΔĝT S̃B(y) dσ + c
Mmax∑
n=2

[
dn + Q̃

B
n (y0)

]
ΔĝS

n , (25)

where
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dn =

⎧⎪⎨
⎪⎩
an + bn, if 2 ≤ n ≤ L

an, if L < n ≤ P

0, if P < n <∞
(26)

Comparing Eqs. (9) and (25), a formal similarity of both geoidal estimators
can be seen. Evidently the transition of integration kernel S(y) into S̃B(y)
in truncated integration causes the change of truncation error coefficients
Qn(y0) into spectral weights [dn + Q̃B

n (y0)] in truncated series of spherical
harmonics. In the case of RCR technique only the integration kernel in
truncated integration is changed, then:

N̂RCR
B = c

Mmax∑
n=2

2
n− 1 Δĝ

S
n +

c

2π

∫∫
σ0

[
ΔĝT −

Mmax∑
n=2

ΔĝS
n

]
S̃B(y) dσ. (27)

Eq. (27) is equivalent to the geoidal estimator Eq. (25). The corresponding
error of general geoidal estimators Eqs. (25) and (27) is defined as follows:

εN̂B
= N̂B −N = c

∞∑
n=2

[
2

n− 1 − dn − Q̃B
n (y0)

]
εTn +

+ c
Mmax∑
n=2

[
dn + Q̃

B
n (y0)

]
εSn − c

∞∑
n=Mmax+1

Q̃B
n (y0) Δg

T
n (28)

and the GMSE is:

m2
N̂B
=
1
4π

∫∫
σ

ε2
N̂B
dσ = c2

∞∑
n=2

[
2

n− 1 − dn − Q̃B
n (y0)

]2
σ2n +

+ c2
Mmax∑
n=2

[
dn + Q̃

B
n (y0)

]2
dcn + c

2
∞∑

n=Mmax+1

[
Q̃B

n (y0)
]2
cn. (29)

Modifying the spherical Stokes’ function, the error of general geoidal es-
timators and their GMSE are also affected. Comparing Eqs. (10) and (13)
with (28) and (29) truncation error coefficients Qn(y0) are replaced by their
spectral counterparts [dn + Q̃B

n (y0)] in the first two terms representing the
propagation of errors from terrestrial gravity data and spherical harmonic
coefficients of the GGM. The omission of higher degree spherical harmon-
ics is controlled by the truncation error coefficients Q̃B

n (y0). According to
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the amplitudes of spectral weights, the significant filtering and convergence
properties of integration kernels have been studied, see Vańıček and Feath-
erstone (1998). Note also that the stochastic modifications of the spherical
Stokes’ function are based on a minimization of the GMSE.
As an illustrative example, let us inspect the behaviour of all terms defin-

ing GMSE for modifications in the form of Taylor polynomial remainder.
For the sake of simplicity the case of an = bn = dn = 0 will be considered.
In Fig. 2a the decreasing magnitude of amplitudes of truncation error co-
efficients Q̃B

n (y0) with increasing B is proved for n < 150. For a higher n
negligible differences between the amplitudes can be seen. Therefore when
the maximum degree Mmax of spherical harmonic coefficients in the GGM
is sufficiently high only negligible differences of the third term in Eqs. (28)
and (29) can be observed. Moreover, Evans and Featherstone (2000) proved

Fig. 2. Graphical representation of: a) Q̃B
n (y0), n ≥ 2, b) 2/(n − 1) − Q̃B

n (y0), n ≥ 2;
ψ0 = 6◦, ak = bk = dn = 0.
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that the convergence of the truncation error coefficients Q̃B
n (y0) for an odd

value of B is the same as for the previous even B. This is in contrast
to graphical representation in Fig. 2a. On the other hand, according to
Featherstone (2003) the value of truncation error coefficients Q̃B

n (y0) with
increasing B is not reduced for all n. Until the oscillation is observed, the
slower decrease of truncation error coefficients Q̃B

n (y0) with increasing B is
visible. The second term in Eqs. (28) and (29) is affected and the errors
of the low degree spherical harmonic coefficients of the GGM are more sig-
nificant when B is higher. The first term in Eqs. (28) and (29) represents
the effect of the propagation from the errors of terrestrial gravity data. In
Fig. 2b the reduced values of coefficients 2/(n−1)− Q̃B

n (y0) for n ≤ 50 with
increasing B are shown. Therefore the low degree errors of terrestrial grav-
ity data are reduced when B is higher. Modifications in the form of Taylor
polynomial remainder are significant not only because of rapid convergence
of the truncation error but also for their filtering properties.

5. Conclusions

In the present paper the general geoidal estimators using deterministic mod-
ifications of the spherical Stokes’ function have been discussed. At first two
methods for the decomposition of Stokes’ integral are shown, combining
terrestrial gravity data and spherical harmonic coefficients of the GGM.
Decomposition in space domain only leads to the geoidal estimator with
reference gravity field generated by a reference ellipsoid. The mathemati-
cally equivalent geoidal estimator represents the RCR technique when the
decomposition is applied also in frequency domain. The corresponding error
and the GMSE of geoidal estimators is affected by the propagation of errors
from terrestrial gravity data, spherical harmonic coefficients of the GGM,
ommision error and behavior of the integration kernel.
Although the mathematical principles of deterministic modifications dif-

fer, their formal similarity motivates the universal expression. Using Eqs.
(17) and (18), the properly chosen modification coefficients ak, bk and the
degree of Taylor polynomial B, most cited deterministic modifications can
be resolved. Moreover, when B ≥ 0, the modifications in the form of Tay-
lor polynomial remainder are defined. Due to the numerical instability of
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higher derivatives of the Stokes’ function, small values of B should be pre-
ferred. Considering the universal expression for deterministic modifications,
the general geoidal estimators have been formulated. A change of integra-
tion kernel in the truncated integration for geoidal estimator with reference
gravity field generated by a reference ellipsoid causes a change of spectral
weights in truncated series of spherical harmonics. In the case of RCR tech-
nique, only the modified integration kernel is considered in the truncated
integration. Significant properties for modifications in the form of Taylor
polynomial remainder when an = bn = dn = 0 have been investigated.
Reduced magnitudes of the truncation error coefficients Q̃B

n (y0) have been
demonstrated for subsequently increasing values of B. It has been shown
that with increasing value of B the GMSE of geoidal estimators is more
affected by propagation of errors from the spherical harmonic coefficients of
the GGM. On the other hand, a low degree errors of terrestrial gravity data
are reduced considering the higher values of B.
The advantage of generalization proposed for deterministic modifications

of Stokes’ function can be applied in an analogous manner to different in-
tegration kernels, e.g. Hotine’s or Poisson’s functions. Moreover, it will be
useful to extend the proposed generalization for stochastic modifications.
For this purpose the minimization of GMSE for modifications in the form
of Taylor polynomial remainder should be examined, forming a base for the
future work.
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Sjöberg L. E., 1984: Least squares modification of Stokes’ and Vening Meinesz’s formu-
las by accounting for the truncation and potential coefficient errors. Manuscripta
Geodaetica, 9, 209–229.
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