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1. Introduction

Recent developments, both theoretical and experimental, have stimu-
lated widespread interest in the problem of thermal and compositional
magneto-convection in the Earth’s outer core. When a molten two-compo-
nent fluid with the heavier component having the higher melting point is
chilled from below, the heavy component solidifies (Hills et al., 1983). The
main source of heat in the Earth’s outer core is cooling, boosted by latent
heat of freezing of the liquid outer core onto the solid inner core. Thus the
Earth’s outer core is stirred by both thermal and compositional convection
(Loper, 2000). Due to the Earth’s magnetic field, we must investigate the
problem of thermal and compositional magneto-convection in the Earth’s
outer core. This problem of thermal and compositional magneto-convection
in two-component fluid (liquid iron and e.g. liquid sulphur) is similar to
the problem of thermohaline magneto-convection except for the fact that
a temperature difference can drive a mass current. Tagare et al. (2006)
studied the problem of rotating compositional and thermal convection in
the Earth’s outer core.

In this paper we have considered the problem of thermal and composi-
tional magneto-convection by considering the contribution of material dif-
fusivity. Owing to the two component nature of the fluid one has Soret
effect and this leads to an additional control parameter ψ (separation ratio)
besides thermal Rayleigh number R. Thermohaline convection, magneto-
convection and thermal and compositional convection in the Earth’s outer
core are examples of double diffusive systems. In thermohaline convec-
tion, the temperature and saline concentration provide two diffusivities. In
magneto-convection, the temperature and magnetic field provide the two
diffusivities. In thermal and compositional convection, the temperature
and concentration of lighter component of fluid in a two-component fluid
provide two diffusivities. Tagare et al (2001) studied the problem of ther-
mohaline magnetoconvection in the Earth’s outer core. Thermohaline and
compositional magneto-convection is an example of triple diffusive system,
where temperature, magnetic field and concentration of lighter component
of fluid in a two-component fluid provide three diffusivities.

In section 2, we write basic equations. In section 3, we perform the lin-
ear stability analysis. Since the bifurcation is a continuous one, only a slow
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modulation of the convective roll pattern is allowed by the fluid equations
near the onset. The time evolution of general pattern is developed by means
of a multiple scale analysis used by Newell and Whitehead (1969) and Segel
(1969) near the onset of stationary convection at a supercritical pitchfork
bifurcation and convection at a supercritical Hopf bifurcation. In section
4, we have derived a nonlinear two-dimensional Landau-Ginzburg equation
in complex amplitude A(X,Y, T ) with real coefficients near a supercritical
pitchfork bifurcation. We have also shown the occurence of secondary in-
stabilities like Eckhaus and zigzag instability.

Following Knobloch and De Luca (1990), we derive in section 5, two non-
linear one-dimensional coupled Landau-Ginzburg type equations in complex
amplitudes AR(X, τ, T ) and AL(X, τ, T ) of right-hand and left-hand travel-
ling waves with complex coefficients near a supercritical Hopf bifurcation.
Following Matthews and Rucklidge (1993), we have dropped slow space de-
pendence in X and obtained two coupled ordinary differential equations in
A1R(T ) and A1L(T ) and discussed the stability regions of travelling and
standing waves. We have shown the condition of Benjamin-Feir type insta-
bility for travelling and standing waves. In section 6, we write conclusions.

2. Basic equations

Consider a two-component electrically and thermally conducting fluid of
infinite extent in the presence of a vertical magnetic field. Our intention
in this paper is to examine thermal and compositional magneto-convection
in the Earth’s outer core. The fluid has density ρ which depends on both
temperature T and concentration C of the lighter component fluid through
the relation

ρ = ρ0[1 − α(T − T0) − β(C − C0)], (2.1)

where α = −ρ−1
0 ∂ρ/∂T and β = −ρ−1

0 ∂ρ/∂C. Here α is the coefficient of
thermal expansion and β is the parameter measuring the variation of the
density with concentration, while T0, C0, ρ0 are reference values. In the
Earth’s outer core both α and β are positive.

We use cartesian system of co-ordinates whose dimensionless vertical co-
ordinate z and dimensionless horizontal co-ordinates x, y are scaled on d.
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The velocity vector �V (u, v,w), density ρ, temperature θ, concentration C,
time t, pressure p and magnetic field �H(Hx,Hy,Hz) are non-dimensionalized
by scales κ/d, ρ0, δT = T − T0, δC = C − C0, d2/κ, ρ0κ

2/d2 and κH0/η.
Here ν is viscosity, κ is thermal diffusivity, Dm is mass or material diffusivity,
η is magnetic diffusivity, μm is magnetic permeability, g is acceleration due
to gravity and κT is Soret coefficient (which measures the cross coupling
between temperature gradients and mass fluxes and can have plus or minus
sign but cannot be zero). The dimensionless parameters, R,Q, σ1, σ2, σ3, σ4

and ψ, required for the description of the motion are: thermal Rayleigh
number, R = αgΔTd3/κν, thermal Prandtl number, Pr1 ≡ σ−1

3 = ν/κ,
Roberts number, σ2 = κ/η, Schmidt number, σ4 = κ/Dm (we remind that
Lewis number, L = σ−1

4 = Dm/κ), separation parameter, ψ = −κTβ/T0α,
and Chandrasekhar number, Q = μmH2

0d2/4πρ0νη. Finally, we formally
introduce another ”Prandtl number”, σ1 = 1, only due to the possibility to
focus attention on some symmetries in the following relations. In Earth’s
outer core L < 1 and ψ can be positive or negative but not zero. The basic
dimensionless equations for thermal and compositional magneto-convection
in Earth’s outer core in the Boussinesq approximation are

∇ · �V = 0, ∇ · �H = 0, (2.2)

σ3

[
∂t�V + (�V · ∇)�V

]
− Qσ2( �H · ∇) �H − Q∂z �H =

= −∇(P +
Qσ2

2
| �H |2) + R (θ + ψC) ẑ + ∇2�V , (2.3)

σ1

[
∂tθ + (�V · ∇)θ

]
= wσ1 + ∇2θ, (2.4)

σ4

[
∂tC + (�V · ∇)C

]
= wσ4 + ∇2C −∇2θ, (2.5)

[
σ2∂t −∇2

]
�H = ∇× (�V × ẑ) + σ2∇× (�V × �H). (2.6)

Geophysically acceptable velocities of propagating instabilities corres-
ponding to geomagnetic secular variations occur only for Roberts number,
σ2 = κ/η > 1 (where instabilities develop in Ohmic diffusion time scale,
d2/η), σ2 = 2 and 5, when the turbulence is present in the Earth’s outer
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core). In the case of σ2 = κ/η � 1 (based on molecular thermal diffusivity
corresponding to the absence of turbulence in the Earth’s outer core), the
instabilities are extremely slow depending on the thermal diffusion time
scale d2/κ. Eqs. (2.2−2.6) can be reduced to a form

Lw = N , (2.7)

where

L = ∇2D1D2D3D4 − RD2∂xx
[
σ1D4 − ψ(σ1∇2 − σ4D1)

]− QD1D4∂zz,
(2.8a)

N = D1D2D4 N − Rσ1D2D4∂xx(�V · ∇)θ − Rψσ4D1D2∂xx(�V · ∇)C +

+ Rσ1ψD2∂xx∇2(�V · ∇)θ − QD1D4 ∂zM (2.8b)

D1 =
(
σ1∂t −∇2

)
, D2 =

(
σ2∂t −∇2

)
,

D3 =
(
σ3∂t −∇2

)
, D4 =

(
σ4∂t −∇2

)
,

N = ẑ · ∇ ×∇×
[
σ3(�V · ∇)�V − Qσ2( �H · ∇) �H

]
,

and M = σ2ẑ · ∇ ×∇×
[
( �H · ∇)�V − (�V · ∇) �H

]
.

The similarity of operators D1,D2,D3, and D4 in Eq. (2.8) explains the
reason to introduce σ1 = 1 in the source equation (2.4).

Boundary conditions

We assume that fluid is confined between z = 0 and z = 1, where z = 1
corresponds to a mantle boundary. For perfectly conducting boundary with
temperature and solute, we have

θ = 0, C = 0 and Hz = 0 on z = 0, z = 1 for all x, y.

Also the normal component of the velocity would vanish on z = 0, z = 1,
i.e.

w = 0 on z = 0, z = 1 for all x, y.
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Above mentioned boundary conditions have to be satisfied.
However, there are two more conditions to be imposed on velocity de-

pending on the nature of the surface. In this paper we consider free surfaces
or free-free boundary conditions, i.e., on surfaces the tangential stresses van-
ish (Pxz = Pyz = 0) which is equivalent to

Pxz = μ (∂zu + ∂xw) = 0, Pyz = μ (∂zv + ∂yw) = 0,

where μ = νρ0 is dynamic viscosity. Since w vanishes for x, y on z =
0, z = 1, it follows that ∂zu = ∂zv = 0 on a free surface z = 0, z = 1.
Hence from equation of continuity, we have ∂zzw = 0 on z = 0, z = 1
for all x, y. In this paper we have considered only the idealized stress-free
conditions on the surface and vanishing of temperature fluctuations. Thus
W = D2W = D4W = 0 at z = 0, 1. W and its even derivatives vanish at
z = 0 and z = 1.

3. Linear stability analysis

We perform the linear stability analysis of the problem by substituting

w = W (z)e[i(qxx+qyy)+pt] (3.1)

into linearized version of Eq. (2.7) i.e., Lw = 0 and obtaining an equation

D(D − pσ1)(D − pσ4)
[
(D − pσ2)(D − pσ3) − QD2

]
w =

= −Rq2(D − pσ2) [(D − pσ4) + ψ ((1 + σ4)D − pσ4)]w, (3.2)

where D = D2 − q2, D = d/dz and q2 = q2
x + q2

y . In this paper we consider
only the idealized boundary conditions. Hence w and all its even derivatives
vanish at z = 0 and z = 1. Substituting W = sin πz and p = iω (where ω
stands for the frequency of oscillation) in Eq. (3.2), we get

R =
K

q2

[(
G1ω

6 + G2ω
4 − G3ω

2 + G4

)
+ iωδ4

(
A1ω

4 + A2ω
2 + A3

)]
(3.3)

where

δ2 = q2 + π2, K =
(δ4ψ2

1 + ω2ψ2
4)

−1

(δ4 + ω2σ2
2)

,
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ψ1 = 1 + ψ(1 + σ4), ψ4 = (1 + ψ)σ4,

ψ2 = σ2 + σ4 + ψ(σ2 + σ4 + σ2σ4),

G1 = −δ2σ2ψ4S4,

G2 = δ2{δ4 [σ2ψ4S2 − ψ2S3] + Q1σ1σ2σ4ψ4},
G3 = δ6{δ4 [σ2ψ4 − ψ2S1 + S2ψ1] + Q1 [σ2ψ4 − (σ1 + σ4)ψ2 + σ1σ4ψ1]},

G4 = δ10ψ1(δ4 + Q1),

A1 = σ2ψ4S3 − S4ψ2,

A2 = δ4 [S2ψ2 − σ2ψ4S1] − Q1 [σ1σ4ψ2 − σ2ψ4(σ1 + σ4)] ,

A3 = δ4{δ4 [ψ1S1 − ψ2] + Q1 [ψ1(σ1 + σ4) − ψ2]}.

Here using Q1 = Qπ2 for brevity and also symmetric polynomials S1 =
σ1 + σ2 + σ3 + σ4, S2 = σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4, S3 =
σ1σ2σ3+σ1σ2σ4+σ1σ3σ4+σ2σ3σ4, and S4 = σ1σ2σ3σ4 of Prandtl numbers
σ1, σ2, σ3, and σ4.

3.1. Stationary convection (ω = 0)

Substituting ω = 0 in to Eq. (3.2), we get

Rs =
δ2(δ4 + Qπ2)

ψ1q2
(3.4)

Here Rs is the value of R for the stationary convection. The minimum value
of Rs obtained for q = qsc where

2
(qsc

π

)6
+ 3

(qsc
π

)2
= 1 +

Q

π2
. (3.5)

The wave number is identical to that for the single component fluid, while
the threshold for the onset of stationary convection at pitchfork bifurcation
is given by Eq. (3.6) with q = qsc. Thus

Rsc =
δ2
sc(δ

4
sc + Qπ2)
ψ1q2

sc

. (3.6)
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3.2. Oscillatory convection
(
ω2 > 0

)
For oscillatory convection ω �= 0 and from Eq. (3.2), R will be complex.

But the physical meaning of R requires it to be real. The condition that R
is real implies that imaginary part of Eq. (3.2) is zero, i.e.,

ω4A1 + ω2A2 + A3 = 0. (3.7)

Substituting W = sinπz in Eq. (3.2), we get a fourth degree polynomial
equation in p of the form

a4p
4 + a3p

3 + a2p
2 + a1p + a0 = 0, (3.8)

where

a4 = δ2S4,

a3 = δ4S3,

a2 = δ6S2 − Rq2ψ4σ2 + δ2Q1σ1σ4,

a1 = δ2[δ6S1 − Rq2ψ2 + δ2Q1(σ1 + σ4)],

a0 = δ4(δ6 − Rq2ψ1 + δ2Q1). (3.9)

Setting p = iω in Eq. (3.8) and equating its real and imaginary parts to
zero, we get

a4ω
4 − a2ω

2 + a0 = 0, (3.10)

a3ω
2 − a1 = 0. (3.11)

From Eq. (3.8), if ω = 0 then a0 = 0 and we get stationary convection
and Rs is determined by putting R = Rs in a0 = 0. Thus ω = 0 and
a0 = 0 are the conditions for the pitchfork bifurcation corresponding to
stationary convection. From Eq. (3.10), we can have marginal stability if
ω2 = a1/a3 (a1 > 0) and

a4a
2
1 − a1a2a3 + a0a

2
3 = 0. (3.12)

In this case we get oscillatory convection and Ro (the value of R for the
oscillatory convection) is obtained by putting R = Ro in the expressions
a0, a1, a2, a3, a4 of the set of Eqs. (3.9) into Eq. (3.12). Thus we get a
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quadratic equation in Ro. The codimension-two point is determined by the
intersection of two lines a0 = 0 and a1a4 − a2a3 = 0 under the condition
a1 > 0 in (ψ,R)-space. This corresponds to the simultaneous occurrence
of pitchfork and Hopf bifurcation and quasiperiodic solutions of the system
can be obtained in the nonlinear regime.

Takens-Bogdanov bifurcation point is determined by the intersection of
the two curves a0 = 0 and a1 = 0 in (ψ,R)-space. Thus Takens-Bogdanov
bifurcation point corresponds to a double zero eigenvalue of the linear
growth rate. At the codimension-two point, we have

Rsc(qsc) = Roc(qoc) but qsc �= qoc, (3.13)

and at the Takens-Bogdanov bifurcation point, we have

Rs(qs) = Ro(qo) = Rc(qc) and qs = qo = qc. (3.14)

Eliminating R from a0 = a1 = 0, we get Takens-Bogdanov bifurcation point
at

ψ = ψ∗ =
δ4S1 + Q1(σ1 + σ4) − (δ4 + Q1)(σ2 + σ4)

(δ4 + Q1)[σ2 + σ4 + σ2σ4] − [δ4S1 + Q1(σ1 + σ4)](1 + σ4)
, (3.15)

From Eq. (3.15), ψ∗ is always negative if σ1 ≥ 1. The codimension-two
point is an intersection between Hopf bifurcation and pitchfork bifurcation
with distinct wave numbers in (ψ,R) plane. At Takens-Bogdanov bifurca-
tion, the Hopf bifurcation and pitchfork bifurcation neutral curves intersect,
and only a single wave-number is present. Thus at a Takens-Bogdanov bifur-
cation point the oscillatory neutral curve intersects the stationary convec-
tion curve and the frequency on the oscillatory neutral curve approaches zero
as the intersection point is approached. In Figs. 1-2, each solid line stands
for stationary convection (pitchfork bifurcation) and dotted line stands for
oscillatory convection (Hopf bifurcation).

In these Figs. 1-2, we have showed the effect of several physical param-
eters, like Q,σ2, σ3, σ4 and ψ on the onset of both stationary convection
and oscillatory convection. When a physical parameter increases for the re-
maining fixed parameters, the onset of instabilities increases i.e., the onset
of stationary convection and oscillatory convection inhibit when a parame-
ter increases with the remaining fixed parameters. We have ψ = ψ∗ at the
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Fig. 1. Numerically calculated marginal stability curves are plotted in (R, q)− plane
for σ2 = 2, L = 0.1, ψ = −0.01 and (a) Q = 106 (b) Q = 1012 (c) Q = 1016, (d)
Q = 1020, then the onset of stationary convection and the onset of oscillatory convection
increases (stationary convection stands for solid lines and oscillatory convection stands
dotted lines).

Takens-Bogdanov bifurcation point. In the limit ψ −→ ψ∗, the frequency
of the oscillatory instability tends to zero. At codimension two bifurcation
point let ψ = ψ′ for a Chandrashekar number Q. If ψ < ψ′, we get first
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Fig. 2. Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifur-
cation (dashed lines) near the codimension two point for Q = 2000, ψ = −0.0001, L =
0.1, (a) σ2 = 1.14, (b) σ2c = 1.167, (c) σ2 = 1.2. x− axis wave number, y− Rayleigh
numbers Rs, Ro.

instability as oscillatory convection. If ψ > ψ ′, then we get stationary con-
vection as a first instability. For a0 = a1 = a2 = 0, which gives ψ = ψ∗∗,
corresponding to codimension-three bifurcation point and ω = 0 is a triple

109



Tagare S. G. et al.: Nonlinear magneto-convection due to compositional..., (99–131)

zero eigenvalue. Eliminating Q and R from a0 = a1 = a2 = 0, we get

ψ = ψ∗∗ =

=
[S1σ4 − S2 + σ1σ4](σ2 − σ1)

S1σ4[σ1(σ1 + σ4) − σ2] − S2[σ2(σ1 + σ4) + σ1] − σ1σ4[σ2(σ1 + σ4) + σ4]
,

(3.16)

4. Two dimensional Landau-Ginzburg equation at the onset
of stationary convection

The existence of a threshold (critical value of the Rayleigh number, R =
Rsc) and the cellular structure (critical wave number, q = qsc) for a fixed
Lewis number L and separation parameter ψ are main characteristics of the
stationary convection due to compositional and thermal buoyancy. In this
section, we consider the region near the onset of stationary convection by
introducing ε as

ε2 =
(Rs − Rsc)

Rsc
� 1. (4.1)

To simplify the problem we assume the formation of rolls parallel to the
y-axis, so that y-dependence disappears from Eq. (2.7). The z-dependence
is contained entirely in the sine and cosine functions which ensures that free-
free boundary conditions are satisfied. For values of the control parameter
R = Rs close to the threshold value Rsc (ε2 � 1), we assume solutions of
Eqs. (2.2−2.6) in powers of ε as :

f = εf0 + ε2f1 + ε3f2 + ..., (4.2)

where f = (u, v,w, θ, c,Hx,Hy,Hz) with the first approximation is given by
the eigenvector of the linearized problem:

w0 = A(X,Y, T )eiqscx sin πz + c.c.,

u0 =
iπ

qsc

[
A(X,Y, T )eiqscx cos πz − c.c.

]
,

v0 = 0,Hy0 = 0,
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Hx0 = − iπ2

δ2
scqsc

[
A(X,Y, T )eiqscx sin πz − c.c.

]
,

Hz0 =
π

δ2
sc

[
A(X,Y, T )eiqscx cos πz + c.c.

]
,

θ0 =
1

δ2
sc

[
A(X,Y, T )eiqscx sinπz + c.c.

]
,

C0 =
(1 + σ4)

δ2
sc

[
A(X,Y, T )eiqscx sin πz + c.c.

]
, (4.3)

where δ2
sc = π2 + q2

sc. Here c.c. stands for complex conjugate, eiqscx sinπz is
the critical mode for the linear problem at R = Rsc and q = qsc. The com-
plex amplitude A(X,Y, T ) depends on the slow variables. The independent
variables x, y, z, t are scaled by introducing multiple scales

X = εx, Y = ε
1
2 y, Z = z, T = ε2t, (4.4)

and these formally separate the fast and slow dependent variables in f . It
should be noted that the difference in scaling in the two directions reflects
the inherent symmetry breaking of instability which was chosen here with
wave vector in x-direction.

The differential operators can be expressed as

∂x −→ ∂x + ε∂X , ∂y −→ ε
1
2 ∂Y ,

∂z −→ ∂Z , ∂t −→ ε2∂T . (4.5)

Using (4.5), the operator (2.8a) and (2.8b) can be written as

L = L0 + εL1 + ε2L2 + · · · ,

N = ε2N0 + ε3N1 + · · · , (4.6)

where

L0 = ∇4
[∇6 − Rscψ1∂xx − Q∇2∂zz

]
, (4.7)

L1 = (2∂xX + ∂Y Y )
[
5∇6 − 2Rscψ1∂xx − 3Q∇2∂zz

]∇2, (4.8)

L2 = ∂T
[
S1∇6 − Rscψ2∂xx − Q(σ1 + σ4)∇2∂zz

]∇2−
− ∂XX

[
5∇6 − 2Rscψ1∂xx − 3Q∇2∂zz

]∇2−
− 2 (2∂xX + ∂Y Y )

[
10∇6 − Rscψ1∂xx − 3Q∇2∂zz

]
. (4.9)
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Using (4.1−4.5) into Eq. (2.7), and using the definitions of L and N from
(4.6), we get equating coefficients of various powers of ε to zero

L0w0 = 0, (4.10)
L0w1 + L1w0 = N0, (4.11)
L0w2 + L1w1 + L2w0 = N1. (4.12)

Substituting the value of w0 from (4.3) into (4.10) and using (4.7), we get

Rsc =
δ2
sc(δ4

sc + Q1)
ψ1q2

sc

. (4.13)

Substituting the value of w0 into L1w0 = 0, we get critical wave number.
In Eq. (4.11), N0 = 0, L1w0 = 0 implies that Eq. (4.11) reduces to w1 = 0.
Similarly u1 = 0, v1 = 0,Hx1 = 0,Hy1 = 0

θ1 = − 1
2πδ2

sc

|A|2 sin 2πz, (4.14)

C1 = − 1
2πδ2

sc

(1 + σ4 + σ2
4) |A|2 sin 2πz, (4.15)

Hz1 = − σ2π
2

2δ2
scq

2
sc

[
|A|2 e2iqscx + c.c

]
cos 2πz. (4.16)

Substituting zero order and first order solution in (2.7) and equating
coefficients of sinπz in N1 − L2w0 to zero, we get

λ0∂TA − λ1(∂X − i

2qsc
∂Y Y )2A − λ2A + λ3|A|2A = 0, (4.17)

where

λ0 = −δ8
scS1 + Rscq

2
scδ

2
scψσ − Q1(σ1 + σ4)δ4

sc,

λ1 = 4q2
sc

[
10δ6

sc − 3Q1δ
2
sc + Rscq

2
scψ1

]
,

λ2 = Rscq
2
scδ

4
scψ1,

λ3 =
Rscq

2
scδ

2
sc

2
[
1 + ψ(σ1 + σ4)(1 + σ−2

4 )
]
+

Q1π
2δ4
scσ

2
2

2q2
sc

. (4.18)

Eq. (4.17) is called Landau-Ginzburg equation. Eq. (4.17) is meaningful
only if λ0, λ2 and λ3 are positive. For λ3 > 0, we get a forward bifurcation
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(supercritical pitchfork bifurcation). Landau-Ginzburg equation is valid
only for λ3 > 0. If λ3 < 0 the bifurcation is subcritical (Fig. 3).

At λ3 = 0, we get tricritical bifurcation point. Dropping the time-
dependent term from Eq. (4.17), we get

d2A

dX2
+

λ2

λ1

(
1 − λ3

λ2
|A|2

)
A = 0. (4.19)

The solution of Eq. (4.19) is given by

A(X) = A0 tanh (X/Λ) , (4.20)

where

A0 = (λ2/λ3)
1
2 and Λ = (2λ1/λ2)

1
2 . (4.21)

Fig. 3. Above figure is plotted for Q = 1000, σ2 = 2. λ3 is the nonlinear coefficient of
Landau-Ginzburg equation at the onset of stationary convection. The pitchfork bifurca-
tion is supercritical if λ3 > 0 and subcritical if λ3 < 0.

4.1. Long wave-length instabilities (secondary instabilities)

The two-dimensional Landau-Ginzburg Eq. (4.17), can be written in fast
variables x, y, t and A(X,Y, T ) = A(x, y, t)/ε, as

λ0∂tA − λ1(∂x − i

2qsc
∂yy)2A − ε2λ2A + λ3|A|2A = 0. (4.22)
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In order to study the properties of a structure with a given phase winding
number δk, we substitute

A (x, y, t) = A1 (x, y, t) eiδkx, (4.23)

into the Eq. (4.22) and we obtain

λ0∂tA1 =
(
ε2λ2 − λ1(δk)2

)
A1 + 2iλ1δk(∂x − i

2qsc
∂yy)A1+

+ λ1(∂x − i

2qsc
∂yy)2A1 − λ3|A1|2A1 = 0. (4.24)

The steady state uniform solution of Eq. (4.24) is

A1 = A10 = [
(
ε2λ2 − λ1(δk)2

)
λ−1

3 ]
1
2 . (4.25)

Let ũ(x, y, t)+ iṽ(x, y, t) be an infinitesimal perturbation from a uniform
steady state solution A10 given by Eq. (4.25). Now substituting

A1 = A10 = [
(
ε2λ2 − λ1(δk)2

)
λ−1

3 ]
1
2 + ũ + iṽ,

into Eq. (4.24) and equating real and imaginary parts, we obtain

λ0∂tũ = [−2
(
ε2λ2 − λ1(δk)

)2 +

+ λ1(∂xx +
δk∂yy
qsc

− ∂yyyy
4q2
sc

)]ũ − (2λ1δk − λ1∂yy
qsc

)∂xṽ, (4.26a)

λ0∂tṽ = (2λ1δk − λ1

qsc
∂yy)∂xũ + λ1(∂xx +

δk

qsc
∂yy − 1

4q2
sc

∂yyyy)ṽ. (4.26b)

We analyze Eqs. (4.26a) and (4.26b) by using normal modes of the form

ũ = UeSt cos (qxx) cos (qyy) , ṽ = V eSt sin (qxx) cos (qyy) . (4.27)

Putting Eq. (4.27) in Eqs. (4.26a) and (4.26b) we get,

[
λ0S + 2

(
ε2λ2 − λ1(δk)2

)
+ χ1

]
U + λ1qxχ2V = 0, (4.28a)

λ1qxχ2U + (λ0S + χ1)V = 0. (4.28b)
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Here χ1 = λ1[q2
x + (q2

yδk)/qsc + q4
y/4q2

sc], χ2 = (2δk + q2
y/qsc). On solving

Eq. (4.28a) and Eq. (4.28b) we get,

λ2
0S

2 + 2S
[
2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0χ1

]
+

+
[
2
(
ε2λ2 − λ1(δk)2

)
+ χ1

]
ψ1 − q2

xλ1χ2 = 0,

whose roots (S±) are real. Here (S±) is defined as

(S±) =− 1
λ2

0

{(
2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0χ1

)±
±

(
2λ0

(
ε2λ2 − λ1(δk)2

)2 + λ2
1q

2
xχ

2
2

) 1
2

}
. (4.29)

Solution S(−) is clearly negative, thus the corresponding mode is stable and
if S(+) is positive then rolls can be unstable. Symmetry considerations help
us to restrict the study of S(+) to a domain qx ≥ 0, qy ≥ 0.

4.1.1. Longitudinal perturbations and Eckhaus instability

Inserting qy = 0 into Eq. (4.29), we get

λ2
0S

2 + 2S
[
2λ0

(
ε2λ2 − λ1(δk)2

)
+

+ λ0λ1q
2
x

]
+ λ1q

2
x

[
2
(
ε2λ2 − 3λ1(δk)2

)
+ q2

x

]
= 0,

since the roots are real and their sum always negative, the pattern is stable
as long as both roots are negative, i.e., their product is positive. The cell
pattern becomes unstable when the product is negative, i.e., when

q2
x ≤ 2

(
3λ1δk

2 − ε2λ2

)
,

for this requires |δk| ≥
√

(ε2λ2/3λ1), this condition defines the domain of
Eckhaus instability. The above condition implies that the most unstable
wave vector tends to zero, when |δk| → √

(ε2λ2/3λ1).

4.1.2. Transverse perturbations and zigzag instability

Let us consider qx = 0 into Eq. (4.29), we get

λ2
0S

2 + 2S
[
2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0χ

y
1

]
+

[
2
(
ε2λ2 − λ1(δk)2

)
+ χy1

]
χy1 =

= 0,
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where χy1 = λ1

(
q2
yδk/qsc + q4

y/4q2
sc

)
. The two eigenmodes are uncoupled

and we have S(−),

S(−) = −2
(
ε2λ2 − λ1(δk)2

)− λ1

qsc
δkq2

y −
λ1

4q2
sc

q2
y < 0,

for one of them. The other is amplified when

S(+) = −λ1q
2
y

(
δk +

q2
y

4qsc

)
> 0.

This implies that δk < 0, the above condition defines the domain of the
zigzag instability. When δk → 0 from below the wave vector qy of the
instability also tends to zero, while the growth rate varies as q2

y. We have
studied the effect of magnetic field on long wave length instabilities. We have
observed that Eckhaus instability and zigzag instability regions increases
when Q increases (see Fig. 4).

Fig. 4. Numerically computed secondary instability regions of Eckhaus instability (E),
zigzag instability (Z) and stable region (S) are plotted in (λ2/λ1, δqs)− plane for L = 0.1,
ψ = −0.01, σ2 = 2, Q = 2000. As |δqs| increases then the secondary instability regions
increases.
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4.2. Heat transport by convection

The maximum of steady amplitude A is denoted by |Amax| which is given
as

|Amax| =
(
ε2λ2λ

−1
3

) 1
2 . (4.30)

Eq. (4.30), is obtained either from Eq. (4.20) with tanh(X/Λ) = 1 or from
Eq. (4.23), with δqs = 0 and A1 = A10. We use |Amax| to calculate Nusselt
number Nu.

To discuss the heat tranfer near the neutral region, we express it through
the Nusselt number defined as Nu = Hd/κΔT, which is the ratio of the
heat transported across any layer to the heat which would be transported
by conduction alone. Here H is the rate of heat transfer per unit area and
is defined as

H = −〈∂Ttotal
∂z′ 〉z′=0. (4.31)

In (4.31), angular brackets correspond to a horizontal average.
The Nusselt number can be calculated in terms of amplitude A and it is

given as

Nu = 1 +
ε2

δ2
sc

|Amax|2. (4.32)

From Eq. (4.32), we get conduction for R ≤ Rsc and convection for R > Rsc.
Since the amplitude equation is valid for λ3 > 0, this is possible for R > Rsc

(supercritical). Thus we get Nu > 1 for R > Rsc. We get convection for
Nu > 1 and conduction for Nu ≤ 1. In stationary convection Nu increase
implies the increase of heat transported by steady mode convection.

In the problem of double diffusive convection with magnetic field, Nu
depends on ψ, σ2, σ3, σ4, and Q. We have computed Nu for different values
of Q, for some fixed values of other parameters and observed that Nu in-
creases as Q decreases (see Figs. 5(a) and 5(b)). This implies that magnetic
field inhibits the heat transport. The parameters L, σ1 and σ2 show the
same result as Q shows on Nu. When the other parameter ψ < 0, decreases
then the Nusselt number decreases.
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Fig. 5. Graph (a) is plotted for Q = 1000 and Graph (b) is plotted for Q = 2000 for the
fixed values of L = 0.1, ψ = 0.001, σ2 = 2 in (Nu,R/Rsc)− plane. In Graphs (a) and
(b), as R/Rsc increases then Nu (Nusselt number) increases.

5. Oscillatory convection at the supercritical Hopf bifurcation

The existence of a threshold (critical value of Rayleigh number for the on-
set of oscillatory convection R = Roc) and a cellular structure (critical wave
number q = qoc) and ψ are main characteristics of the oscillatory convec-
tion. In this section we treat region near the onset of oscillatory convection.
Here the axis of the cylindrical rolls is taken as y-axis, so that y-dependence
disappears from equation Lw = N . The z-dependence contained entirely in
sin and cos functions which ensure that the free-free boundary conditions
are satisfied.

The purpose of this section is to derive coupled one dimensional non-
linear time dependent Landau-Ginzburg type equations near the onset of
oscillatory convection at supercritical Hopf bifurcation. We introduce ε as

ε2 =
(Ro − Roc)

Roc
� 1. (5.1)

We assume that

w0 =
[
A1Lei(qocx+ωoct) + A1Rei(qocx−ωoct) + c.c.

]
sin πz,
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is a solution to linearized equation Lw = 0, which satisfies free-free bound-
ary conditions. Here A1L denotes the amplitude of left travelling wave of
the roll and A1R denotes the amplitude of right travelling wave of the roll,
which depends on slow space and time variables (Knobloch and Luca, 1990)

X = εx, τ = εt, T = ε2t, (5.2)

and assume that A1L = A1L(X, τ, T ), A1R = A1R(X, τ, T ). The differential
operators can be expressed as

∂x −→ ∂x + ε∂X , ∂t −→ ∂t + ε∂τ + ε2∂T . (5.3)

The solution of basic equations can be sought as power series in ε,

f = εf0 + ε2f1 + ε3f2 + · · · , (5.4)

where f = (u, v,w, θ, c,Hx,Hy,Hz) with the first approximation is given by
eigenvector of the linearized problem:

u0 =
iπ

qoc

[
AL(X, τ, T )ei(qocx+ωoct) + AR(X, τ, T )ei(qocx−ωoct) − c.c.

]
cos πz,

v0 = 0,Hy0 = 0,

θ0 =
[

1
e1

AL(X, τ, T )ei(qocx+ωoct) +
1
e∗1

AR(X, τ, T )ei(qocx−ωoct) + c.c.

]
sinπz,

C0 =
[
h1AL(X, τ, T )ei(qocx+ωoct) + h∗

1AR(X, τ, T )ei(qocx−ωoct) + c.c.
]
sin πz,

Hx0 = − iπ2

qsc

[
1
e2

AL(X, τ, T )ei(qocx+ωoct)+

+
1
e∗2

AR(X, τ, T )ei(qocx−ωoct) − c.c.

]
sin πz,

Hz0 = π

[
1
e2

AL(X, τ, T )ei(qocx+ωoct)+

+
1
e∗2

AR(X, τ, T )ei(qocx−ωoct) + c.c.

]
cos πz, (5.5)

where and henceforth, δ2
oc = (π2 + q2

oc), ej = (δ2
oc + iωocσj), j = 1, 2, 3, 4;

h1 = e−1
4 (σ4 + e−1

1 δ2
oc), and AL = A1L+ εA2L+ . . . , AR = A1R + εA2R+ . . .

The e∗j and h∗
1 are complex conjugates of ej and h1 for j = 1, 2, 3, 4.
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We expand the linear operator L and nonlinear term N as the following
power series

L = L0 + εL1 + ε2L2 + · · · (5.6a)

N = ε2N0 + ε3N1 + · · · . (5.6b)

Substituting Eqs. (4.2) and (5.3) into Lw = N , for each order of ε, we get

L0w0 = 0, (5.7a)
L0w1 + L1w0 = N0, (5.7b)
L0w2 + L1w1 + L2w0 = N1. (5.7c)

Here

L0 = E4∇2 − Roce2∂xxDψ − Qe1e4∇2∂zz,

L1 = ∂τF1 + 2∂xXF2,

L2 = ∂TF1 + 4∂xxXX
{
E2∇2 − E3 + Q(e4 + e1 −∇2)∂zz+

+Roc(ψ1(e2 − ∂xx) + Dψ) + ∂XXF2}+

+ 2∂xX∂τ
{−T3∇2 + T1 + Q

[
(σ1 + σ4)∇2 − σ1e4 − σ4e1

]
∂zz−

−Roc[ψ4e2 − σ2Dψ + ψ2∂xx]} + ∂ττ
{
T2 − Qσ1σ4∇2∂zz

}∇2−
− Rocσ2ψ4∂xx,

where

F1 =
{
[T1 − (σ4e1 + σ1e4)Q∂zz]∇2 − Roc [ψ4e2 + σ2Dψ] ∂xx

}
F2 = E4 − E3∇2 + Q[(e1 + e4)∇2 − e4e1]∂zz+

+ Roc[ψ1e2∂xx + Dψ (∂xx − e2)],

Dψ =
[
ψ
(
σ4e1 −∇2

)
+ e4

]
,

and

E2 = [e3(e1 + e4) + e1(e4 + e2) + e2(e4 + e3)],
E3 = e1e3(e4 + e2) + e2e4(e1 + e3), E4 = e1e2e3e4,

T1 = (σ2e4 + σ4e2)e1e3 + (σ3e1 + e3)e2e4,

T2 = σ4 (σ2e1 + σ1e2) e3 + σ3 (σ2e4 + σ4e2) e1 + σ1 (σ2e3 + σ3e2) e4,

T3 = [e1e2 (σ3 + σ4) + e1e3 (σ2 + σ4) + e1e4(σ2 + σ3)+
+ e2e3(σ1 + σ4) + (σ1 + σ3)e2e4 + e3e4 (σ1 + σ2)].
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Eq. (5.7a) is a linear problem. We get critical Rayleigh number for the
onset of oscillatory convection by using the zeroth order solution w0 in Eq.
(5.7a). At O(ε2), N0 = 0 and L1w0 = 0 gives

∂τA1L − vg∂XA1L = 0 and ∂τA1R + vg∂XA1R = 0, (5.8)

where vg = (∂ω/∂q)q=qoc
is the group velocity and is real. Hence from Eq.

(5.7b), we get w1 = 0. From equation of continuity we find that u1 = 0.
Substituting the zeroth order and first order approximations into (4.14) and
(4.15) we get

θ1 = −π
[(|A1R|2 + |A1L|2

)
t3 + J1 + J∗

1 − c.c
]
sin 2πz,

v1 = 0, Hy1 = 0,

C1 = −π
[(|A1R|2 + |A1L|2

)
t3 + J2 + J∗

2 − c.c
]
sin 2πz,

Hx1 =
iπσ2

qoc

[ |A1R|2
2e2

+
|A1L|2
2e∗2

+ J3 + J∗
3 + c.c.

]
sin 2πz,

Hz1 = −2π2σ2

[
A1RA1Le2iqocx

2e2q2
oc

+ J4 + J∗
4 − c.c

]
cos 2πz. (5.9)

The Eq. (5.7c) is solvable when L0w0 = 0, one requires that its right
hand side be orthogonal to w0, which is ensured that if the coefficients of
sin πz in N1 − L2w0 are equal to zero. This implies that

Λ0∂TA1L + Λ1 (∂τ − vg∂X)A2L − Λ2∂XXA1L − Λ3A1L +
+ Λ4 |A1L|2 A1L + Λ5 |A1R|2 A1L = 0, (5.10a)

Λ0∂TA1R + Λ1 (∂τ + vg∂X)A2R − Λ2∂XXA1R − Λ3A1R +
+ Λ4 |A1R|2 A1R + Λ5 |A1L|2 A1R = 0, (5.10b)

where

Λ0 = δ2
ocT1 + Q1δ

2
oc [σ4e1 + σ1e4] − Rocq

2
oc [σ4e2 + σ2Dψ] ,

Λ1 = −δ2
ocT2 − Q1δ

2
ocσ1σ4 + σ2σ4Rocq

2
oc(1 + ψ),
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Λ2 = 4q2
oc

{
δ2
ocE2 + E3 + Q1

[
e4 + e1 + δ2

oc

]− Roc[ψ1(q2
oc + e2) + Dψ]

}
+

+ v2
gΛ1 + 2iqocvg

{
T1 + δ2

ocT3 + Q1

[
δ2
oc(σ1 + σ4) + σ1e4 + σ4e1

]−
− Roc

[
ψ4e2 + σ2Dψ + q2

ocψ2

]}
+ E4 + δ2

ocE3 + Q1

[
δ2
oc (e1 + e4) +

+e1e4] − Roc[q2
oce2ψ1 +

(
q2
oc + e2

)
Dψ],

Λ3 = Rocq
2
oce2Dψ,

Λ4 = −Rocq
2
ocδ

2
oce2

2e1e
∗
1

[σ1e4 + ψπ2(e1σ4 + σ1)]+

+
3Q1π

2δ2
ocσ

2
2e1e4

2(σ2 + σ3)

(
1

2π2
+

1
eq

)
,

Λ5 = −Rocq
2
oce2

(
e4 + ψδ2

ocπ
2
)( 2

e1ed
+ t3

)
+

+ Rocq
2
ocπ

2ψσ4e1e2

(
2

e1edb4
+ t3

)
+ 3Q1π

2δ2
ocσ

2
2e1e4t4, (5.11)

with

eq =
(
2q2
oc + iωocσ2

)
, ed =

(
δ2
oc + 2iωoc

)
,

bj =
(
1 + iωocσj/2π2

)
, j = 1, 2, 4. b4 =

(
2π2 + iωocσ4

)
,

J1 = A1LA∗
1R

2
e1ed

exp (2iωoct), J2 = A1LA∗
1R

2
e1ed b4

exp (2iωoct),

J3 = A1RA∗
1L

1
2e2b∗2

exp (2iωoct), J4 = (A2
1R)

1
2e2e∗q

exp (qocx − iωoct),

t1 =
1

4π2
[σ4(h1 + h∗

1)] + t3, t2 =
[
2σ4h1 +

1
e∗1b

∗
1

]
,

t3 =
1

4π2

(
1
e1

+
1
e∗1

)
,

t4 =
1
4

[
1

(σ1 + σ4)
(

1
q2
oc

+
1
π2

) +
1

(σ2 + σ3)
(

1
q2
oc

+
1

b2π2
)
]

,

Dψ =
[
ψ
(
σ4e1 + δ2

oc

)
+ e4

]
.

All starred quantities e∗1, e∗2, e∗3, e∗4, t∗1, t∗2, J∗
1 , J∗

2 , J∗
3 , J∗

4 are complex con-
jugates of e1, e2, e3, e4, t1, t2, J1, J2, J3, J4. All above mentioned quantities
f = (e1, e2, . . . ) are functions of δoc and ωoc, i.e. f = f(δoc, ωoc). It should
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be noted that A1L, A1R are of order ε and A2L, A2R are of order ε2. If
ωoc = 0 in Λ0,Λ2,Λ3 and Λ4 then these expressions match with the co-
efficients λ0, λ1, λ2, and λ3 of Landau-Ginzburg equation at the onset of
stationary convection.

From Eqs. (5.8), we get A1L(ξ′, T ) and A1R(η′, T ), where ξ′ = vgτ + X,
η′ = vgτ − X. Eqs. (5.10a), (5.10b) can be written as

2vgΛ1∂η′A2L = −Λ0∂TA1L + Λ2∂XXA1L + Λ3A1L −
−

(
Λ4 |A1L|2 + Λ5 |A1R|2

)
A1L, (5.12a)

2vgΛ1∂ξ′A2R = −Λ0∂TA1R + Λ2∂XXA1R + Λ3A1R −
−

(
Λ4 |A1R|2 + Λ5 |A1L|2

)
A1R. (5.12b)

Let ξ′ε [0, l1], η′ε [0, l2], where l1, l2 are periods of A1L, A1R, respectively.
Expansion (5.4) remains asymptotic for times t = O(ε−2) only if an appro-
priate solvability condition holds. This condition obtained integrating Eq.
(5.12a) over η′ and Eq. (5.12b) over ξ′, we get

Λ0∂TA1L = Λ2∂XXA1L + Λ3A1L −
(
Λ4 |A1L|2 + Λ5 |A1R|2

)
A1L, (5.13a)

Λ0∂TA1R = Λ2∂XXA1R + Λ3A1R −
(
Λ4 |A1R|2 + Λ5 |A1L|2

)
A1R. (5.13b)

5.1. Travelling wave and standing wave convection

To study the stability regions of travelling waves and standing waves we
proceed as follows:

On dropping slow space variable X from Eqs. (5.13a) and (5.13b), we get a
pair of first order ODE’s

dA1L

dT
=

Λ3

Λ0
A1L − Λ4

Λ0
A1L |A1L|2 − Λ5

Λ0
A1L |A1R|2 , (5.14)

dA1R

dT
=

Λ3

Λ0
A1R − Λ4

Λ0
A1R |A1R|2 − Λ5

Λ0
A1R |A1L|2 . (5.15)

Put

β
′
=

Λ3

Λ0
, γ

′
= −Λ4

Λ0
and δ

′
= −Λ5

Λ0
.
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Then Eqs. (5.14) and (5.15) take the following form

dA1L

dT
= β

′
A1L + γ

′
A1L |A1L|2 + δ

′
A1L |A1R|2 , (5.16)

dA1R

dT
= β

′
A1R + γ

′
A1R |A1R|2 + δ

′
A1R |A1L|2 . (5.17)

Consider A1L = aLeiφL and A1R = aR eiφR (we can write a complex
number in the amplitude and phase (angle) form), where aL = |A1L|,
φL = arg(A1L) = tan−1 [Im m(A1L)/Re e(A1L)] and aR = |A1R|, φR =
arg(A1R) = tan−1 (Imm(A1R)/Re e(A1R)). aL, aR, φL, φR are functions
of time T since A1L and A1R are functions of T . Thus aL and aR are
positive functions. Substituting the definitions of A1L and A1R and β

′
=

β1 + iβ2, γ
′
= γ1 + iγ2, δ

′
= δ1 + iδ2 into Eqs. (5.16) and (5.17), we get

daL
dT

= β1aL + γ1aL |aL|2 + δ1aL |aR|2 , (5.18)

dφL
dT

= β2 + γ2 |aL|2 + δ2 |aR|2 , (5.19)

daR
dT

= β1aR + γ1aR |aR|2 + δ1aR |aL|2 , (5.20)

dφR
dT

= β2 + γ2 |aR|2 + δ2 |aL|2 . (5.21)

Eqs. (5.18) and (5.20) not contain phase term, so we take these two equations
for the future discussions. We have Eqs. (5.18) and (5.20) as

daL
dT

= β1aL + γ1a
3
L + δ1aLa2

R,

daR
dT

= β1aR + γ1a
3
R + δ1aRa2

L,

since aL and aR are positive functions. Put

daL
dT

= F1(aL, aR),
daR
dT

= F2(aL, aR) (5.22)

Now we discuss the stability of equilibrium points of above Eqs. (5.22).
We get four equilibrium points like (aL, aR) = (0, 0) [conduction state],
(aL, aR) = (aL, 0) [aL = amplitude of left travelling waves, here we get F2 =
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0, and we get one condition from F1 = 0, i.e., a2
L = −β1/γ1

(
= |A1L|2

)
],

(aL, aR) = (0, aR) [aR = amplitude of right travelling waves, here F1 = 0 and
from F2 = 0, we get a2

R = −β1/γ1

(
= |A1R|2

)
], and for aL �= 0 and aR �= 0

we get (aL, aR) = (−β1/ (γ1 + δ1) ,−β1/ (γ1 + δ1)) [ this gives condition for
standing waves. At standing waves we have A1L = A1R, so aL = aR ]. For
the pair of Eqs. (5.14) and (5.15), we do not get aL �= aR �= 0 [modulated
waves]. Now the Jacobian of F1 and F2 is given by

(
∂F1/∂aL ∂F1/∂aR

∂F2/∂aL ∂F2/∂aR

)
.

If real parts of all eigenvalues of the Jacobian are negative at an equilib-
rium point, then that point is a stable equilibrium [Lyapounov’s theorem
or principle of linearized stability]. Some valuable conditions for travelling
waves and standing waves are: Travelling waves are stable if β1 > 0, γ1 < 0
and δ1 < γ1 < 0. Standing waves are stable if β1 > 0, γ1 < 0 and (i) if
δ1 > 0, then − γ1 > δ1 > 0, (ii) if δ1 < 0, then − γ1 > −δ1 > 0.

The stability regions of travelling waves and standing waves are summarized
in Fig. 6. Here E is total amplitude and defined as E = a2

L+a2
R. We do not

distinguish between left travelling waves and right travelling waves. For rest
state (steady state) E = 0, for travelling waves E = −β1/γ1, for standing
waves E = −2β1/(γ1 + ς1). Travelling waves are supercritical if γ1 < 0 and
standing waves are supercritical if γ1 + ς1 < 0. Fig. 6(a) is drawn for stable
travelling wave conditions and Fig. 6(b) is drawn for stable standing wave
conditions in (β1, E)-plane. The symbols (−,−) and (+,−) in Figs. 6(a,b)
indicate that both two roots of Jacobian are negative and at least one root
is positive between two roots.

In Figs. 6(a) and 6(b), travelling wave solution and standing wave solu-
tion bifurcate simultaneously from the steady state solution ( β1 ≥ 0 at this
bifurcation point). In these Figs. 6(a) and 6(b), steady state solution is sta-
ble for β1 < 0 and unstable for β1 > 0. These figures show that for β1 > 0
both travelling waves and standing waves are supercritical. When travelling
waves and standing waves bifurcate supercritically then at most one solu-
tion among travelling waves and standing waves will be stable. Thus, for
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Fig. 6. (a), (b) and (c) are typical diagrams showing the stability of equilibrium solutions
SS (steady state ), SW(standing waves) and TW(travelling waves). The equilibrium
solutions are stable on solid lines and unstable on dotted lines.
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β1 > 0 (Fig. 6(a)) travelling waves are stable and (Fig. 6(b)) standing waves
are stable. In more detail we reproduce results of the stability analysis of
equilibrium solutions in Fig. 6(c), which is plotted in (γ1, ς1)-plane. From
this figure we can observe that travelling waves are subcritical for γ1 > 0
and standing waves are subcritical for γ1 + ς1 > 0.

5.2. Long wave-length instabilities for the onset of travelling
wave convection (Benjamin-Feir instability)

For right travelling wave AR(X,T ) = A(X,T ) and AL(X,T ) = 0, for left
travelling wave AR(X,T ) = 0 and AL(X,T ) = A(X,T ). Thus for travelling
waves we get a single amplitude equation from Eqs. ((5.10a), (5.10b), given
as

Λ0∂TA − Λ2∂XXA − Λ3A + Λ4 |A|2 A = 0, (5.23)

For standing waves A1L(X,T ) = A1R(X,T ) = A(X,T ) and we get a single
amplitude equation from Eqs. (5.10a) and (5.10b), given as

Λ0∂TA − Λ2∂XXA − Λ3A + (Λ4 + Λ5) |A|2 A = 0. (5.24)

The above Eq. (5.23) possesses a family of planar wave solutions and solu-
tions containing phase singular points.

We study the Benjamin-Feir instability of travelling waves from complex
Landau-Ginzburg Eq. (5.23). Eq. (5.23) can be written as

∂TA = ξ∂XXA + βA + γ |A|2 A, (5.25)

where ξ = ξ1 + iξ2, β = β1 + iβ2, γ = γ1 + iγ2. The phase winding solutions
are obtained by substituting

A = Ãoe
i(δqoX−δωT )

into Eq. (5.25) and equating real and imaginary parts we get

|Ão|2 = ξ1δq
2
o − β1γ

−1
1 , δω = ξ2δq

2
o − β2 + γ2

(
β1 − ξ1δq

2
o

)
γ−1
1 .

Here Ão is a constant and δqo = qX−qoc. We consider a modulated solution
in the form: A(X,T ) = Ã(X,T )ei(δqoX−δωT ). Substituting the modulated
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solution into Eq. (5.25) which gives

∂T Ã = (γ1 + iγ2) [
(
β1 − δq2

oξ1γ
−1
1

)
+ |Ã|2]Ã+

+ (ξ1 + iξ2) (∂XX + 2iδqo∂X) Ã. (5.26)

It is possible to conduct a general investigation of the linear stability of
A(X,T ), but this is a very difficult task, and therefore our primary concern
here is to treat the stability of the uniformly oscillating solution Ão. Insert-
ing Ã = Ão + ũ + iṽ into Eq. (5.26) and equating real and imaginary parts
we get

∂T ũ = −2
(
β1 − δdq2

oξ1

)
ũ + ξ1 (∂XX ũ − 2δqo∂X ṽ)−

− ξ2 (2δqo∂X ũ + ∂XX ṽ) , (5.27a)

∂T ṽ = −2γ2

(
β1 − δq2

oξ1

)
γ−1
1 ũ + ξ1 (2δqo∂X ũ + ∂XX ṽ)+

+ ξ2 (∂XX ũ − 2δqo∂X ṽ) . (5.27b)

Consider (ũ, ṽ) = (U, V )eST cos qXX and S is the growth rate of distur-
bances. Using solutions of ũ, ṽ and δqo = 0 into (5.32), we get(

S + 2β1 + ξ1q
2
X

)
U − q2

Xξ2V = 0, (5.28)(
S + q2

Xξ1

)
V +

(
2β1γ2γ

−1
1 + q2

Xξ2

)
U = 0. (5.29)

Solving Eq. (5.28) and Eq. (5.29), we get

S2 + 2S
(
β1 + ξ1q

2
X

)
+ q2

Xξ1

(
2β1 + ξ1q

2
X

)
+ q2

Xξ2

(
2β1γ2γ

−1
1 + q2

Xξ2

)
= 0.
(5.30)

There will be an instability only when a root of Eq. (5.30) is positive i.e.,

2β1

(
ξ1 + γ2ξ2γ

−1
1

)
+ q2

X

(
ξ2
1 + ξ2

2

)
< 0. (5.31)

β1 > 0 when travelling waves or standing waves are stable. The instabil-
ity of waves against long wavelength longitudinal modes is often called the
Benjamin-Feir instability. Thus we get Benjamin-Feir instability for trav-
elling waves when ξ1 + γ2ξ2/γ1 < 0. Similarly by considering Eq. (5.25)
instead of Eq. (5.24) and proceeding in the same way we get Benjamin-Feir
instability for standing waves when ξ1 + (γ2 + δ2)ξ2/(γ1 + δ1) < 0.
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Fig. 7. Figures (a−d), are plotted for σ2 = 6, 12, 18, 24, respectively. Stability regions of
steady state (SS), travelling waves (TW) and standing waves (SW) are plotted (Q,Pr1)-
plane.

6. Conclusions

In this paper we have considered both the linear and the weakly nonlinear
analysis of magneto-convection in Earth’s outer core due to compositional
and thermal buoyancy by using free-free (stress-free) boundary conditions.
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Even though the free-free boundary conditions cannot be achieved in labo-
ratory, one can use it in geophysical fluid dynamic applications to Earth’s
outer core, since they allow simple trigonometric eigenfunctions.

Following Chandrasekhar (1961), we have described the stationary con-
vection and oscillatory convection as curves Rs(ψ) and Ro (ψ, σ2) vs wave
numbers. The critical wave numbers for stationary convection and oscilla-
tory convection are qsc = qoc = π/

√
2. For the problem of convection due

to compositional and thermal buoyancy, we get Takens-Bogdanov bifurca-
tion point, but no codimension-two bifurcation point. In the non-linear
Eq. (4.17), λ0 = 0 gives the Takens-Bogdanov bifurcation point at qs = qsc,
and when λ0 = 0, Eq. (4.17) is not valid. The pitchfork bifurcation is su-
percritical if λ3 > 0, subcritical if λ3 < 0, and we get tricritical point if
λ3 = 0.

From Eq. (4.17), we have obtained in section 4.1 secondary instabil-
ities cf. Eckhaus and zigzag instabilities. We have computed stability
regions (see Fig. 7) of SW and TW at both the Hopf bifurcation and
the co-dimension two bifurcation point. The conditions for SW and TW
are AL = AR and AL = 0 or AR = 0, respectively. The TW exist if
|AL|2 = −β1/γ1 > 0, and they are supercritical if γ1 < 0. The SW ex-
ist if |AL|2 = |AR|2 = −β1/(γ1 + δ1) > 0 and SW are supercritical if
γ1 + δ1 < 0. When both the SW and TW are supercritical, then at most
one equilibrium solution is stable. If we substitute ω = 0 in the coeffi-
cients of Eqs. (5.13a−5.13b), we get the coefficients of Eq. (4.17). At the
codimension-two bifurcation point we always get TW. These TW are re-
placed by SW when Pr increases. At Takens-Bogdanov bifurcation point we
get both the TW and SW. By deriving one-dimensional Landau-Ginzburg
equations with complex coefficients cf. Eqs. (5.23) and (5.24), we have
shown the existence of the Benjamin-Feir type of instability for both TW
and SW.
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