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Abs t r a c t : The subject of this study is an assessment of the accuracy of gravity

data used in local gravity field modeling when the a priori standard deviations of input

gravity data are not available. To assess the accuracy of gravity data sets, Variance

Component Estimation (VCE) technique for the observation group weighting is applied.

The parameterization of gravity field is realized in terms of the spherical radial basis

functions (SRBF). The unknown parameters are estimated by a least-squares technique.

The performance of VCE technique for the observation group weighting is demonstrated

using real data, providing that the parameterization of gravity field is chosen optimally

by means of modeling the gravity signal and not the observation data noise.
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1. Introduction

Various types of the spherical radial basis functions were utilized for pa-
rameterization of the Earth’s gravity field such as the point mass kernel
(Weightmann, 1965 ), the radial multipoles of different orders (Marchenko,
1998 ), Poisson wavelets of different orders (Holschneider et al., 2003 ), and
the Poisson kernel. InTenzer and Klees (2007) we demonstrated that almost
the same accuracy of gravity field modeling can be achieved for different
types of the SRBFs if the bandwidth of the SRBFs is chosen optimally. In
Klees et al. (2007) we developed a data-driven approach for the local gravity
field modeling using various least-squares techniques. After finding an op-
timal configuration of the SRBFs by applying Generalized Cross Validation
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(GCV) technique, VCE technique for the observation group weighting is im-
plemented to estimate the variance factors of the observation data sets used
for the SRBF analysis. These estimated variance factors are then adopted
as the a priory information of accuracy in the least-squares adjustment.
Following principles of the methodology developed by Klees et al. (2007),
VCE technique for the observation group weighting is utilized in this study
to assess the accuracy of input gravity data. The functional model, the es-
timation principle and VCE technique for the observation group weighting
are briefly recapitulated through sections 2-4. The optimal configuration of
the SRBFs and the performance of VCE for an objective assessment of the
accuracy of gravity data are investigated in section 5 and the results of the
numerical experiment are summarized in section 6.

2. Functional model

Let us consider a residual gravity field of which the quantities are ob-
tained after subtracting the contribution of the global gravity field. The
corresponding residual disturbing gravity potential T at a point r can be ex-
pressed as a linear combination of I spherical radial basis functions {Ψ(r, r ′i) :
i = 1 . . . I}. Hence

T (x) =
I

∑

i=1

βiΨ(r, r
′

i) , (1)

where the coefficients {βi : i = 1 . . . I} parameterize gravity field at the po-
sitions r′i of the SRBFs. The objective of local gravity field modeling is
to determine the unknown parameters {βi : i = 1 . . . I} from various types
of gravity observables, such as the gravity anomalies and/or the gravity
disturbances. After linearization and spherical approximation, the residual
gravity anomalies ∆g and the residual gravity disturbances δg are related to
the residual disturbing gravity potential according to well-known formulae

∆g(r) = −
2

|r|
T (x)−

∂ T (r)

∂ |r|
, δg(r) = −

∂ T (r)

∂ |r|
. (2)
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In this study we consider the parameterization of gravity field in terms of
the Poisson kernel. The Poisson kernel Ψpk is defined by (see e.g. Heiskanen
and Moritz, 1967 )

Ψpk(r, r
′) =

∞
∑

n=0

(2n + 1)

(

|r′|

|r|

)n+1

Pn
(

r̂T r̂′
)

, (3)

where Pn is the Legendre polynomial of degree n for the argument r̂T r̂′;
r̂ = r/|r| and r̂′ = r′/|r′|. The corresponding spatial representation of the
Poisson kernel Ψpk reads

Ψpk

(

r, r′
)

= |r′|
|r|2 − |r′|2

|r− r′|3
, (4)

where |r − r′| is the Euclidean spatial distance. To implement the Poisson
kernel from eqn. (4) for the gravity observables δg and ∆g, the linear ob-
servation operators Dδg and D∆g are applied. The operator Dδg is defined
as Dδg = −∂/∂|r|, and D∆g = Dδg − 2|r|

−1=, where = denotes the identity
operator.

3. Estimation principle

The observation data of different quality are separated into the individual
observation groups for which the variance factors are estimated using VCE
technique (see the next section). The observation equations are then formed
for P observation groups (cf. Klees et al., 2007 ),

lp + εp = Ap x , p = 1 . . . P, (5)

where lp is the observation vector of observation group p, Ap the cor-
responding design matrix, and x the vector of gravity field parameters
{βi : i = 1 . . . I}. Assuming that the observation noise is white Gaussian
with zero mean, the variance-covariance matrix Σp of the stochastic obser-
vation noise vector εp is a diagonal matrix. Moreover, it is assumed that
the noise variance is the same for the data within each observation group.
Therefore, the noise variance-covariance matrix Σp of observation group p
is
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Σp = σ2p Ip , p = 1 . . . P, (6)

where Ip is the Jp × Jp identity matrix; and σ2p the variance factor of obser-
vation group p.

A penalized least-squares estimation principle is chosen, i.e. for a given
regularization parameter α the quadratic objective function Φ is minimized
(ibid.)

Φ(x) =
P

∑

p=1

||εp||
2

Σ
−1
p
+ α||x||2

R
, (7)

where R is the (positive definite) regularization matrix. The regularization
matrix is the identity matrix; i.e., R ≡ I. For a given regularization param-

eter α and known variance factors
{

σ2p : p = 1...P
}

, the minimum of the

quadratic objective function Φ(x) is attained for

x̂ = N−1 h, (8)

where the normal matrix N reads

N =
P

∑

p=1

Np + αR , Np = A
T
p Σ

−1
p Ap . (9)

The right-hand side vector of the system of normal equations is given by

h =
P

∑

p=1

hp , hp = A
T
p Σ

−1
p lp . (10)

Once the definite variance factors and the associated least-squares solu-
tion have been found, the accuracy of estimated parameters and adjusted ob-
servations can be computed from the error propagation. The noise variance-
covariance matrix Σx̂ of the estimated parameters reads

Σx̂ =





P
∑

p=1

ATp Σ
−1
p Ap + αR





−1

. (11)
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4. Observation group weighting

To assess the accuracy of input gravity data, VCE technique is used to
estimate the unknown variance factors σ2p of all observation groups used for
the SRBF analysis. The estimated variance factors obtained from applying
VCE technique are then used as the a priori information about the accuracy
of input gravity data. The VCE technique can also be applied in order
to determine the regularization parameter α. To do that, the quadratic
objective function Φ(x) from eqn. (7) is rewritten as (Klees et al., 2007 )

Φ(x) =
P

∑

p=1

||εp||
2

Σ
−1
p
+ α||εP+1||

2

Σ
−1

P+1

,

εP+1 = I x , (12)

D{εP+1} = ΣP+1 = α−1 I ,

where D is the dispersion operator. The minimization of the quadratic
objective function Φ(x) of eqn. (12) is then given by the unconstraint least-
squares solution for P+1 observation groups with the additional observation
group lP+1 = 0. The determination of the regularization parameter α is thus
treated as a determination of the variance factor of an additional observation
group; i.e., ΣP+1 ≡ α−1R−1 and α−1 ≡ σ2P+1. The variance factors σ2p can
be estimated by the Almost Unbiased Estimator (cf. Förstner, 1979 );

σ̂2p =
ε̂Tp Wp ε̂p

rp
, σ2p W

−1
p = Σp , p = 1 . . . P + 1 , (13)

where ε̂p is the vector of residuals
{

ε̂j = l̂j − lj : j = 1 . . . Jp

}

of observation

group p, and the group redundancy number rp is defined as a difference of
the number of observations Jp in the group and the trace of the observation
group influence matrix N−1 Np; i.e.,

rp = Jp − trace
(

N−1 Np

)

. (14)

137



Tenzer R.: On the accuracy assessment of input gravity data. . . , (133–149)

The trace of the observation group influence matrix is a measure of the
influence of the particular observation group p on the least-squares solution
x̂.
The estimation of the variance factors is carried out iteratively, starting

with some a priori values
{

σ̂2p,0 : p = 1 . . . P + 1
}

. The initial least-squares

solution is computed according to eqn. (8) using σ̂2p,0. From the residuals of
the initial solution, the improved values of the variance factors are obtained
according to eqn. (13). Improved variance factors are used in the next
iteration to define new noise variance-covariance matrices Σp in order to
form the system of normal equations. The procedure is repeated until some
chosen criterion of convergence is achieved. The criterion of convergence

can be chosen for instance as: max
p=1...P+1

(

σ̂2p,k/σ̂
2
p,k−1

)

≤ τ , where τ is the

threshold, and σ̂2p,k is the variance factor of observation group p after k-th
iteration. If the iteration converges, the almost unbiased estimator is equal
to the maximum likelihood estimator. The original idea of this algorithm is
given by Förstner (1979) and a modified version in which the Monte Carlo
VCE technique was utilized was introduced by Koch and Kusche (2002),
see also Kusche (2003).

5. Numerical study

The data used for the numerical analysis consist of the 30178 free air
gravity anomalies which cover the computation area bounded by the par-
allels of 50◦ and 54◦ arc-deg northern geodetic latitude and the meridians
of 3◦ and 8◦ arc-deg eastern geodetic longitude (see Fig. 1). The residual
free-air gravity anomalies over the computation area were separated into 7
observation groups, depending on a priori information about the expected
accuracy, the data type (point or grid values) and the location. Among the
input data sets, the data over the target area (the territory of the Nether-
lands) were assigned into 3 observation groups (Holland data set of observed
ground gravity anomalies, Holland-Ÿsselmeer data sets 1 and 2 of the sea-
born gravity anomalies of different quality). Within the target area, 653
control points were further selected randomly to verify a performance of
least-squares techniques applied to the optimal parameterization of gravity
field (by GCV) and the observation group weighting (by VCE).
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Fig. 1. The residual free-air gravity anomalies used for the SRBF analysis. For the
Netherlands, the residual gravity anomalies range from −28.7 to 15.0 mGal; the mean
value is −5.9 mGal, and the standard deviation is 7.4 mGal.

To assess objectively the accuracy of gravity data, the optimal parame-
terization of gravity field should be realized in prior of applying the VCE to
the observation group weighting. The main reason is due to the requirement
of modeling the real gravity signal and not the data noise at the level of a
stochastic significance.

For finding an optimal parameterization of the gravity field, the first
experiment was carried out in order to form the horizontal configuration of
the coarse-grid SRBFs. Particularly, the correlation between the accuracy
of least-squares approximation of gravity field and the number of the coarse-
grid SRBFs was investigated. The parameterization of gravity field in terms
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of the different number of the coarse-grid SRBFs used for the numerical
experiment is summarized in Table 1.

Table 1. The coarse-grid SRBFs used for a parameterization of the gravity field

Equal-angular step of Number
the coarse-grid SRBFs of SRBFs

0.10 [deg] 2000

0.09 [deg] 2520

0.08 [deg] 3213

0.07 [deg] 4176

0.06 [deg] 5628

0.05 [deg] 8000

0.04 [deg] 12726

0.03 [deg] 22378

As follows from the results shown in Figs. 2 and 3, the sufficient number of
the coarse-grid SRBFs is about 18 – 30% of the total number of observations
used for the SRBF analysis. The accuracy of the SRBF analysis (provided in
terms of the RMS of least-squares residuals) does not increase significantly
with the number of SRBFs. Moreover, the use of large number of SRBFs can
yield the over-fitting. As a consequence, too many SRBFs model not only
the gravity signal but also the data noise. The over-fitting is particularly
evident from the SRBF synthesis at the control points (Fig. 3). Whereas
the least-squares approximation of the gravity signal at the observation
data points for the SRBF analysis improves with increasing number of the
SRBFs, the accuracy of a prediction at the control points (provided in terms
of the RMS of differences between observed and predicted residual gravity
anomalies) remains almost unchanged despite more SRBFs were used for
the parameterization.

After forming an appropriate horizontal configuration of the coarse-grid
SRBFs, the selection of the optimal depth of the coarse-grid SRBFs was
realized. The accuracy of least-squares approximation of the gravity signal
at the observation data points with respect to the depth of the coarse-
grid SRBFs is shown in Fig. 4. The corresponding correlation between the
accuracy of prediction at the control points and the depth of the coarse-
grid SRBFs is shown in Fig. 5. As follows from the results, the gravity field
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Fig. 2. RMS of least-squares residuals for different steps of the coarse-grid SRBFs. The
depth of the coarse-grid SRBFs is 13.5 km.

Fig. 3. RMS of differences between observed and predicted residual gravity anomalies
at the control points for different steps of the coarse-grid SRBFs. The depth of the
coarse-grid SRBFs is 13.5 km.
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Fig. 4. RMS of least-squares residuals for different depths of the coarse-grid SRBFs.
Search interval between 2 and 25 km with the step of 1 km.

Fig. 5. RMS of differences between observed and predicted residual gravity anomalies at
the control points for different depths of the coarse-grid SRBFs. Search interval between
2 and 25 km with the step of 1 km.
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solution is somehow robust with respect to the choice of the depth; fixing
the depth with an accuracy of a few kilometers is sufficient for the data set
used in this study.

From the above results, the optimal parameterization of gravity field
comprises 5628 coarse-grid SRBFs (about 19% of the number of observa-
tions) of which the optimal depth below the Bjerhammar sphere is 13.5 km.
The optimal depth 13.5 km of the coarse-grid SRBFs was selected by GCV
(cf. Klees et al., 2007 ). The mean distance between the SRBFs is about
4.3 km. The accuracy of least-squares approximation of the gravity signal
at the observation data points and the accuracy of prediction at the control
points after the parameterization of gravity field by the coarse-grid SRBFs
are shown in Figs. 6 and 7 and summarized in Table 2.

Table 2. RMS of least-squares residuals and RMS of differences between observed and
predicted residual gravity anomalies after the parameterization of gravity field by the
coarse-grid SRBFs

RMS [mGal]

Holland Holland-Ÿsselmeer Holland-Ÿsselmeer
data set 1 data set 2

SRBF analysis 0.53 0.41 1.31

SRBF synthesis 0.60 0.48 1.94

To reveal a possible presence of the remaining un-modeled gravity signal
after the parameterization by the coarse-grid SRBFs, the local refinement
procedure was implemented by means of adding additional local-refinement
SRBFs bellow the observation data points according to the pre-defined cri-
teria. The selection criteria for locating the additional SRBFs were defined
as follows: The threshold for the absolute value of least-squares residual at
a candidate point for the local refinement should be at least 3 times larger
than the RMS of coarse-grid solution. To avoid local over-fitting, the mini-
mum spherical distance between two SRBFs was set up to be at least 0.01
deg. To avoid modeling of large isolated residuals which are more likely out-
liers and not the real gravity signal, the additional threshold criteria for the
average RMS of residuals and the minimum number of observations within
the area of local refinement were specified. The average RMS threshold was
set up to be 3 times larger than the RMS of coarse-grid solution, providing
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Fig. 6. Least-squares residuals at observation points after the parameterization of gravity
field by the coarse-grid SRBFs (statistics: min = −4.83 mGal, max = 4.98 mGal, mean
= 0.01 mGal, RMS = 0.53 mGal).

Fig. 7. Differences between observed and predicted residual gravity anomalies at the con-
trol points after the parameterization of gravity field by the coarse-grid SRBFs (statistics:
min = −5.44 mGal, max = 3.86 mGal, mean = 0.04 mGal, RMS = 0.70 mGal).
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that at least 30 data points were located within the area of local refinement.
The GCV was applied individually for each local-refinement SRBF to find
its optimal depth at the search interval between 0.1 and 13.5 km with the
step of 0.2 km. The accuracy of least-squares approximation and predic-
tion after complete parameterization of gravity field by the coarse-grid and
local-refinement SRBFs are summarized in Table 3.

Table 3. RMS of least-squares residuals and RMS of differences between observed and
predicted residual gravity anomalies after complete parameterization of gravity field by
the coarse-grid and local refinement SRBFs

RMS [mGal]

Holland Holland-Ÿsselmeer Holland-Ÿsselmeer
data set 1 data set 2

SRBF analysis 0.46 0.41 1.30

SRBF synthesis 0.60 0.48 1.93

From comparison of the accuracy in Tables 2 and 3, the 52 selected local-
refinement SRBFs improve the accuracy of the least-squares approximation
within the target area less than 0.1 mGal which is bellow a stochastic sig-
nificance. Hence, the parameterization of gravity field by the coarse-grid
SRBFs is sufficient and VCE for the observation groups weighting can be
applied to assess the accuracy of gravity data.

As follows from the experiment for finding the optimal 3-D configuration
of the coarse-grid SRBFs, the accuracy of least-squares approximation is less
correlated with the number of the SRBFs than with the depth of the SRBFs.
Hence, the accuracy of least-squares approximation after applying VCE for
the observation group weighting was further investigated only for different
depths of the coarse-grid SRBFs. The result in terms of the RMS of least-
squares residuals for different depths of the coarse-grid SRBFs is shown in
Fig. 8. The corresponding result in terms of the RMS of differences between
observed and predicted residual gravity anomalies at the control points is
shown in Fig. 9. From the depth of approximately 6 km, the results after
applying VCE are very similar to the results obtained without applying VCE
(cf. Figs. 4 and 5). The gravity field solution is again robust with respect
to the choice of the depth. For the depth 13.5 km of the coarse-grid SRBFs,
the results of the SRBF analysis and synthesis are summarized in Table 4.
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Fig. 8. RMS of least-squares residuals for different depths of the coarse-grid SRBFs after
applying VCE for the observation group weighting. Search interval between 2 and 25 km
with the step of 1 km.

Fig. 9. RMS of differences between observed and predicted residual gravity anomalies at
the control points for different depths of the coarse-grid SRBFs after applying VCE for
the observation group weighting. Search interval between 2 and 25 km with the step of
1 km.
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The estimated standard deviations obtained from VCE are summarized in
Table 5.
From comparison of the results in Tables 2 and 4, VCE improved the

quality of least-squares approximation of the gravity signal by means of
better fitting within the data sets of the higher accuracy while decreasing
the accuracy within the data sets with the larger data noise.

Table 4. RMS of least-squares residuals and RMS of differences between observed and
predicted residual gravity anomalies after applying VCE for the observation group weight-
ing

RMS [mGal]

Holland Holland-Ÿsselmeer Holland-Ÿsselmeer
data set 1 data set 2

SRBF analysis 0.46 0.41 1.30

SRBF synthesis 0.60 0.46 2.14

Table 5. The estimated standard deviations from VCE

Holland Holland-Ÿsselmeer Holland-Ÿsselmeer
data set 1 data set 2

Standard
deviation 0.60 0.36 1.48

The procedure of assessing the accuracy of gravity data is realized itera-
tively. After finding the initial variance factors of the observation data sets
according to the method described above, the outlier detection is applied.
The new variance factors are then estimated from VCE using the initial
parameterization of gravity field. The reason of using the same parameter-
ization is due to the fact that an elimination of the outliers cannot affect
the configuration of SRBFs which is formed so that the real gravity signal
is modeled and not the data noise.

6. Conclusions

To assess the accuracy of the input gravity data in the local and re-
gional gravity field modeling, the parameterization of gravity field should
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be realized so that it models the gravity signal and not the data noise.

Homogeneously distributed gravity data over a flat area were used in our
numerical experiment. As consequence, a simple parameterization scheme
was chosen. The equal-angular coarse grid of the SRBFs with the constant
depth bellow the Bjerhammar sphere used in this study represents one ex-
ample of forming a simple parameterization model, providing that the data
coverage and the horizontal distribution of the SRBFs should extend the
target area at least 3 times of the correlation length of the SRBFs. The
correlation length of a SRBF is defined as the spherical distance for which
the value of the SRBF has dropped to 50% of its maximal value.

To find the optimal configuration of the SRBFs, we firstly investigated
the accuracy of least-squares gravity field approximation with respect to
the number of the coarse-grid SRBFs. After finding the sufficient horizon-
tal configuration of the SRBFs, we applied GCV technique for finding the
optimal depth of the coarse-grid SRBFs. Results of GCV indicate that the
gravity field solution is robust with respect to the depth of the coarse-grid
SRBFs.

After finding the optimal 3-D configuration of the coarse-grid SRBFs,
the local refinement procedure was applied for modeling the remaining grav-
ity signal. The parameterization was realized by adding additional local-
refinement SRBFs bellow the selected observation data points. The selection
of candidate points for the local refinement was realized according to the
pre-defined criteria in order to avoid the local over-fitting or modeling the
large isolated residuals.

The accuracy of the least-squares approximation after the local refine-
ment procedure has not improved significantly compared with the accuracy
obtained after the parameterization by the course-grid SRBFs. This is due
to the homogeneous distribution of gravity data and the small variation of
the gravity signal. In this case, a simple parameterization by the coarse-
grid SRBFs is sufficient. The additional local-refinement parameterization
of gravity field is needed especially for regions with a large gravity signal
variation and/or an inhomogeneous distribution of gravity data.

The VCE technique for the observation group weighting was applied to
assess the accuracy of gravity data sets of different accuracy. Despite a very
similar accuracy of the gravity data sets used in this study, the quality of
least-squares approximation after applying VCE slightly improved by means
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of modeling the real gravity signal and not the data noise. The observation
group weighting by VCE becomes essential for combined processing of the
data sets of different accuracy (for instance in processing the terrestrial and
satellite data).
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