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Abstract: The compilation of proper input gravity data for the Truncation Fil-
tering Methodology (TFM) from observed gravity is discussed. The aim of the TFM
interpretation is to determine the anomalous density distribution, or at least some of
its characteristics, below the earth’s surface in a studied region. It implies that the in-
put data must be equal to the gravity effect (attraction) of all such anomalous masses
of interest. Furthermore, the TFM requires that the input gravity data be given on a
level reference surface, the position of which is further constrained by the requirement
to stay outside all the anomalous masses, hence above all the terrain, in order to avoid
downward continuation through anomalous masses. Such a requirement is imposed by
the fact, that the TFM is a pattern recognition technique and the knowledge of patterns
comes from synthetic modeling on a level surface without topography. Consequently the
requirements imply that the input data needed are the gravity disturbances, corrected
for the effects of topography and bathymetry, harmonically upward continued to a level
surface tightly enveloping the topo-surface in the area of interest. Numerical procedures
and several approximations in compiling such data are discussed.

Key words: TFM, gravity disturbance, gravity interpretation, gravimetric
inversion, pattern recognition
1. Introduction

The Truncation Filtering Methodology (TFM) was introduced in 1995
(Vajda, 1995; Vajda and Vanicek, 1999; 2002) as a tool for interpreting
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gravity data. The methodology uses specially designed filters, by which
gravity data are transformed into other quantities. The truncation filter
has one free parameter (the truncation parameter), therefore the transfor-
mation results in a sequence of profiles or surfaces (Vajda and Vanicek,
1997; 2002) of the “post-filtered quantity”, when this parameter is varied
monotonically within a selected interval of values. When the sequence of
such profiles or surfaces is animated, dynamic patterns are observed. These
patterns are signatures of the anomalous masses generating the gravity data.
The TFM may be classified as a data enhancement and pattern recognition
technique. The patterns often have an onset (a value of the truncation pa-
rameter at which they appear). From the onset of a pattern the depth of
some characteristic feature of the anomalous mass density distribution may
be determined. To be able to interpret such dynamic patterns, the relation-
ship between the observed pattern and the source (anomalous masses) must
be known apriori. This may be established by modeling (synthetic simula-
tions) and case studies. Work is in progress to establish such a know—how
or databank of patterns. So far this relationship is known only for point
sources (Vajda and Vaniéek, 1997; 2002). Point sources produce dimple
patterns. The relationship between the depth of a point source and the on-
set of the dimple pattern was established not only by computer simulations,
but also by analytical derivations (Vajda and Vanicek, 1999; 2002).

Originally, at the very beginning of developing the TFM, when the trun-
cation filter in use was the Truncated Stokes Transform (Vajda and Vanicek,
1997; 1999), the input data were the gravity anomalies. However, such ap-
proximations were adopted in computer simulations and analytical deriva-
tions, that the gravity anomalies were actually approximated by gravity
disturbances without explicitly declaring it. This was caused by taking the
geoidal undulation (the separation between reference ellipsoid and geoid) to
be zero in the first approximation. Later, the use of the Truncated Stokes
Transform was extended to using a general truncation filter (the Stokes
function as the kernel of the integral was replaced by an arbitrary function
of the angular distance between the computation point and the integration
point), and the gravity anomaly was replaced by the gravity disturbance
(Vajda and Vanicek, 2002).

In computer simulations the synthetic gravity data are computed either
on a plane bounding the halfspace containing anomalous masses (planar
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approximation) or on a reference sphere bounding the anomalous masses
(spherical approximation). Topography of the earth’s surface is not consid-
ered. Synthetic TFM sequences are computed from synthetic gravity data
and the knowledge of “synthetic” TFM patterns is built based on these
computer simulations. However, we want to interpret gravity data perti-
nent to the real world by means of TFM pattern recognition. In real world
the observed gravity data are: (1) typically given on the topo-surface, as
opposed to the reference plane or sphere, and (2) impacted by the effect of
topographic masses, and eventually of the bathymetric density contrast. In
this paper we shall examine how to handle these two issues in order to be
able to interpret observed gravity data by means of the TFM, or in other
words, in order to be able to match ‘observed TFM patterns’ with ‘synthetic
TFM patterns’.

2. Background

Points and surfaces in our study are positioned using geographical coor-
dinates (geocentric geodetic [Gauss-ellipsoidal] coordinates), vertical posi-
tion being given by ellipsoidal (geodetic) height h and horizontal position
Q = (¢, \) by geodetic latitude and longitude, respectively. The Interna-
tional Reference Ellipsoid, such as GRS’80, is chosen both as the datum
for the geodetic coordinates and as the normal ellipsoid, i.e., the reference
body for normal potential, normal gravity, and a model normal density
distribution. Gravity data are assumed already properly corrected for the
gravitational effects of the atmosphere, tides, and other known temporal
effects. The discussed topographic and bathymetric corrections to a grav-
ity disturbance are given by Newton-type volume integrals for attraction.
Newton-type volume integrals herein are written in spherical approximation
(e.g., Moritz, 1980, p. 349; Vajda et al., 2004; Novik and Grafarend, 2005)
expressed in geodetic (not spherical) coordinates, taking the mean earth
radius R = 6 371 km. The J kernel of the volume integrals for the vertical
component of attraction is defined here as the negative vertical derivative
of the reciprocal Euclidean distance L between computation (h,€2) and in-
tegration (h', Q) points (e.g., Vajda et al., 2006)

L(h Q1) = \J(R+h)>+ (R+ 1) —2(R+h) (R+h)cosp, (1)
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Table 1. Surfaces of particular relevance in our study

surface definition | domain
reference ellipsoid (RE) h(2) = Qo
topo-surface onshore (relief) | h(2) = hp(Q2) Qr
topo-surface offshore (geoid) | h(2) = N(Q) Qg

sea bottom h(Q) = hp(2) Qg
cost) = sin¢ sing’ + cospcos @ cos (A — ), (2)
J(h, U1, Q)= [(R+h) — (R+H)cosyp] L3(h, QK , Q) . (3)

The topographic and bathymetric corrections to the scalar gravity distur-
bance are then the negative vertical component of the gravitational attrac-
tion of the topography and of the bathymetric contrast given by the volume
integral of the Newtonian type. The convolution integrals of the truncation
filters are evaluated, either in geographical coordinates or in local polar
coordinates, on the reference ellipsoid in spherical approximation. The sur-
face increment at the unit sphere in geographical coordinates reads d)’ =
cos ¢’ d¢’ d\' and in local polar coordinates dQ) = (1/R)sin (s/R)ds da,
where s is the spherical distance from the local pole and « is azimuth.
The surface increment on the RE is do’ = R2dSY, while at a sphere of
radius r = R+ b/ it is do’ = (R+ h/)*>d€Y. The volume increment is
a9 = (R+ h')?d dn'.

The extension towards evaluating the Newton volume integrals in el-
lipsoidal geometry would be carried out by replacing the J kernel and the
volume increment d¢’ (of the volume integrals) by their respective (and more
cumbersome) expressions in Gauss- or Jacobi- ellipsoidal coordinates (Vajda
et al., 2004; Novak and Grafarend, 2005). For brevity, we will write the
J kernel and the volume increment of the Newton volume integrals herein
without their position arguments. The following surfaces, listed in Tab. 1,
are particularly relevant in our study. The onshore and offshore regions of
the globe (£2g) are denoted as Q, and Qg, respectively, Qo = Q1 U Qg.

Both the relief and sea bottom in the topo-correction and the bathy-
metric correction are reckoned from the RE, i.e., positioned (referred to) in
geodetic heights (not heights above sea level). When not directly available,

172



Contributions to Geophysics and Geodesy Vol. 38/2, 2008

these are obtained by adding geoidal (or quasigeoidal) heights to the or-
thometric (or normal) heights, e.g., from a local or regional geoid model in
the vicinity of the station and from a global geoid solution such as EGM96
(Lemoine, 1998) in the remainder to Qy. We shall use the term ‘reference
ellipsoid’ (RE) for both the body and its surface, trusting that the meaning
will be clear from the context.

We presuppose that a model normal density distribution py (h, ) inside
the RE, meeting the constraint of generating normal gravitational potential
in the exterior of the RE, generating normal gravity (both inside and outside
the RE), which in addition is geophysically meaningful, can be found to at
least a satisfactory approximation (Tscherning and Stinkel, 1981; Moritz,
1968; 1973; 1990) in the form of an ellipsoidally stratified normal density
distribution with a PREM-like “radial” behavior (PREM being an acronym
of the Preliminary Reference Earth Model), consisting of the top layer of
an average crustal density pg at least 11 km thick.

3. Gravity data interpretation or inversion

The objective of inverting or interpreting gravity data is to determine
the anomalous density distribution dp (“anomalous masses”) below the to-
pographic surface onshore or below the sea bottom offshore. To do that a
physical link between the observables (gravity) and the unknowns (anoma-
lous density) must be established. That can be achieved by the decompo-
sition of the earth gravitational potential (e.g., Vajda et al., 2006; 2008)
resulting in

5gPT (h, Q) = 6APT (h,9Q). (4)
Above, 6gPT, called the ‘BT gravity disturbance’, is a gravity disturbance
corrected for the (global) effects of topography and bathymetry, both effects

being referred to the reference ellipsoid, cf. (Vajda et al., 2008, Sects. 5
and 6)

6gBT <h7 Q) =9 (h'7 Q) - (hv Q) — APT (h7 Q) > (5)

where ¢ is actual gravity observed at the observation point, + is normal
gravity at the same point, and (—AB7) is the “topographic and bathymetric
correction” based on the RE

173



Vajda P., Vanicek P.: Truncation Filtering Methodology: Input gravity..., (169-185)

hr(Q) N(Q') 0
ABT (1) = Gpo // Jd9' + Gpw ///Jdﬁ’ + Gopo // 79, (6)
0 "0 0 Qg hp (9 Qs

po being average crustal density, py density of sea water, and dpy = pw —
po- In Eq. (6) the first volume integral is the topographic effect of the so-
called “solid topography” onshore, the second is the topographic effect of
the so-called “liquid topography” offshore, and the third is the effect of the
bathymetric density contrast offshore. All three effects are relative to the
RE.

On the right hand side of Eq. (4) we have the gravitational attraction
of the unknown and sought (global) mass anomalies below the topographic
surface onshore and below the sea bottom offshore

hr(2) ha(sY)
6ABT(h,Q):G/ / 5p(h’,Q’)ch’+G/ / Sp(h, )T . (7)
—R Qr -R Qg

When the gravimetric inverse problem, formulated in terms of gravity dis-
turbances by means of Eq. (4), is solved by direct inversion, the volume
integral for the attraction of the unknown anomalous density distribution
is discretised to turn the problem into a system of linear equations. The
problem is non-unique and ill-posed. When the gravimetric inverse prob-
lem is solved by the forward modeling techniques, then the left-hand-side of
Eq. (4) represents observed (observed and compiled) gravity data, while its
right-hand-side represents synthetic (modeled) gravity data, computed from
a selected initial anomalous density by evaluating the volume integrals of
Eq. (7) (direct problem solution), which is iteratively fine-tuned so that the
synthetic gravity matches the observed gravity. The problem is non-unique
and ill-posed, but in forward modeling additional geophysical or geological
constraints may be more readily adopted.

Matching synthetic to observed gravity data is the core procedure in for-
ward modeling techniques for solving the gravimetric inverse problem. The
synthetic gravity data are matched with the observed ones and the model is
iteratively tuned to minimize the misfit. Matching the observed with syn-
thetic gravity data takes place at stations (observation points). The location
of the stations is arbitrary, cf. Eq. (4). Therefore, the matching can take
place on the relief, at the sea surface, on the sea bottom, or at the points of
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the trajectory of an airplane, when dealing with airborne gravity data, etc.
Upward or downward continuation of gravity data is not necessary. The
continuation of the gravity data to a level (reference) surface is necessary
only if the gravity data are further processed by means of integral trans-
formations defined at a level surface, or in pattern recognition techniques,
where the knowledge of a pattern is respective to a level surface, just as in
our case of the TFM.

4. TFM pattern recognition — synthetic TFM patterns

The knowledge of the TFM patterns can be acquired through modeling —
synthetic studies (computer simulations). A simplified model of a given ge-
ological setting is constructed in terms of the synthetic (model) anomalous
density distribution §p. This model assumes no topography, all anomalous
masses dwell within a sphere (spherical approximation) or a halfspace (pla-
nar approximation). This model anomalous density generates the synthetic
gravity data, i.e., attraction d A, cf. Eq. (7), dropping the superscript “BT”,
as there is no relief or sea bottom present in the modeling. These synthetic
gravity data are computed on a reference sphere (spherical approximation),
or a level plane (planar approximation), h = 0. These synthetic gravity
data are in the next step truncation filtered, i.e., they enter as input gravity
data the integral transforms (convolution surface integrals) of the trunca-
tion filters to produce the respective synthetic truncation sequences (Vajda
and Vaniéek, 2002). The truncation filter
750, () = / / AN = 0,9 )w[s(,2)]do’ =

cap(so)
so 2w
= R//(SA(h' =0,s,a)w(s) sin (%) do ds (8)
0 0

is a surface integral convolving the gravity data with an isotropic kernel
(acting as a weight function). The kind of the kernel (w) specifies the
kind of the truncation filter (ibid). This kernel is a preselected function of
the spherical distance s (on the reference sphere) between the computation
point Q and the integration point £’. The gravity data are convolved on
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a spherical cap of radius sg, called the truncation parameter, which is a
free parameter of the transform. For a sequence of values of the truncation
parameter a sequence of surfaces of the post-filter gravity quantity (Z,,,,)
is computed and animated (the so-called “truncation sequence” or “TFM
sequence”). Subscript “syn” stands here for “synthetic”. In Eq. (8) the
transform is written first in geographic coordinates, where the surface in-
crement is do’ = R?dQ) = R?cos¢’ d¢’ d)\', and next in the local polar
coordinates of the computation point, where s is spherical distance and «
is azimuth, and where the surface increment is do’ = Rsin(s/R)ds da.
The spherical distance reads

5 (9,9Q) = R arccos [sin¢sin ¢’ + cos ¢ cos ¢’ cos (A — \)]. 9)

Since the kernel of the truncation filter is isotropic, in numerical eval-
uation of a truncation filter there is no need to compute the azimuths of
the running (integration) points. The numerical integration can be more
conveniently performed in geographic coordinates.

Dynamic patterns in the synthetic truncation sequences Z,,, are studied.
These patterns are qualitatively, and — if possible — quantitatively related
to the model (synthetic) anomalous density distribution (of the studied geo-
logical model). This simulation procedure is repeated for many more-or-less
simplistic anomalous density distributions (models) to build a databank of
known TFM patterns. Different kinds of truncation filters (various kernels)
may produce different patterns for the same model. The development of the
databank of dynamic TFM patterns and the investigation on which filters
are sensitive to which features of realistic geological situations are subject
to our research in progress, which is a task for a long run.

5. TFM pattern recognition — observed TFM patterns

Suppose we already have knowledge of dynamic TFM patterns that we
gained by studying synthetic truncation sequences (of post-filtered gravity
quantities Z,,,,) generated by model anomalous density distributions (syn-
thetic geological models), as described in Sec. 4. Let us now move to the

realm of observed gravity data. Recalling Eq. (4) we realize that the match
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to the synthetic gravity data are the “observed” BT gravity disturbances,
compiled from observed gravity by means of Eq. (5). Since our objective
now is to “match” the synthetic TFM patterns (dynamic patterns in syn-
thetic truncation sequences) with observed TFM patterns (dynamic patterns
in truncation sequences computed by truncation filtering the observed grav-
ity data, i.e., the BT gravity disturbances), in order to apply the pattern
recognition techniques to solving the inverse problem, we have to compute
the “observed truncation sequences”. However, at this moment a little com-
plication arises.

The knowledge of the dynamic TFM patterns was gained by synthetic
modeling the gravity data on a reference sphere, not at the topo-surface.
On the other hand, our observed gravity data are most commonly given
at stations on the earth’s surface. However, integral transforms defining
truncation filters are surface convolution integrals — they require the input
gravity data be given on a reference sphere (in spherical approximation),
or on a level plane (in planar approximation). Consequently, the BT grav-
ity disturbances must be continued to a reference sphere (or a level plane).
Harmonic downward continuation to the sphere h = 0 is not possible, be-
cause the BT gravity disturbances are not harmonic below the topo-surface
(Vajda et al., 2006; 2008). They must be harmonically upward continued to
a reference sphere h = hg, where the reference geodetic height hg is such,
that the reference sphere resides above the topo-surface everywhere in the
region of our gravity data interpretation. We want to have it just above the
highest point in our region, but not higher, due to the attenuation of the
useful signal with height in the upward continuation.

The harmonic upward continuation can be performed for instance by us-
ing the Poisson integral (e.g., Hofmann- Wellenhof and Moritz, 2006, p. 247,
Eq. [6-44]). The function that is harmonic and that is continued is (R + h)
5gPT (h, Q). There is a further complication due to the fact that we want
to continue from an irregular topo-surface to a reference sphere, not vice
versa. Another option to carry out the continuation is to use an equivalent
sources method (e.g. Xia et al., 1993; Ivan, 1994; Meurers and Pail, 1998),
where the equivalent sources may be either polyhedra or point masses, or
those in general represented by Spherical Radial Basis Functions (Klees et
al., 2007 and references quoted in Introduction; Tenzer et al., 2008). The
detailed treatment of the harmonic upward continuation of the BT gravity
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disturbances is considered outside the scope of this paper. We have initiated
a numerical study to compare the performance of various methods for the
continuation that shall be presented in a separate work.

The BT gravity disturbances upward continued to the reference sphere
h = hg,

3g”" (h = hr, Q) = 6¢"T[h = hr(Q), Q) + D3g”" [hg, hr (), 9, (10)

where the D§¢gB” term is the harmonic upward continuation correction to
the BT gravity disturbance, are exactly what we need as the input grav-
ity data for the truncation filters to compute the “observed” truncation
sequences

23 @)= [ [ 6" (W = i, Wyuls (2. 9)]do" =
cap(so)
S0 27

= R//ngT(h' = hg, s,@)w(s) sin <%) da ds. (11)
00

Here the subscript “obs” stands for “observed”.

Now we come to the rationale of the TFM pattern recognition technique.
When a dynamic TFM pattern is observed in a truncation sequence (Z )
computed from observed BT gravity disturbances, and this pattern is rec-
ognized as known (from synthetic simulations), then this pattern relates to
the sought unknown real anomalous masses in the same way, as the syn-
thetic (known) pattern relates to the known model (synthetic) anomalous
masses. Hence, the model anomalous masses (respective to the TFM pat-
tern) become one possible solution to the unknown sought real anomalous
masses. The fact that it is only one possible solution is implied by the non-
uniqueness of the gravimetric inverse problem. If the dynamic TFM pattern
has an onset that can be quantitatively related to the depth of a character-
istic feature (element) of the model geology, in synthetic studies yielding a
depth dx, then the depth of that element in the real geology, yielded by the
observed TFM pattern, will obviously become d * +hp reckoned from the
reference surface h = hg , or d* reckoned from the RE.
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6. Additional approximations — regional and local applica-
tions

6.1. Truncating the volume integral for the attraction
of anomalous masses

Let us first discuss the truncation of the Newton-type volume integral
over anomalous density for a general case, when it is evaluated on the topo-
surface. The case, when it is evaluated on the reference sphere, is then
easily derived by putting hr(€2) = 0. In regional and local studies the
synthetic gravity data, i.e., the attraction of the anomalous masses given
by Eq. (7), which is also used in our simulations for building the databank
of synthetic TFM patterns, may be evaluated as the contribution of the
anomalous masses from a “near domain”, due to (a) the integral being
evaluated over anomalous density, and (b) the fast attenuation of the .J
kernel with spherical distance (e.g., Fig. Al in Vajda et al., 2007). The “near
domain” is horizontally defined as a “near zone”, i.e., a spherical cap of the
radius equal to a preselected maximum spherical distance s,;. Vertically the
“near domain” is bound from above by the topo-surface h = hp ('), and
from below by some preselected maximum depth of interest h = —d ;. The
“near domain” is respective to the computation point, i.e., it moves with the
computation point. Written in local polar coordinates of the computation
point, the volume integral reads

hr(s,a) sy 27

SA(h, Q) ~ G / //6p(h',s,a)J(h,h',s,a) x

—dy 0 0
N2
x @ sin <%) do ds dh'. (12)

Let us repeat that the “near domain” (respective to and horizontally
moving with each computation point) is a 3D domain defined as h' €
(—=dar; hr (), s € (0;sp), and a € (0; 2m), where dy; and sy are re-
spectively the maximum depth (below the reference ellipsoid) and the max-
imum spherical distance to which the contribution of anomalous masses is
considered. In the case of gravimetric forward modeling techniques, that
match synthetic with observed data on the topo-surface, the upper bound-
ary of the “near domain” is the topo-surface. In our case of synthetic TFM
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modeling, considering no topography in the simulations, hAp(s,a) = 0. It
is more convenient to numerically evaluate the above volume integral in
geographic coordinates, in order to avoid transforming the horizontal co-
ordinates of running integration points into local polar coordinates, doing
that for each computation point. When computing numerically the volume
integral in geographic coordinates, all it takes is testing each integration
grid cell whether it lies within the “near domain”. Recall that the “near
domain” moves (horizontally) with the computation point. Therefore, if we
want to compute synthetic gravity on a computation grid ¢ € (dmin; Pmax)
A € (Amin; Amax), we must have the anomalous density distribution given
on a 3D integration grid which horizontally envelopes the computation grid
in a spherical distance everywhere by sj;. To fulfill these requirements we
must be cautious of the convergence of the meridians on the globe.

A different approach is often taken in the practice. A “local domain”,
in terms of “integration grid”, is selected as h' € (—dpy;hp()), ¢ €
(D ins Prnas)s N E (AL Anax) o0 which anomalous density is given. The at-
traction of anomalous density outside of the “local domain” is disregarded.
Then the volume integral is computed in geographic coordinates in such
a fashion, that each grid cell of the “local domain” contributes into the
volume integral for each computation point of the computation grid. The
“local domain” is fixed. The result of the “local domain” approach differs
from the result of the “near domain” approach in terms of edge effects.

In local studies, in the case of small enough sj;, the volume integral of
Eq. (12) may be evaluated even in planar approximation (cf. Sec. 6.4). For
our synthetic TFM modeling we are currently using the Mod3D modeling
software (Cerovsky et al., 2004), which adopts planar approximation and
“local domain” approach.

6.2. Truncating the volume integrals of the “topographic
and bathymetric correction”

Rigorously speaking the topographic and bathymetric correction to gravi-
ty disturbance, Eq. (6), is to be evaluated over the entire globe. In regional
and local studies the integration may be truncated to a spherical cap (the
so-called near-zone), i.e., to some maximum spherical distance s,; from the
computation point (such as the Hayford-Bowie limit of 167 km, or a differ-
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ent one), if the truncation error (the contribution to the volume integrals
from the so-called far-zone — the remainder to the full sphere) can be ne-
glected as trend of no interest. In addition, the near-zone may be split into
sub-zones with different grid steps — the finer the closer we are to the com-
putation point, due to the shape of the J kernel (which tapers off sharply
with distance from the computation point). Also in the inner-most zone the
volume integral may be expressed in planar approximation (cf. Sec. 6.4).
A lot has been published about numerical aspects of evaluating the volume
integrals of topographic corrections in geophysical and geodetic literature
(e.g., LaFehr, 1991; Talwani, 1998; Novdk et al., 2001; Grand et al., 2004;
Hinze et al., 2005; Jandk et al., 2006; Mikuska et al., 2006; and references
quoted therein). We do not wish to repeat those concepts here. Although
most of the published work regards topographic corrections referred to the
geoid, the same numerical procedures apply also to our volume integrals in

Eq. (6).

6.3. Approximating BT gravity disturbance by Bouguer anomaly

In the cases, when in local or regional applications the geophysical indi-
rect effect (Chapman and Bodine, 1979; Vogel, 1982; Jung and Rabinowitz,
1988; Meurers, 1992; Talwani, 1998; Li and Gotze, 2001; Hackney and
Featherstone, 2003; Hinze et al., 2005; Vajda et al., 2006) can be neglected
as trend of no interest, then the BT gravity disturbance may be approxi-
mated by the Bouguer gravity anomaly (cf. Vajda et al., 2006, Sec. 9).

6.4. Planar approximation

In planar approximation the computation or integration points given by
the triplet of geodetic coordinates (h, ¢, A) become referred to in local Carte-
sian coordinates (z,y,x) where the x-y plane is tangential to the reference
sphere at the origin of the local Cartesian coordinate system (¢q, Ag), while
the z-axis points upwards. If the y-axis is chosen as directed towards the
north (y coordinates being the “northing”) and the x-axis as directed to-
wards the east (x coordinates being the “easting”), the coordinate system
becomes right-handed. The local Cartesian coordinates (of both computa-
tion and integration points) are obtained by the following mapping of the
geodetic coordinates
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(z,9,2)" = (Reos(¢o)(A — Xo), R(¢ — o), h)" . (13)

In planar approximation the spherical distance becomes planar distance

s(@w.ay) = V=) + @ -y (14
The Euclidean (spatial) distance becomes

L(z,y,z,2",y,2) = 32+(z—z’)2. (15)

The negative vertical derivative of the reciprocal Euclidean distance, the J
kernel, becomes

J(v,y,2,0" 4, 2) = (2 = ) L3 (2,9, 2,2y, 7). (16)
The surface increment becomes

do' = R%*cos ¢’ d¢/ d\N = R sin(s/R)da ds ~ s da ds = dz'dy’, (17)
and the volume increment becomes

(R+1)?

v =
R

sin (%) da ds dh' ~ s da ds d2' = da'dy'd2’. (18)
The truncation filter in planar approximation becomes

Zion (x,y)Z// SA(Z = 0,2",y )w[s (z,y,2",y )] da’dy’ =
cap(so)
s0 21
= //(5A(z’ =0,s,a)w(s) s da ds. (19)
00

For observed gravity, in the above surface integrals, the A(z" = 0,2/, v/)
is replaced by 6gP7 (2 = hg,2’,y’) and subscript “syn” is replaced by
“obs”. Also the harmonic upward continuation of the BT gravity distur-
bances can be performed in planar approximation (e.g., Hofmann- Wellenhof
and Moritz, 2006, p. 248, Eq. [6-53]). In planar approximation the gravity
disturbance itself, §¢P7, is a harmonic function.
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7. Conclusion

The aim of the TFM interpretation is to determine the mass anomalies
(anomalous density distribution) below the relief onshore and below the sea
bottom offshore, or at least some of their characteristics, including depth
estimates. Therefore the input data must be constructed such, that they
are equal to the attraction of the anomalous density distribution of interest.
It is the BT gravity disturbances that are equal to such an attraction, as
proved by Vajda et al. (2006; 2008). As the truncation filters are surface
convolution integrals, the TFM requires that the input gravity data be given
on a “level” surface (reference sphere in spherical approximation or level
plane in planar approximation). The position of the level surface is further
constrained by the requirement to stay above all the anomalous masses,
hence above the topographic surface in the region of interest. All these
requirements lead to a necessity to compile the BT gravity disturbances
and to continue them harmonically to a level surface tightly enclosing (from
above) the terrain in the region of interest. The upward continuation also
assures the feasibility of matching observed TFM patterns with synthetic
TFM patterns that represent the know-how of the TFM pattern recognition
technique.
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