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Abstract: The currently available global geopotential models and the global elevation
and bathymetry data allow modelling the topography-corrected and bathymetry stripped
reference gravity field to a very high spectral resolution (up to degree 2160 of spherical
harmonics) using methods for a spherical harmonic analysis and synthesis of the gravity
field. When modelling the topography-corrected and crust-density-contrast stripped ref-
erence gravity field, additional stripping corrections are applied due to the ice, sediment
and other major known density contrasts within the Earth’s crust. The currently available
data of global crustal density structures have, however, a very low resolution and accuracy.
The compilation of the global crust density contrast stripped gravity field is thus limited
to a low spectral resolution, typically up to degree 180 of spherical harmonics. In this
study we derive the expressions used in forward modelling of the bathymetry-generated
gravitational field quantities and the corresponding bathymetric stripping corrections to
gravity field quantities by means of the spherical bathymetric (ocean bottom depth) func-
tions. The expressions for the potential and its radial derivative are formulated for the
adopted constant (average) ocean saltwater density contrast and for the spherical approx-
imation of the geoid surface. These newly derived expressions are utilized in numerical
examples to compute the gravitational potential and attraction generated by the ocean
density contrast. The computation is realized globally on a 1 × 1 arc-deg geographical
grid at the Earth’s surface.
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1. Introduction

Various methods have been applied to evaluate the topographic correc-
tions to gravity field quantities. Studying the gravitational contribution
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of the far-zone topography and the long-wavelength topography corrected
reference gravity field, the spectral representation of Newton’s integral is
commonly utilized in deriving the expressions for the forward modelling
of the topography-generated gravitational field. Sünkel (1968) derived the
expressions for computing the topographic and topographic-isostatic po-
tentials in terms of the spherical height functions. Alternative expressions
for the topographic potential and its vertical gradient were formulated in
Vańıček et al. (1995). Sjöberg and Nahavandchi (1999), Tsoulis (1999),
Sjöberg (2000), Novák (2000), Novák et al. (2001), Tsoulis (2001), Sjöberg
(2001), Heck (2003), Tenzer (2005), Sjöberg (2007), Novák (2009) and
others derived various types of expressions for computing the topography-
generated gravitational field quantities using spherical harmonic analysis of
the gravitational field. Wild and Heck (2004) derived expressions for the
topographic effect on satellite gradiometry observations. Makhloof (2007)
derived expressions for computing the topographic-isostatic effects on air-
borne gravimetry, satellite gravimetry and gradiometry data. Alternative
expressions for computing the topographic effects in satellite gravimetry
and gradiometry were formulated by Novák and Grafarend (2006) and Es-
hagh and Sjöberg (2008, 2009). Novák and Grafarend (2005) derived the
topographic potential and its vertical gradient using the ellipsoidal repre-
sentation of Newton’s integral.
Sjöberg (1993, 1998) and Sjöberg and Nahavandchi (1999) defined the at-

mospheric effects on gravity and geoid using spherical harmonic analysis of
the gravitational field. This concept was further developed in Sjöberg (1999,
2001) and Sjöberg and Nahavandchi (2000). In these studies the geometry
of the lower atmospheric bound is described by the coefficients of a global
elevation model. Ramillien (2002) applied a similar concept to compute the
atmosphere-generated gravitational attraction. Nahavandchi (2004) used a
novel approach to compute the direct atmospheric gravity effect on a regu-
lar grid at the Earth’s surface over the territory of Iran including offshore
areas. He combined the local and global topographic information using the
detailed digital terrain models and the global elevation model coefficients.
Sjöberg (2006) derived the expressions in spectral representation for the at-
mospheric potential and attraction considering the ellipsoidal layering of the
Earth’s atmosphere. The computation of atmospheric gravity corrections
in satellite geodesy applications was discussed for instance by Novák and
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Grafarend (2006) and Eshagh and Sjöberg (2009). Novák and Grafarend
(2006) proposed a method for computing the gravitational effect of atmo-
spheric masses on spaceborne data based on spherical harmonic approach
with a numerical study in North America. Eshagh and Sjöberg (2009) ap-
plied an alternative spherical approach to compute the atmospheric effect on
satellite gravity gradiometry data over Fennoscandia. Tenzer el al. (2009b)
applied the analytical continuation approach in deriving the expressions for
modelling the atmospheric corrections to gravity field quantities in the form
of the spherical height functions.
In geophysical studies investigating the lithosphere structure (cf. e.g.

Kaban et al., 1999, 2003, 2004; Kaban and Schwintzer 2001) the gravita-
tional effect of the known (in terms of a model produced as a result of other
geoscientific investigations) subsurface mass density distribution is removed
from the observed gravity field quantities in order to unmask the remaining
gravitational signal of the unknown (and sought) anomalous subsurface den-
sity distribution or the density interface. The gravitational field generated
by the ocean density contrast (i.e., the bathymetry-generated gravitational
field) represents significant amount of the signal to be modelled and sub-
sequently removed from the observed gravity field quantities. Tenzer et al.
(2008a, 2008b, 2009a) computed globally the bathymetric stripping cor-
rections to gravity field quantities using methods for a spherical harmonic
analysis and synthesis of the gravitational field. Vajda et al. (2008) inves-
tigated the global ellipsoid-referenced bathymetric stripping correction to
gravity disturbance. Novák (2009) computed globally the gravitational po-
tential generated by the ocean saltwater density with a high-degree spectral
resolution.
In this study, we apply the analytical continuation approach to derive

the expressions for modelling the bathymetry-generated gravitational field
quantities. The principle of this procedure is based on applying the surface
spherical harmonic series to describe the gravitational field quantities for
a point at the geoid surface. When the corresponding gravitational field
quantities are computed above the geoid, this series is analytically upward
continued using a Taylor series. The alternative expressions by means of
using the external type series of the solid spherical harmonics were derived
by Novák (2009). The different numerical aspects of using the analytical
continuation approach and the solid spherical harmonic approach are not
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discussed in this study. The expressions for computing the bathymetry-
generated gravitational potential and attraction by means of the surface
spherical bathymetric functions are formulated in Section 2. The numerical
examples are shown in Section 3. The summary and conclusions are given
in Section 4.

2. The bathymetry-generated gravitational field

To model the bathymetry-generated gravitational field, we consider the
spherical approximation of the geoid surface and adopt a constant ocean
saltwater density contrast. The ocean saltwater density contrast Δρw is
defined as the difference of the average crustal density ρcrust and the mean
ocean saltwater density ρw. Let us further define the bathymetry-generated
gravitational potential V b in the point (r,Ω) above the geoid surface by
means of the analytical upward continuation of the respective value evalu-
ated at the geoid surface. Hence

V b (r,Ω) = V b (R,Ω) +
∞∑

k=1

(r − R)k
k !

∂kV b (r,Ω)
∂ rk

∣∣∣∣∣
r=R

. (1)

Similarly, the bathymetry-generated gravitational attraction gb in the point
(r,Ω) above the geoid surface is written as

gb (r,Ω) = gb (R,Ω)−
∞∑

k=1

(r − R)k
k !

∂k+1V b (r,Ω)
∂ rk+1

∣∣∣∣∣
r=R

. (2)

The 3-D position is defined by the geocentric radius r and the geocentric
direction Ω = (φ, λ), where φ and λ are the geocentric spherical latitude
and longitude, respectively. The geocentric radius of the geoid surface is
approximated by the Earth’s mean radius R. The gravitational potential
V b (R,Ω) and the gravitational attraction gb (R,Ω) in Eqs. (1) and (2) are
evaluated in the point (R,Ω) at the geoid surface. The expressions for com-
puting V b (R,Ω) and gb (R,Ω) are derived in spectral form in Eqs. (14) and

(16). The radial derivatives of the potential
{
∂k V b/∂ rk : k = 1, 2, ...

}
on
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the right-hand side of Eqs. (1) and (2) are defined as follows

∂k V b (r,Ω)
∂ rk

∣∣∣∣∣
r=R

=

= GΔρw
∫ ∫
Ω′∈ΩO

∫ R

R−D(Ω′)

∂k�−1 (r, ψ, r′)
∂ rk

∣∣∣∣∣
r=R

r′2 dr′dΩ′, (3)

where G is Newton’s gravitational constant, D is the ocean bottom depth,
� is the Euclidean spatial distance of two points (r,Ω) and (r ′,Ω′), ψ is the
spherical distance, dΩ′ = cosφ′ dφ′ dλ′ is the infinitesimal surface element
on the unit sphere, and ΩO is the full solid angle.
The spectral representation of the reciprocal spatial distance �−1 for the

external convergence domain r ≥ r′ reads (e.g., Hobson, 1931)

�−1
(
r, ψ, r′

)
=
1
r

∞∑
n=0

(
r′

r

)n

Pn (cosψ) , (4)

where Pn are the Legendre polynomials of degree n for the argument of
cosine of the spherical distance ψ.
From Eq. (4), the radial derivatives of �−1 are found to be (cf. Tenzer,

2005)

∂k �−1 (r, ψ, r′)
∂ rk

= (−1)k k !
r′k+1

∞∑
n=0

(
r′

r

)n+1+k
(
n+ k
k

)
Pn (cos ψ) . (5)

The substitution from Eq. (5) to Eq. (3) yields

∂k V b (r,Ω)
∂ rk

∣∣∣∣∣
r=R

= −GΔρw (−1)
k

Rk−1
∞∑

n=0

(n+ k) !
n!

×

×
∫ ∫
Ω′∈ΩO

Pn (cosψ)
∫ −D(Ω′)

0

∞∑
n=0

(
1− B′

R

)n+2

dB′ dΩ′, (6)

where B′ = R − r′. Since the expansion of Newton’s integral kernel into
a series of the Legendre polynomials converges uniformly and absolutely,
the interchange of summation and integration in Eq. (6) is permissible (cf.
Moritz, 1980).
As seen in Eq. (6), the application of the analytical upward continuation
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in Eqs. (1) and (2) separates the argument of the geocentric radius of the
computation point from the volumetric integral. The spherical harmonic
analysis is then applied to the radial derivatives of the potential defined
in the point (R,Ω) at the geoid surface. The application of the binomial
theorem to the term (1−B ′/R)n+2 on the right-hand side of Eq. (6) and,
subsequently, the integration of Eq. (6) with respect to B ′ results in
∫ −D(Ω′)

0

(
1− B′

R

)n+2

dB′ ≈ −R
∞∑
i=0

(
n+ 2
i

)[
D (Ω′)
R

] i+1 1
i+ 1

. (7)

Disregarding terms higher than the second degree in Eq. (7), we get

∫ −D(Ω′)

0

(
1− B′

R

)n+2

dB′ ≈

≈ −D (
Ω′

)− D (Ω′)2

2R
(n+ 2)− D (Ω′)3

6R2
(n+ 2) (n+ 1) .

Equation (6) then becomes

∂k V b (r,Ω)
∂rk

∣∣∣∣∣
r=R

∼= GΔρw
∞∑

n=0

(−1)k
Rk−1

(n+k) !
n !

∫ ∫
Ω′∈ΩO

D
(
Ω′

)
Pn (cosψ) dΩ

′ +

+
GΔρw

2

∞∑
n=0

(−1)k
Rk

(n+k) !
n !

(n+2)
∫ ∫
Ω′∈ΩO

D
(
Ω′

)2
Pn (cosψ) dΩ

′ +

+
GΔρw

6

∞∑
n=0

(−1)k
Rk+1

(n+ k) !
n !

(n+2) (n+1)
∫ ∫
Ω′∈ΩO

D
(
Ω′

)3
Pn (cosψ) dΩ

′. (8)

We note here that when computing the bathymetry-generated gravitational
field quantities with a high accuracy and resolution, particularly in coastal
areas, Eq. (8) can readily be reformulated for a higher than the second-
degree terms of the binomial series in Eq. (7).
The constituents on the right-hand side of Eq. (8) are further defined

in terms of the surface spherical bathymetric functions Dn (Ω), D2n (Ω), and
D3n (Ω), which are defined as follows

Dn (Ω) =
2n + 1
4π

∫ ∫
Ω′∈ΩO

D
(
Ω′

)
Pn (cosψ) dΩ

′ =
n∑

m=−n
Dn,mYn,m (Ω), (9)
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and

D2n (Ω) =
n∑

m=−n
D2n,mYn,m (Ω), D3n (Ω) =

n∑
m=−n

D3n,mYn,m (Ω), (10)

where Dn,m are numerical coefficients of the Global Bathymetric Model
(GBM) of degree n and order m. The surface spherical harmonic functions
Yn,m (Ω) read (e.g., Heiskanen and Moritz, 1967)

Yn,m (Ω) = Pn,m (sinφ)

{
cos mλ (m ≥ 0)
sin |m|λ (m < 0)

, (11)

where Pn,m (sinφ) are the Legendre associated functions of degree n and
order m for the argument of sine of the geocentric spherical latitude φ.
Combining Eq. (8) with Eqs. (9) and (10) the generic formula for radial

derivatives of the potential V b in terms of the surface spherical bathymetric
functions Dn (Ω), D2n (Ω), and D

3
n (Ω) is introduced in the following form

∂kV b (r,Ω)
∂rk

∣∣∣∣∣
r=R

∼= 4πGΔρw
∞∑

n=0

(−1)k
Rk−1

(n+k)!
n!

1
2n+1

n∑
m=−n

Dn,mYn,m (Ω) +

+ 2πGΔρw
∞∑

n=0

(−1)k
Rk

(n+ k) !
n !

(n+ 2)
2n+ 1

n∑
m=−n

D2n,mYn,m (Ω) +

+
2
3
πGΔρw

∞∑
n=0

(−1)k
Rk+1

(n+ k) !
n !

(n+ 2) (n+ 1)
2n + 1

n∑
m=−n

D3n,mYn,m (Ω) ∼=

∼= 2
3
πGΔρw

∞∑
n=0

(−1)k
Rk+1

(n+ k) !
n !

1
2n+ 1

×

×
n∑

m=−n

[
6R2Dn,m+3R (n+2)D

2
n,m+(n+2) (n+1) D

3
n,m

]
Yn,m (Ω) . (12)

The substitution from Eq. (12) to Eq. (1) yields the expression for comput-
ing the bathymetry-generated gravitational potential V b in the point (r,Ω)
above the geoid surface using the GBM coefficients complete to degree N of
the spherical bathymetric functions. It reads

V b (r,Ω) ∼= V b (R,Ω)− 2
3
πGΔρw

r − R
R2

N∑
n=0

(n+ 1)
2n+ 1

×
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×
n∑

m=−n

[
6R2Dn,m + 3R (n+ 2) D

2
n,m + (n+ 2) (n+ 1) D

3
n,m

]
Yn,m (Ω) +

+
1
3
πGΔρw

(r − R)2
R3

N∑
n=0

(n+ 1) (n+ 2)
2n+ 1

×

×
n∑

m=−n

[
6R2Dn,m+3R (n+2)D

2
n,m + (n+2) (n+1)D

3
n,m

]
Yn,m (Ω) . (13)

The corresponding value of the potential V b (R,Ω) is evaluated at the geoid
surface using the following equation

V b (R,Ω) ∼= 2
3R

πGΔρw
N∑

n=0

1
2n + 1

×

×
n∑

m=−n

[
6R2Dn,m + 3R (n+2) D

2
n,m + (n+2) (n+1) D

3
n,m

]
Yn,m (Ω) . (14)

Inserting from Eq. (12) to Eq. (2), the expression for the bathymetry-
generated gravitational attraction gb evaluated in the point (r,Ω) above the
geoid surface is found to be

gb (r,Ω) ∼= gb (R,Ω)− 2
3
πGΔρw

r − R
R3

N∑
n=0

(n+ 1) (n+ 2)
2n + 1

×

×
n∑

m=−n

[
6R2Dn,m + 3R (n+ 2) D

2
n,m + (n+ 2) (n+ 1) D

3
n,m

]
Yn,m (Ω) +

+ πGΔρw
(r − R)2
3R4

N∑
n=0

(n+ 1) (n+ 2) (n+ 3)
2n+ 1

×

×
n∑

m=−n

[
6R2Dn,m+3R (n+2)D

2
n,m + (n+2) (n+1) D

3
n,m

]
Yn,m (Ω) . (15)

The attraction gb (R,Ω) is evaluated at the geoid surface using the following
equation

gb (R,Ω) ∼= 2
3
πGΔρw

1
R2

N∑
n=0

(n+ 1)
2n+ 1

×

×
n∑

m=−n

[
6R2Dn,m+3R (n+2)D

2
n,m + (n+2) (n+1)D

3
n,m

]
Yn,m (Ω) . (16)
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The expressions for the analytical upward continuation of the bathymetry-
generated gravitational potential and attraction in Eqs. (13) and (15) com-
prise the surface spherical bathymetric functions Dn (Ω), D2n (Ω), and D

3
n (Ω).

Depending on the accuracy requirements higher than third-degree terms can
be derived from the generic formula for radial derivatives of the potential V b

in Eq. (12). The investigation of the convergence and optimal truncation of
binomial expansions for computing the bathymetry-generated gravitational
potential and attraction is out of the scope of this study. These aspects
are discussed for instance by Sun and Sjöberg (2001). Equations (13–16)
are used in Section 3 to compute the bathymetry-generated gravitational
potential and attraction using the GBM coefficients.

3. Numerical examples

The 5× 5 arc-min global ocean depths from the ETOPO5 bathymetry and
topography database (provided by the NOAA’s National Geophysical Data
Centre) are used to generate the GBM coefficients. These coefficients are
utilized to compute the gravitational potential and attraction generated
by the ocean density contrast with a spectral resolution complete to de-
gree 180 of the spherical bathymetric functions. The mean value of the
ocean saltwater density contrast 1640 kgm−3 (i.e., difference of the ref-
erence mean crustal density 2670 kgm−3 and the mean ocean saltwater
density 1030 kgm−3) are adopted. The results are shown in Figs. 1 and
2. The gravitational potential and attraction are computed globally on the
equiangular 1 arc-deg geographical grid at the Earth’s surface. The grav-
itational potential due to the ocean density contrast varies from 16390 to
28528 m2s−2 with the mean of 22376 m2s−2, and the standard deviation
is 3191 m2s−2. The maxima are located in the central part of the Pacific
Ocean and the minima in the western part of the central Eurasia. The
gravitational attraction due to the ocean density contrast varies from 129
to 753 mGal with the mean of 327 mGal, and the standard deviation is
161 mGal. The maxima are located above the oceanic trenches (i.e., the
ocean-floor depressions with the deepest parts of the ocean) and the min-
ima in the central parts of continental regions. The areas above the oceanic
trenches and the convergent ocean to continent tectonic plate boundaries
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Fig. 1. The gravitational potential due to the ocean density contrast (1640 kg m−3) com-
puted on a 1×1 arc-deg grid at the Earth’s surface using the GBM coefficients complete
to degree and order 180.

Fig. 2. The gravitational attraction due to the ocean density contrast (1640 kgm−3) com-
puted on a 1×1 arc-deg grid at the Earth’s surface using the GBM coefficients complete
to degree and order 180.
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have the largest variations of the gravitational attraction due to the ocean
density contrast.
The actual ocean saltwater density variation due to salinity, tempera-

ture and pressure is typically at the interval from 1020 to 1050 kgm−3,
with most of this range being due to pressure (up to 1.8%). The range
of saltwater densities at the sea surface is about 1020 to 1029 kgm−3 (cf.
Garrison, 2001). The anomalous ocean saltwater density variations with
respect to the mean value 1030 kgm−3 are thus within the interval from
–10 to 20 kgm−3. Since the errors of the density distribution propagate
linearly to the errors of computed gravitational field quantities, the approx-
imation of the actual ocean saltwater density by the mean value may cause
large inaccuracies, particularly at the computation points situated over the
deep oceans. The errors in computing the gravitational potential due to
the ocean density contrast can then reach 550 m2s−2. The corresponding
errors in computing the gravitational attraction can reach 15 mGal. For a
more accurate computation, the existing oceanographic models of salinity,
temperature and pressure (depth) should be facilitated to determine more
realistically the ocean saltwater density distribution. According to Millero
and Poisson (1981), the equation of state of seawater nowadays allows cal-
culation of the ocean saltwater density to a fractional accuracy of about
0.03 kgm−3.

4. Summary and conclusions

We have derived the expressions for modelling the gravitational field quan-
tities generated by the ocean density contrast in the form of the surface
spherical bathymetric functions using methods for a spherical harmonic
analysis and synthesis of the gravitational field. The expressions for the
gravitational potential and attraction are formulated based on the analyt-
ical upward continuation of the respective values evaluated on the geoid
surface and utilizing a generic formula for radial derivatives of the poten-
tial.
In numerical examples we computed globally the bathymetry-generated

gravitational potential and attraction with a low-degree spectral resolu-
tion (complete to degree 180 of the spherical bathymetric functions) and
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adopting the mean value of the ocean saltwater density contrast. The cur-
rently available high-resolution bathymetric data combined with the oceano-
graphic salinity and temperature models, however, allow an accurate mod-
elling with a much higher resolution. When the actual ocean saltwater den-
sity distribution is approximated by the mean value 1030 kgm−3, the rela-
tive inaccuracy up to 2% is expected in modelling the bathymetry-generated
gravitational field, provided that the actual ocean saltwater anomalous den-
sity variations are mainly within –10 to 20 kgm−3. The facilitation of exist-
ing oceanographic models of salinity, temperature and pressure in modelling
the ocean saltwater density distribution is thus indispensable for a more
accurate computation of the gravitational field due to the ocean density
contrast.
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Novák P., Vańıček P., Martinec Z., Veronneau M., 2001: Effects of the spherical terrain on
gravity and the geoid. J. Geod., 75, 9-10, 491–504, doi: 10.1007/s001900100201.

Novák P., Grafarend E. W., 2005: The ellipsoidal representation of the topographical
potential and its vertical gradient. J. Geod., 78, 11-12, 691–706,
doi: 10.1007/s00190-005-0435-4.

Novák P., Grafarend E. W., 2006: The effect of topographical and atmospheric masses
on spaceborne gravimetric and gradiometric data. Stud. Geoph. Geod., 50, 4,
549–582, doi: 10.1007/s11200-006-0035-7, doi: 10.1007/s11200-006-0035-7.

Novák P., 2009: High resolution constituents of the Earth gravitational field. Surveys in
Geophysics, doi: 10.1007/s10712-009-9077-z.

Ramillien G., 2002: Gravity/magnetic potential of uneven shell topography. J. Geod.,
76, 139–149, doi: 10.1007/s00190-002-0193-5.
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Sjöberg L. E., 2006: The effects of Stokes’s formula for an ellipsoidal layering of the earth’s
atmosphere. J. Geod., 79, 675–681, doi: 10.1007/s00190-005-0018-4.

43



Tenzer R. et al.: A mathematical model of the bathymetry-generated. . . (31–44)
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