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Abstract: Errors of estimated parameters in an adjustment process should be scaled
according to the size of the estimated residuals or misclosures. After computing a quasi-
geoid (geoid), its biases and tilts, due to existence of systematic errors in the terrestrial
data, are removed by fitting a corrective surface to the misclosures of the differences
between the GNSS/levelling data and the quasi-geoid (geoid). Variance component esti-
mation can be used to re-scale or calibrate the error of the GNSS/levelling data and the
quasi-geoid (geoid) model. This paper uses this method to calibrate the errors of the re-
cent quasi-geoid model, the GNSS and the normal heights of Sweden. Different stochastic
models are investigated in this study and based on a 7-parameter corrective surface model
and a three-variance component stochastic model, the calibrated error of the quasi-geoid
and the normal heights are 6 mm and 5 mm, respectively and the re-scaled error of the
GNSS heights is 18 mm.
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1. Introduction

Variance component estimation (VCE) is a well-known topic in geode-
tic and related sciences. Different methods exist for computing the vari-
ance components (VCs). One of the most famous methods is the MIni-
mum Norm Quadratic Unbiased Estimator (MINQUE), presented by Rao
(1971). Helmert’s method is another approach presented by Kelm (1978)
and by Grafarend and Schaffrin (1979). The method of LaMotte (1973)
and Pukelsheim (1981), which is very popular in statistics, was general-
ized by Schaffrin (1981) for applications in geodesy. Horn and Horn (1975)
compared different VC estimators in linear models and Förstner (1979) pro-
posed a non-negative VC estimator. Persson (1980) studied the MINQUE
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and related estimator of VCs. Sjöberg (1983) investigated an unbiased es-
timation of VCs in condition adjustment model. Sjöberg (1985) presented
a VC estimator for the adjustment model with a singular covariance ma-
trix. VCE and applications can also be found in Rao and Kleffe (1988).
Maximum likelihood estimation of VCs were first presented for geodetic
applications by Kubik (1970), Patterson and Thompson (1971, 1975), and
Koch (1986). Searle et al. (1992) and Koch (1999) provided useful dis-
cussions on the concepts of VCs. Sjöberg (1995) presented a method for
estimating VCs for an additive two – VC model and named the method
the best quadratic minimum bias non-negative estimator. As an alterna-
tive approach a Monte-Carlo algorithm can be used for VCE (e.g., Kusche,
2003). In Grafarend (2006) many details of the Gauss-Markov and Gauss-
Helmert models are presented, and VCE is treated both theoretically and
numerically (see Chapter 4). Xu et al. (2006) presented a method for com-
puting VCs in linear ill-posed models. They have considered a zero order
Tikhonov regularization method (Tikhonov, 1963) for estimating the VCs.
They also found out that the simultaneous estimation of the regularization
parameter and VCs is advantageous. Xu et al. (2007) discussed the es-
timability of the VCs and proved (as could be expected) that they are not
estimable for a fully unknown variance–covariance matrix. Amiri-Simkooei
(2007) explored a new type of least-squares estimator to the VCs. Eshagh
(2009) used VCE in direct downward continuation of the satellite gravity
gradiometry data for recovering the Earth’s gravitational field locally. Es-
hagh (2010a) used VCE for combining the three solutions of gradiometric
boundary value problem. Also Eshagh (2010b) presented the method of
VCE in the discrete ill-posed problems which are solved based on truncated
singular value decomposition.
Recently a quasi-geoid model was presented over Sweden by Ågren et al.

(2009) and named the KTH08 model. This model was computed based on
Sjöberg’s theory which was developed during last 24 years. This method
is known as the least-squares modification of Stokes’ formula with additive
corrections. More details about the method and its implementations can
be found in Sjöberg (1984a, 1991, 2003) and Ellmann (2004, 2005), Ågren
(2004), Kiamehr (2006). The internal error of the KTH08 quasi-geoid model
is 19 mm (Ågren et al., 2009). This error was not calibrated and it was
estimated based on propagation of the random errors from the gravitational
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signal and the error degree variance models used in computing the KTH08.
The error of the KTH08 model can be calibrated with the global naviga-
tion satellite system (GNSS) data and a VCE process through a combined
adjustment of the GNSS heights, normal heights and the KTH08.
Fotopoulos (2003, 2005) was one of those who started using VCE to

calibrate the error of geoid models and levelling data. She considered dif-
ferent corrective surfaces to model the discrepancies between geoid models
and the geoid computed from the levelling data. Full variance–covariance
matrices of geoidal, orthometric and ellipsoidal heights were considered in
her analyses. Such matrices can be obtained in different ways; for more
details see Fotopoulos (2003, 2005). Another similar work was carried out
by Kiamehr and Eshagh (2008) for calibrating the error of the gravimetric
geoid of Iran. They did not use the full variance–covariance matrices of the
heights, but they empirically estimated the error of the geoid, orthometric
and ellipsoidal heights. In this paper we shall perform similar error calibra-
tion for the KTH08 model. However, this study and its involved problems
are different from those performed by others. First of all, we have full co-
variance matrices of neither the heights nor the quasi-geoid model. Second,
the errors of the quasi-geoid model as well as the normal heights are con-
stant for all the points. This yields singularity in the system of equations
from which the VCs are estimated. Also the error of the zero-, first- and the
second-order GNSS height networks are available. Although the theory of
VCE and error calibration of geoid is not new, more practical considerations
are needed to do a similar job for the Swedish data. In this respect different
stochastic models (SMs) will be defined and used in the VCE process.

2. An overview on combined adjustment and VCE

Consider the following Gauss-Helmert model,

Ax+B = w, E
{

T
}
= Q =

p∑
i=1

σ2iQ
′
i andE{ } = 0, (1)

where A and B are the first and second design matrices of dimensions
(k×m) and (k×n), (n ≥ k ≥ m), respectively, x is the vector of unknowns,
is the error vector and w is the misclosure vector. Q′i is the i-th cofactor
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matrix of the i-th set of observables which subdivides Q into p parts with
one VC for each part, and σ2i is the VC of i-th set of observations. The
least-squares solution of Eq. (1) is (Bjerhammar, 1973):

x̂ =
(
B−Q0A

)−
0Q−1

w, (2)

and the estimated errors are:

= B−Q0

[
I−

(
B−Q0A

)0
0Q−1

]
w, (3)

where B−Q0 = QB
T (
BQBT

)−1
, B0Q0 = B

−
Q0B and for any matrix M we

define M−
0Q−1 =

(
MTQ−1M

)−1MTQ−1 and correspondingly M00Q−1 =
MM−

0Q−1 . For the Gauss-Helmert model the best quadratic unbiased esti-
mate of VCs can be written as (see e.g. Sjöberg, 1984b):

= S−1q, (4a)

where is the vector of VCs. The elements of S and q are:

sij = trace
{[
I−

(
B−Q0A

)0
0Q−1

] (
B0Q0

)T
QiQ−1QjB0Q0 ×

×
[
I−

(
B−Q0A

)0
0Q−1

]}
, (4b)

and

qi = wT
[
I−

(
B−Q0A

)0
0Q−1

]T (
B−Q0

)T
Q−1QiB−Q0 ×

×
[
I−

(
B−Q0A

)0
0Q−1

]
w. (4c)

In calibration of the GNSS/levelling and quasi-geoid errors, the first design
matrix A is selected based on 4-, 5- or 7-parameter model (corrective sur-
face) to remove the biases and tilts of the geoid (quasi-geoid). Equations
(5a), (5b) and (5c) are the mathematical models of 4-, 5- and 7-parameter
models, respectively (cf. Fotopoulos, 2003, 2005; Kiamehr, 2006; Kiamehr
and Eshagh, 2008):
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aTu x = x0 + x1 cosϕu cos λu + x2 cosϕu sinλu + x3 sinϕu, (5a)

aTu x = x0 + x1 cosϕu cos λu + x2 cosϕu sinλu + x3 sinϕu + x4 sin
2 ϕu, (5b)

aTux= x0 + x1 cosϕu cos λu + x2 cosϕu sinλu + x3 sinϕu +

+ x4 cosϕu sinϕu cos λu/ku + x5 cosϕu sinϕu sinλu/ku +

+ x6 sin
2 ϕu/ku, (5c)

where ϕu and λu are the horizontal geodetic coordinates of the u-th GNSS/

levelling point, ku =
(
1− e2 sin2 ϕu

)1/2
and e is the first eccentricity of

the reference ellipsoid. xw, w= 0, 1,. . ., 7, in Eqs. (5a)–(5c) stand for
the transformation parameters which are estimated in the combined adjust-
ment. The main action of these parameters is to remove the biases and
tilts between two surfaces of gravimetric and geometric quasi-geoids. The
geometric quasi-geoid means the quasi-geoid estimated by subtracting the
normal height from its corresponding GNSS height.
As was explained, the structure of the matrix A, or in other words, the

corrective surface model, is important in the combined adjustment of the
gravimetric and the geometric quasi-geoids. One model can present the bi-
ases and the tilts better than another. The structure of the second design
matrix B and type of the SM are not important in the combined adjust-
ment, but in the VCE process they are. In the following section we will
discuss the structure of these two matrices.

3. The design matrix B and the SMs

As Eq. (3) shows, B connects the error of the observables to the misclosures.
It has a direct relation with residuals of each set of observations and involves
their variance–covariance matrix. The SM plays an important role in VCE
as well. Let us consider the following theorem which is closely related to
VCE in the combined adjustment (using the Gauss-Helmert model) of the
GNSS, normal heights and the quasi-geoid.
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Theorem: If the matrix B, in Eq. (1), and the SM have the following
structures:

B =
[
I I I · · · I

]
and Qi = Qj = I,

than the matrix S in Eq. (4a) from which the VCs are estimated is singular
and the VCs are not uniquely estimable.

Proof. Since Qi = Qj = I, the elements of system of equations (4a)
become:

sij = trace
{[
I−

(
B−I0A

)0
0I

] (
B0I0

)T
B0I0

[
I−

(
B−I0A

)0
0I

]}
, (6a)

and

qi = wT
[
I−

(
B−I0A

)0
0I

]T (
B−I0

)T
B−I0

[
I−

(
B−I0A

)0
0I

]
w, (6b)

which show that the elements sij do not depend on the indices i and j, so
that they have the same expression for any choice of i and j. It means that
the matrix S will have the same elements and it will be singular. This is
also the case for qi as it will be independent of i and j.

Based on this theorem, the VCs will not be uniquely estimable in the
combined adjustment of the GNSS and normal heights with the quasi-geoid.
The question which can be arisen here is how other researchers e.g. Fotopou-
los (2003), Eshagh and Sjöberg (2008) and Kiamehr and Eshagh (2008) esti-
mated the VCs for the similar problems. To answer, we should mention that
the main reason of the singularity of Eq. (4a) is due to selection of an identity
matrix for the cofactor matrices. If we can select full cofactor matrices, as
Fotopoulos (2003) did, or if we can have a diagonal matrix with different di-
agonal elements, as Kiamehr and Eshagh (2008) had, the VCs are estimable.
However, such information is seldom available. Fotopoulos (2003) selected
the EGM96 (Lemoine et al., 1998) full variance–covariance matrix to prop-
agate it into the geoidal heights and the full variance–covariance matrices
of the orthometric and ellipsoidal heights were estimated in a least-squares
adjustment of national height networks. Kiamehr and Eshagh (2008) es-
timated different standard errors for the heights empirically. However, in
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our study we do not have such detailed information about the errors of the
heights in Sweden.

4. The combined adjustment of the quasi-geoid model and
the GNSS/levelling heights and different SMs

In the combined adjustment of the quasi-geoid and the GNSS/levelling data,
Eq. (1) can be rewritten as:

Ax+B = w = hGNSS − hNormal − , (7)

where hGNSS, hNormal and are the vectors of GNSS, normal and quasi-
geoidal heights. Solution of Eq. (7) was given in Eq. (2). As above explained
the matrix A is defined according to the corrective surface model. The
matrix B and the type of the SM are defined according to the data sets.
One important point in VCE is the proper choice of SM. Such a model can
be selected in different ways according to some a-priori assumptions. Since
VCE is usually used in adjustment problems involving heterogeneous data,
one can easily assume a SM to estimate one VC for each type of observation.
Therefore heterogeneity can be a criterion for selecting a SM. However, the
SM can be selected in such a way that one VC is estimated for more than one
type of observation. In the following subsections we will introduce different
SMs, such as two-, three-, four- and five-VC SMs.

4.1 Two-VC SM

Let the geometric quasi-geoid be denoted by ζ1 and the gravimetric one by
ζ2. The idea is to estimate the VCs σ21 and σ22 for ζ1 and ζ2, respectively.
Also this SM can be selected so that one VC is estimated for hGNSS and one
for ĥGNSS from the quasi-geoid and the normal heights. In the latter case
σ21 and σ22 will be the VCs of hGNSS and ĥGNSS, respectively. In both cases
the matrix B and the SM have the following structures:

B =
[
I −I

]
, (8a)
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and

Q = σ21

[
Q1 0
0 0

]
+ σ22

[
0 0
0 Q2

]
, (8b)

whereQ1 andQ2 are the cofactor matrices of ζ1 and ζ2 or hGNSS and ĥGNSS,
respectively. The dimensions of Q1, Q2 and 0 (a matrix with zero elements)
are the same as that of I and equal to the number of the GNSS/levelling
points.

4.2. Three-VC SM

Consider the case where one VC is estimated for each set of heights, i.e.
one for the GNSS heights, one for the normal heights and one for the quasi-
geoid. We name this SM three-VC model. In such a model the matrix B
and the SM are:

B =
[
I −I −I

]
, (9a)

and

Q = σ21

⎡
⎢⎣Q1 0 0
0 0 0
0 0 0

⎤
⎥⎦+ σ22

⎡
⎢⎣0 0 0
0 Q2 0
0 0 0

⎤
⎥⎦+ σ23

⎡
⎢⎣0 0 0
0 0 0
0 0 Q3

⎤
⎥⎦, (9b)

where Q1, Q2 and Q3 are the cofactor matrices of the GNSS, normal and
quasi-geoidal heights, respectively and σ21 , σ22 and σ23 their corresponding
VCs. The dimensions of Q1, Q2, Q3 and 0 are equivalent to that of I.

4.3. Four-VC SM

Here we consider one VC for each zero-, first- and second-order network of
the GNSS heights and one for the reconstructed GNSS height, ĥGNSS. In
other words, we will estimate four VCs. In order to do that we have to
reconstruct the coefficient matrix B and the SM in the following forms:

B =

⎡
⎢⎣I1 0 0 −I1 0 0
0 I2 0 0 −I2 0
0 0 I3 0 0 −I3

⎤
⎥⎦, (10a)

and
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Q = σ21Q
′
1 + σ22Q

′
2 + σ23Q

′
3 + σ24Q

′
4, (10b)

where

Q′1 = diag (Q1,0,0,0,0,0) ,

Q′2 = diag (0,Q2,0,0,0,0) ,

Q′3 = diag (0,0,Q3,0,0,0) ,

Q′4 = diag (0,0,0,Q4,Q5,Q6) .

The dimensions of the identity matrices I1, I2 and I3 are consistent with
number of the GNSS heights in the zero-, first- and second-order networks.
In the levelling network of Sweden we have 25 points in the zero-order
network then I1 is a 25×25 matrix and correspondingly we have dimensions
of 181× 181 and 1364× 1364 for I2 and I3. The dimensions of Q1, Q2 and
Q3 are equal to that of Q4, Q5 and Q6, respectively.

4.4. Five-VC SM

Now we add one more VC to the previous SM. In this subsection we consider
VCs of h1GNSS, h2GNSS and h3GNSS, hNormal and ζ. In this case, we have
to consider the following forms for B and the SM:

B =

⎡
⎢⎣I1 0 0 −I1 0 0 −I1 0 0
0 I2 0 0 −I2 0 0 −I2 0
0 0 I3 0 0 −I3 0 0 −I3

⎤
⎥⎦, (11a)

and

Q = σ21Q
′
1 + σ22Q

′
2 + σ23Q

′
3 + σ24Q

′
4 + σ25Q

′
5, (11b)

where

Q′1 = diag (Q1,0,0,0,0,0,0,0,0) ,

Q′2 = diag (0,Q2,0,0,0,0,0,0,0) ,

Q′3 = diag (0,0,Q3,0,0,0,0,0,0) ,
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Q′4 = diag (0,0,0,Q4,Q5,Q6,0,0,0) ,

Q′5 = diag (0,0,0,0,0,0,Q7 ,Q8,Q9)

with the following properties

dim(Q1) = dim(Q4) = dim(Q7) = dim(I1),

dim(Q2) = dim(Q5) = dim(Q8) = dim(I2),

dim(Q3) = dim(Q6) = dim(Q9) = dim(I3).

5. Data description and numerical results

Since the matrix B and the SM are structured according to the available
data sets we divide this section into two parts. In the first part, the data
sets are described and in the second part, the combined adjustment and
VCE based on the different SMs are numerically investigated.

5.1. Data description

Since the problem of calibrating the quasi-geoid error of Sweden is our main
goal, it is worthwhile to introduce its quasi-geoid model and its height net-
works. Later we will show that we can introduce different SMs based on
these types of data.

5.1.1. The KTH08 quasi-geoid model

The theory of the KTH geoid determination method was implemented by
Ågren (2004) and Kiamehr (2006) and the result of these implementations
was summarized as the KTH Geolab software. 495545 gravity observations
of the Nordic geodetic commission with a resolution of 2 km by 2 km, the
digital elevation model SCANDEM 2004 (Bilker, 2004) with a resolution of
100 m by 100 m were used in the computation of the KTH08 quasi-geoid
model. The global gravitational model CGM02C (Tapley et al., 2005) up
to degree 200 and the EGM96 (Lemoine et al., 1998) from 201 to 360 were
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utilized for computing the least-squares modification parameters and long
wavelength structure of the quasi-geoid. The integration cap size of the
Stokes integral was optimally selected to be 3◦ by comparing the results
with GNSS/levelling data. At the end 19 mm standard error was estimated
for the KTH08 in a 4-parameter corrective surface fit to the GNSS/levelling,
which is quite satisfying for the present geodetic applications.

5.1.2. The Swedish normal heights

The normal heights over Sweden have been measured using precise mo-
torized levelling since 1979 to 2003; see Fig. 1 (Eriksson et al., 2002). The
motorized levelling is an efficient method to measure the height difference as
quickly as possible with preserving the quality of the measurements. About
50000 benchmarks have been created during this levelling mission; see Fig. 2
(Eriksson et al., 2002). The quality of the heights is more or less similar
with an error of 5–10 mm (Ågren, 2009, personal communication). Unlike
the common belief of creating zero-, first- and second order levelling national
networks, there is not such a classification of heights in Sweden. It means
that the levelling network of Sweden was not classified at all. Computa-
tions of the heights were carried out in cooperation with the other Nordic
countries and finished in 2005. All the normal heights are referenced with
respect to Normaal Amsterdam Peil as the zero level. In these computations
the land uplift model NKG2005LU (Ågren and Svensson, 2006) was utilized.

Fig. 1. Motorized levelling (Eriksson et al., 2002)
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Fig. 2. Normal heights network (Eriksson et al., 2002)

5.1.3. The Swedish GNSS heights

Unlike the normal heights, the Swedish GNSS heights were measured in
three steps. At the first step, a zero-order network with 5–10 mm error was
established. This network consists of 25 permanent GNSS stations whose
coordinates were defined in the Swedish reference system 99. The height
of 181 points was determined relative to the zero-order network using 48
hours of observations with digital multimedia technologies antennas and
the Bernese software in the first-order network.
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Fig. 3. Distribution of GNSS/levelling points (Ågren, 2009)

According to the utilized instruments and duration of the observations,
an error of 10–20 mm is expected for these GNSS heights. The second-order
network of GNSS heights consists of 1364 points which were established
based on densification of the previous networks using static GNSS position-
ing with 0.5–1 hours of observations. An error of 15–30 mm is expected to
the GNSS heights in this network. In total 1570 GNSS levelling points were
established over Sweden (Fig. 3) which is extremely good for calibration of
the KTH08 quasi-geoid model of Sweden.
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5.2. Numerical investigations in VCE based on different SMs

The results of the combined adjustment of the GNSS/levelling data and
the quasi-geoid over Sweden are presented in Tab. 1. The table shows the
statistics of the misclosures and the residuals after the adjustment. The 7-
parameter surface, Eq. (5c), is most convenient to present the discrepancies
between the KTH08 quasi-geoid model and the levelling data.

Table 1. Statistics of misclosures and residuals after fitting GNSS/levelling data to KTH08
quasi-geoid model. Unit: 1 mm

In this combined adjustment process, the variance–covariance matrix
of the observations was diagonal and the diagonal elements were selected
according to the error of the heights and the quasi-geoid presented in Sub-
section 5.1. Fig. 4 illustrates the misclosures and the residuals after fitting
the 7-parameter corrective surface. Since the plots of other surfaces were
qualitatively similar we present the fitting residuals of the 7-parameter sur-
face only. Figures (5a), (5b) and (5c) illustrate the three-dimensional plots

Fig. 4. Misclosues and fitting residuals of 7-paramter corrective surface.
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Fig. 5. Corrective surfaces a) 4-parameter, b) 5-parameter and c) 7-parameter.
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of 4-, 5- and 7-parameters corrective surfaces, respectively.

5.2.1. Numerical investigations in VCE based on the two-VC SM

Since the geometric quasi-geoid is given by ζ1 = hGNSS − hNormal, using the
error propagation law and supposing that the observables are uncorrelated,
the standard error of ζ1 will take the form:

σ1 =
√

σ2hGNSS + σ2hNormal . (12)

As noted above, σhNormal = 10 mm and σhGNSS is 10, 20 and 30 mm in zero-,
first and second-order GNSS heights networks, respectively. Consequently,
based on Eq. (12) the propagated error of ζ1 will be 14, 22 and 32 mm,
depending on the order of the networks. Figure 6 shows the VC ratios (ratios
of VCs in two frequent iterations) of ζ1 and ζ2 during iteration based on a)
4-, b) 5- and 7-parameter corrective surface models. The figure illustrates
that the ratios converge to 1 in 6 iterations in a convergence level of 0.0001.
It means that the difference between each VC in the two last iterations
is smaller than 0.0001. This value is the convergence criterion in all the
numerical computations in Subsection 5.2. The value of the VCs σ21 and
σ22 and the estimated errors σ̄1 and σ̄2 of ζ1 and ζ2, which are the average
value of their errors, are presented in Table 2.
Here we denote the summation of the normal heights and quasi-geoid by

ĥGNSS:

ĥGNSS = hNormal + ζ. (13a)

Now the SM is considered in such a way that the errors of the GNSS heights
and ĥGNSS are calibrated. In this case the error of ĥGNSS can be estimated
through the error propagation law. Since the error of the quasi-geoid is
about 19 mm and the error of the normal heights 10 mm, the error for
ĥGNSS is

σ1 =
√

σ2ζ + σ2hNormal = 21 mm. (13b)

Considering σ21 as the VC of hGNSS and σ22 for ĥGNSS, the VCE process is
performed. The VC ratios are presented in Fig. 7, showing a similar pattern
of the ratios as that presented in Fig. 6. Table 3 illustrates the values of
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Fig. 6. VC ratios of ζ1 and ζ2 during iteration for a) 4-, b) 5- and c) 7-parameter corrective
surfaces (initial values of all VCs are equal to 1).
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Fig. 7. VC ratios of hGNSS and ĥGNSS during iteration for a) 4-, b) 5- and c) 7-parameter
corrective surface (initial values of all VCs are equal to 1).
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Table 2. Values of VCs and estimated errors of ζ1 (σ̄1) and ζ2 (σ̄2)

Table 3. Values of VCs and estimated errors of hGNSS (σ̄1) and ĥGNSS (σ̄2)

VCs and the estimated errors of hGNSS ĥGNSS.
Comparing Tables 2 and 3 we can see that the VCs of ζ1 and hGNSS are

considerably smaller than those of ζ2 and ĥGNSS. It means that their a-priori
errors are very large so that, in order to balance the errors in accordance
with misclosures, they have to be multiplied by small VCs. Both ζ1 and
hGNSS consist of very precise normal heights having the accuracy of 10 mm
over the country. Unlike σ21, σ

2
2 has a value close to 1, indicating that the a-

priori error of ζ2 was reasonably selected. Correspondingly, one can expect
smaller estimated error for ζ1 and hGNSS than ζ2 and ĥGNSS.

5.2.2. Numerical investigations on VCE based on the three-VC
SM

In the theorem presented in Section 3, when the cofactor matrices are equal
to an identity matrix the VCs are not estimable as system of Eq. (4a) will
have a rank of 1 and it will be singular. However, in this study we have
different errors for the GNSS heights, one error for all the normal heights
and one for the quasi-geoid. This matter makes two rows and two columns
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of the matrix S similar and the rank of the system of equations is reduced
by 2 and S becomes singular. The main reason of this singularity is due to
selecting an identity matrix for Q2 and Q3, or it is better to say that, they
have the same diagonal elements. We already know that the error of the
normal heights is 10 mm and it is 19 mm for the quasi-geoid. Therefore it
will not be unreasonable to randomly vary the diagonal elements of Q2 and
Q3 so that these matrices have different values for their diagonal elements.
This process can be done by randomizing the diagonal element based on a
normal distribution with zero mean and a standard deviation equal to that
was claimed for the observations. In this case, system of Eqs. (4a) will not
be singular and the VCs are uniquely estimable. One can consider many
realizations of these random variations for the diagonal elements. We know
that the improper choice of the a-priori errors or their inconsistency with
the misclosures is one of the reasons of coming out negative VCs. However,
our aim is to vary the diagonal elements to get out of the singularity prob-
lem. Consequently, we have the right of selecting that realization which is
consistent with the misclosures. In such case no negative VCs is come out.
In order to make sure that the results are reliable several non-negative real-
izations can be considered and tested and the mean value of the estimated
error can be selected as the calibrated ones.
Figure 8 shows the VC ratios of hGNSS, hNormal and ζ during the VCE

process. Figs. (8a), (8b) and (8c) represent the VC ratios based on 4-, 5-
and 7-parameter models, respectively. The VC ratios are very similar when
the 4- and 5-parameter models are used but they differ for the 7-parameter
model. Figure 8 shows that all the VC ratios converge to 1 in 7 iterations
(at a convergence level of 0.0001).
Table 4 shows the values of the VCs and the estimated errors of hGNSS,

hNormal and ζ. The table shows that the VCs are more or less the same

Table 4. Value of VCs and estimated error of hGNSS (σ̄1), hNormal (σ̄2) and ζ (σ̄3)
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Fig. 8. VC ratios of hGNSS, hNormal and ζ during iteration for a) 4-, b) 5- and c) 7-
parameter corrective surfaces (initial values of all VCs are equal to 1).

21



Eshagh M.: Error calibration of quasi-geoidal. . . (1–30)

for the 4- and 5-parameter models. We can expect that their error esti-
mates will be in the same order as well. As we saw, the 7-parameter model
can describe the biases and the tilts of the quasi-geoid well. We observe
different values for the VCs and the estimated errors based on this model.
However, the changes in the magnitude of the VCs insignificantly change
the estimated errors.

5.2.3. Numerical investigations in VCE based on the four-VC SM

In Fig. 9 h1GNSS, h2GNSS and h3GNSS stand for the GNSS heights of the
zero-, first- and second-order networks. ĥGNSS is the same with that was
defined in Eq. (13a). Figures (9a), (9b) and (9c) show the VC ratios of the
zero-, first- and second-order networks of the GNSS heights using 4-, 5- and
7-parameter models, respectively. Figures (9a), (9b) and (9c) show that the
VC ratios of h2GNSS and h3GNSS are closed to 1 in 2 iterations and VC ratio
of h1GNSS in 3. This means that the weights of these heights are balanced
faster than that of ĥGNSS. This phenomenon is normal according to the
selected SM (10b) as for three cofactor matrices of Q4,Q5 and Q6 one VC
is estimated. The figures show the VC ratios converge to 1 in 7 iterations.
The thing that we learn from Table 5 is that, the estimated error σ̄3,

which belongs to the second-order GNSS heights, is in the same order as
that of the first-order heights. Also we observe that the error of the zero-
order GNSS heights σ̄1 is about 13 mm and slightly larger than the priori
value (10 mm). The table says that the error of ĥGNSS should be about
3 mm which is smaller than the a-priori value of its error (21 mm). One
observes that σ21 differs by the choice of the corrective surface model and
the consequence of such a change in the estimated error is about 3 mm.

Table 5. Value of VCs and estimated error of h1GNSS (σ̄1), h2GNSS (σ̄2), h3GNSS (σ̄3) and
ĥGNSS (σ̄4)
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Fig. 9. VC ratios of h1GNSS, h2GNSS, h3GNSS and ĥGNSS during iteration for a) 4-, b) 5-
and c) 7-parameter corrective surfaces (initial values of all VCs are equal to 1).
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5.2.4. Numerical investigations in VCE based on the five-VC SM

Figures (10a), (10b) and (10c) show the VC ratios based on fitting a 4-, 5-,
and 7-parameter model, respectively to the misclosures of the GNSS/levelling
points. Figures (10a) and (10b) are very similar, which shows that the dif-
ference between the results of VCE using 4- and 5-parameters models is
insignificant. Figure 10 illustrates that all the VC ratios converge to 1 in 6
iterations.
Table 6 presents the values of the VCs and the estimated errors of

h1GNSS, h2GNSS and h3GNSS, hNormal and ζ. As we see σ21 , which is re-
lated to h1GNSS (the zero-order GNSS heights), is more or less the same as
that is for the 4- and 5-parameter models. The estimated error for these
points is about 16 mm, which is not consistent with our a-priori assumption
for their errors (5–10 mm). σ̄2 is in agreement with the presumed error
(10–20 mm) for h2GNSS. However, the estimated error of h3GNSS seems to
be optimistic, as its a-priori error was 15–30 mm. The table says that the
error of hNormal and ζ is 3 mm and better than the presumed one.
The idea of VCE in an adjustment process is to balance the a-priori er-

rors of the observables with the residuals or misclosures estimated after the
adjustment procedure. When the misclosures or the residuals are small it is
expected that the VC are come out small to scale the priori errors with the
magnitude of the misclosures and vice versa. As Table 1 shows the standard
deviation of the misclosures before fitting the corrective surfaces is about
24 mm and quite small. However, we have assumed an error of 19 mm for
the quasi-geoid, 10 mm for the normal heights and 10, 20 and 30 mm for
the GNSS heights which are not consistent with the standard deviation of
the misclosures before and even after the fittings. Therefore observing small
estimated errors for the heights after the VCE process is normal.
Tables 7, 8 and 9 show the estimated parameter of 4-, 5- and 7-parameter

corrective surfaces and their errors. The numbers in the SM columns means
the type of SM which is used in VCE. It can be two-, three-, four- and
five-VC SM corresponding to 2, 3, 4 and 5, respectively. Table 8 shows a
large error for x0 which is more or less in the same level of the value of x0.
It means that adding one parameter to a corrective surface of 4-parameter
will not improve the combined adjustment with VCE and this parameter is
not significant in practice. This also true by observing very similar results
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Fig. 10. VC ratios of h1GNSS, h2GNSS and h3GNSS, hNormal and ζ during iteration for a)
4-, b) 5- and c) 7-parameter corrective surfaces (initial values of all VCs are equal to 1).
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based on fitting 4- and 5-parameter correctives surfaces.

Table 6. Value of VCs and estimated error of h1GNSS (σ̄1), h2GNSS (σ̄2), h3GNSS (σ̄3),
hNormal (σ̄4) and ζ (σ̄5)

Table 7. Estimated parameters of 4-parameter corrective surface for different SMs

Table 8. Estimated parameters of 5-parameter corrective surface for different SMs

Table 9. Estimated parameters of 7-parameter corrective surface for different SMs
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6. Conclusions

In this study we calibrated the errors of the GNSS and the normal heights as
well as the quasi-geoid KTH08 model over Sweden through a VCE process
in a combined adjustment model. The 7-parameter corrective surface yields
the best fit to the misclosures of the GNSS/levelling points and the KTH08
model with a standard deviation of 19 mm. Different SMs were used to
estimate the VCs. When the three-VC model was used the calibrated error
of the GNSS heights became 18 mm, and the errors of the normal heights
and the KTH08 model are 5 and 6 mm, respectively. In the case where we
estimate one VC for each order of the GNSS heights, we estimated errors of
13, 19 and 19 mm for the zero-, first- and the second-order GNSS heights,
respectively. In this case, the error of the reconstructed GNSS heights from
the quasi-geoid and levelling heights was 3 mm. In the case of using a 5-
component stochastic model in which five VCs are estimated, errors of 12,
19 and 18 mm were estimated for the zero-, first and the second-order GNSS
heights, 3 mm for the normal heights and the KTH08 quasi-geoid model.
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Sjöberg L. E., 1995: The best quadratic minimum bias non-negative estimator for an
additive two variance component model. Manuscripta Geod., 20, 139–144.
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