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Abstract: Interpretation and inversion of microgravity anomalies belong to important

tasks of near-surface geophysics, mostly in cavities detection in engineering, environmental

and archaeological applications. One of the mostly used concepts of inversion in applied

gravimetry is based on the approximation of the model space by means of 2D or 3D

elementary sources with the aim to estimate their densities by means of the solution of

a corresponding linear equation system. There were published several approaches trying

to obtain correct and realistic results, which describe real parameters of the sources. In

the proposed contribution we analyse the properties of two additional functionals, which

describe additional properties of the searched solution – namely so-called L2-smoothing

and minimum support focusing stabilizers. For the inversion itself, we have used the

regularized conjugate gradient method. We have studied properties of these two stabilizers

in the case of one synthetic model and one real-world dataset (microgravity data from

St. Nicholas church in Trnava). Results have shown that proposed algorithm with the

minimum support stabilizer can generate satisfactory model results, from which we can

describe real geometry, dimensions and physical properties of interpreted cavities.
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1. Introduction

Precise gravity acceleration measurements are used in a variety of applica-
tions, from structural geology problems to resource exploration (e.g. Hinze
et al., 2013). One can’t omit microgravimetry as a very useful tool for detec-
tion of shallow objects (what are, technically, small scale subsurface density
inhomogeneities as voids or cavities (e.g. Pašteka et al., 2020)). Inversion of
gravity field data can give a better insight on subsurface image: the source’s
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depth, its geometry and physical properties (density contrast). Because of
that, it is a very active field of development (e.g. Li and Krahenbuhl, 2015).
However, inversion suffers from many problems. From mathematical point
of view, the solution of inversion is non-unique and it is instable (or does
not exist at all) – in other words it is a typical ill-posed problem of mathe-
matical physics (Groetsch, 1993).

The most troublesome is the ambiguity (non-uniqueness) that exists in
any geophysical method, based upon a static potential field. It can be
reduced by applying a priory information. In general, this additional infor-
mation about the solution (constrain) can have geological or mathematical-
physical character. In this contribution we will analyse properties of meth-
ods in this second group of constrains (math/phys). One of the mostly used
concepts of inversion in applied gravimetry is based on the approximation
of the model space by means of 2D or 3D elementary sources (points, lines,
rectangular prisms. . . ) with the aim to estimate their densities by means of
the solution of a corresponding linear equation system (e.g. Last and Kubik,
1983; Li and Oldenburg, 1998). Here several methods have been developed
for the incorporation of the mathematical-physical information into the ex-
pected solution: Last and Kubik, (1983) proposed a minimum support (MS)
stabilizing functional and applied it to 2D inversion of gravity data, Rudin et
al. (1992) developed total variation (TV) stabilizing functional and used it
for satellite image inversion, Li and Oldenburg (1998) introduced the depth
weighting function. Later Bertete-Aguirre et al. (2002) used modified total
variation stabilizer for inverting 2D gravity data and Portniaguine and Zh-
danov (1999) proposed minimum gradient support (MGS) stabilizer which
improved MS functional. The TV, MS and MGS are all special kinds of
focusing stabilizers. In some situations, like mineral exploration or as above
mentioned cavities detection, it is crucial to detect sharp boundaries be-
tween target source and host rock. However, the result obtained by using
a focusing stabilizing functional highly depends on the right choice of the
focusing parameter. Zhao et al. (2016) have introduced exponential stabi-
lizer which doesn’t need the focusing parameter.

This contribution is focused on the possibilities of density inversion meth-
ods in the interpretation of microgravity anomalies, caused by subsurface
cavities – represented by e.g. crypts in archaeological prospection. There ex-
ist a variety of geophysical methods, used in near-surface and archaeological

64



Contributions to Geophysics and Geodesy Vol. 51/1, 2021 (63–81)

applications, mostly DC geoelectrical methods, Ground Penetrating Radar
(GPR) and shallow seismic methods (e.g. Clark, 1990; Putǐska et al., 2012;
Brixová et al., 2018). Microgravity method can contribute to this kind of
detection (mostly cavities) – often in urban environments for archaeological
applications, where only selected geophysical methods can be used (Mrlina
et al., 2005; Panisova et al., 2012, 2013). In the process of interpretation
of local negative anomalies, we use different quantitative methods (a short
overview can be found in Pašteka et al., 2020). Among them density inver-
sion methods became more and more popular in the last decade (e.g. Zhao
et al., 2016; Rezaie et al., 2017), which is also the topic of this presented
study. At first, we analyse the results from synthetic tests with different fo-
cusing stabilizers incorporated in the regularized conjugate gradient (RGC)
method (Zhdanov, 2002) and then we choose the most suitable one for in-
verting gravity data from St. Nicholas church in Trnava (SW Slovakia).

2. Methodology

The model space is divided into a regular system of rectangular cells (2D
or 3D rectangular prisms). The Cartesian coordinate system is adopted –
positive part of the vertical axis z is oriented downward. The vertical compo-
nent (Vz) of the gravitational attraction vector is then given by (e.g. Karcol,
2018):

Vz(x, z) = G

∫

ξ

∫

ζ

σ(ξ, ζ)
(ζ − z)

(ξ − x)2 + (ζ − z)2
dξ dζ → 2D case, (1)

Vz(x, y, z) = G

∫

ξ

∫

η

∫

ζ

σ(ξ, η, ζ) (ζ − z)
[

(ξ − x)2 + (η − y)2 + (ζ − z)2
]

3
2

dξ dη dζ

→ 3D case,

(2)

where the Greek letters are related to the mass element, Latin letters stand
for the position of the calculation point, σ is density function and G is New-
ton’s gravitational constant. The solutions of previous integrations for the
constant density are:
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Vz(x, z) = Gσ

[

2 (ζ − z) arctan
(ξ − x)

(ζ − z)
+

+ (ξ − x) ln
[

(ξ − x)2 + (ζ − z)2
]

]ξ2,ζ2

ξ1,ζ1

→ 2D case,

(3)

Vz(x, y, z) = Gσ

[

(ζ − z) ln[(η − y) +R] + (η − y) ln[(ζ − z) +R] −

− (ξ − x) arctan
(η − y) (ζ − z)

(ξ − x)R

]ξ2,η2,ζ2

ξ1,η1,ζ1

→ 3D case,

(4)

where R =
√

(ξ − x)2 + (η − y)2 + (ζ − z)2.
The software realization of the method is as follows: the effect of each

prism is calculated for unity density with the help of equations (3) and (4),
and then the multiplication with a density matrix (2D case) or a density
array (3D case) is carried out (for each position of calculation point, of
course) – i.e. a constant density of each cell/prism is used. Using matrix
notation, the vector of the model space gravity field d is given by:

d = Am, A ∈ RN×M , d ∈ RN , m ∈ RM , (5)

where A = ai,j , i = 1, 2, . . . , N , j = 1, 2, . . . ,M is the kernel matrix where
ai,j is the contribution of jth prism to the gravity value on the ith obser-
vation point (according to equations (3) or (4) with unity density). The
vector m (of size M) stands for model parameters (physical property of the
single prism) and vector d (of size N) represents the calculated/measured
data. The main objective of the inversion is to find density model which
corresponds to the sub-surface density structure (geology) and which gravi-
tational effect is in an acceptable fit (up to noise level) with measured data.

3. Density inversion

Gravity inverse problem is ill posed and suffers mainly from ambiguity. A
typical way to solve ill posed problem is to use the regularization theory
developed by Tikhonov and Arsenin (1977). This method is based on min-
imization of the Tikhonov parametric functional:

P λ(m) = ϕ(m) + λS(m), (6)
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where ϕ(m) is the misfit functional between observed data and computed
field, λ is regularization parameter and S is a stabilizing functional (sta-
bilizer). In general, there are different stabilizers, each producing different
result. Basically, we can divide the stabilizers into two groups: smoothing
and focusing. The smoothing inversion algorithms are based on a minimum
norm stabilizing functional such as L1 and L2 norms:

SL1(m) = ‖m‖2L1
= (m,m)L1

, SL2(m) = ‖m‖2L2
= (m,m)L2

. (7)

These types of inversion produce “smooth” solutions where sharp bound-
aries of the source are not developed. However, a lot of cases requires the
presence of such sharper boundaries, for example the step change in den-
sity represents the cavity’s edges in microgravity surveys for archaeological
purposes. To achieve a sharp result, we can use stabilizing functional pro-
ducing compact solutions, such as total variation (TV), minimum support
(MS) or minimum gradient support (MGS) functional. Different stabilizers
are expressed in Table 1.

Table 1. Comparison of different stabilizer equations. Coefficient ε also known as focusing
parameter is very small positive number to avoid singularities where m = 0.

Method Stabilizer Author

TV STV(m) =

∫

V

√

|∇m(r)|2 + ε2 dV Acar and Vogel (1994)

MS SMS(m) =

∫

V

(m−mapr)
2

(m−mapr)
2 + ε2

dV Last and Kubik (1983)

MGS SMGS(m) =

∫

V

∇m ·∇m

∇m ·∇m + ε2
dV Portniaguine and Zhdanov (1999)

In this work we select a minimum support functional (Last and Kubik,
1983), but we have tested also different stabilizers in synthetics inversion,
where authors suggested seeking a source distribution with the minimum
volume (compactness) to explain the anomaly. Parameter ε is used in many
focusing stabilizers and is called a focusing parameter, needed to avoid sin-
gularity in case ‖m‖ = 0. The focusing parameter also controls sharpness
of the model. If the focusing parameter is set too small (values close to
zero), the final model will be sharp. Larger values lead to smoother models.
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The regularization parameter λ describes the trade-off between the best
fitting and most reasonable stabilization. If selected λ is too small, the
minimization of the Tikhonov parametric functional P λ(m) is equivalent
to the minimization of the misfit functional and so there is a weak regular-
ization, which could result in an unstable (incorrect) solution. When λ is
too large, the minimization of the parametric functional P λ(m) is equiva-
lent to the minimization of the stabilizing functional S(m), which will force
the solution to be closer to the a priori model. Vector mapr is an a priori
model (given by user) – if not provided, then it is set to be a zero vec-
tor. In some cases, the stabilizing functional can increase from iteration
to iteration. Zhdanov (2002) proposed to damp the regularization param-
eter proportionally to the increase of the stabilizing functional to assure
convergence of parametric functional to the global minimum as follows:

λk = λ1q
k−1, k = 1, 2, 3, . . . , q ∈ (0.5, 0.9) . (8)

We applied the regularized conjugate gradient method (RCG) (Portniaguine
and Zhdanov, 1999) to search for the optimal solution, see Appendix A for
a brief description of this algorithm.

4. Synthetic model

The synthetic model consists of two bodies (2D rectangular prism to rep-
resent buried elongated crypts) embedded beneath surface with zero back-
ground density, see Fig. 1 for model’s scheme. The density contrast of the
left-hand prism (black) is −2 g ·cm−3, what represents empty (not watered)
cavity. The second (right-hand) prism (grey) has the differential density
−1 g · cm−3, what can mean that cavity is filled with some host material
(light debris or water). The top of both prisms is placed in −0.75 m below
the surface.

The gravity data were computed along a perpendicular profile, with sam-
ple spacing 0.05 m, on the surface using (3) with the 5% uncorrelated Gaus-
sian noise. Model space was discretized into 16 000 (200× 80) 2D rectangu-
lar prisms. The inverse problem has been solved for two different stabilizers
using RCG method: the L2 stabilizer (SL2

) and the minimum support (MS)
stabilizers were used for inversion of synthetic data with the proposed inver-
sion method. For the inversion we used a custom program zInv (programed
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Fig. 1. The scheme and input field for the synthetic test. The black rectangle (left-hand):
density −2 g · cm−3, the grey rectangle (right-hand): density −1 g · cm−3.

in the language C#), which has no option to calculate the regularization
parameter using the L-curve (Lawson and Hanson, 1974; Hansen, 1992) –
only option available is the trial and error method (the same for focusing pa-
rameter). The initial value of the regularization parameter λ for this model
was selected as 4 ·10−7 and the focusing parameter ε as 0.9. The number of
used iterations was 320.

The recovered models show strong difference between the smooth and
focused inversion, see Fig. 2. The L2 inversion produce more smooth result
with a density range from 0 to −1g ·cm−3 from which we are unable to esti-
mate the real density distribution, thus it is not possible to define cavities,
on the other hand the geometry distribution of sources is acceptable and can
provide useful information about the approximate shape of possible sources.
The focused stabilizer MS produces more suitable solutions in terms of den-
sity and geometry distribution. MS stabilizer defines the acceptable width
and height approximation of the modelled cavities. The density reaches
−2g ·cm−3 for the left-hand prism and for the right-hand prism density val-
ues are determined between −0.9 g · cm−3 and −1.4 g · cm−3. With a survey
focused on cavities detection, the MS result indicates satisfactory position
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Fig. 2. Determined density models for different stabilizers using 2D density inversion with
synthetic data: a) L2 stabilizer, b) MS stabilizer.

and shape of sources (upper edges of the solutions are little bit shallower
when compared with the real object, but this error is still acceptable).

5. Inversion of microgravity data from St. Nicholas church in

Trnava

The georadar (GPR) and gravimetry survey was realized in 2006 in the
interior of the St. Nicholas church in Trnava (Terray, 2006a; Pašteka et
al., 2007). According to historical information there were indications about
crypts buried below the church’s central nave. A microgravimetry survey ac-
quired (using Scintrex CG-5 gravimeter) 854 points in total (1m × 1m mea-
suring grid) with the estimated measurement error ±0.007 mGal (Pašteka
et al., 2020). Data were processed into residual Bouguer anomalies values
(with removed planar background field) and gridded using kriging algorithm
with cell size 0.1m × 0.1m. There are several important features on the final
map, namely high-amplitude (from microgravimetry point of view) local
minima, see Fig. 3.

Amplitudes of the 3 strongest anomalies, marked by D, E and F reach val-
ues between −40µGal and −50µGal. Such values can indicate the presence
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Fig. 3. The map of residual Bouguer anomaly from St. Nicholas church in Trnava (correc-
tion density: 1.80 g · cm−3). Letters A – H show the detected negative gravity anomalies
(possible connection with crypts). The 3D inversion’s input anomalies are labelled E and
F (highlighted by red dashed rectangle, position of GPR profile, led by their centre is
highlighted by red abscissa).
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of an empty, not collapsed or flooded cavity, most likely a crypt. Also results
of the performed GPR measurements (Terray, 2006a) show all characteristic
features of an existence of empty cavities (Fig. 4 – profile over E and F local
minima).

Later, the geophysical survey was verified with a video inspection (Terray,
2006b) and with GPR combination it shows the actual geometry of the

Fig. 4. Depth section from GPR measurements (adapted and modified from Terray,
2006a) along a profile, crossing the gravity anomalies E and F. Used velocity of EM
waves for the conversion of time section into depth section was 0.1 m/ns.

Fig. 5. Proposed shape and dimensions of crypts, determined from the results of performed
video-inspection (adapted and modified after Terray, 2006b).
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sources of the surveyed local minima E and F, which proved the presence
of crypts and thus demonstrates the success of this combination method
in archaeology (Pašteka et al., 2007). We can see the top boundary of the
crypt located in 0.3 m depth from the surface and the total height of the
crypt equals to 2.2 m, see Fig. 5. The length of the crypt E is estimated
at 3.4 m. Both crypts have rectangle floor projection. Crypt F is of similar
character as E with length of 2.4 m.

6. 2D results

To perform 2D inversion of gravity data over selected local minima (see Fig.
6 for detailed view), the subsurface of study area has been discretized into
20 000 (200× 100) rectangular cells in x/y direction. For the inversion cal-
culations, we have used again the custom program zInv. We applied RCG

Fig. 6. Image of selected part of residual Bouger anomaly, with location of profiles used
for 2D and 3D inversion (part of the acquired field – from the red dashed rectangle in
Fig. 3).
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inversion with two different stabilizers to show effectiveness of focused and
smooth stabilizers in microgravimetry survey. 2D inversion was made in one
YZ vertical slice and two XZ vertical slices (Figs. 7 and 8). The initial value
of the regularization parameter λ in this case was set at 10−6 and the focus-
ing parameter ε at 0.1 (the number of iterations used was 270). For MS sta-
bilizer the 2D inversion result indicates that the depth of the top boundary
of the crypt E is 0.8m and the bottom depth boundary is located at 2.6m be-
low the surface. The solution length is 2.4m and height is 1.8m, although the
shape of anomaly E is slightly deformed (Fig. 7). The density of this anoma-
lous object reaches values between −1.3 g ·cm−3 and −2 g ·cm−3. The depth
of the top boundary of the crypt F is set at 0.7 m and the bottom depth
boundary is 2.5 m below the surface. The resultant body has 2.1 m length
and is 2 m high with density between −1.5 g · cm−3 and −2.1 g · cm−3,
see Fig. 7). From obtained densities we can state that the inverted bod-
ies are not collapsed or flooded. In comparison, L2 stabilizer produces
more smoothed result, in YZ slice. The image shows two distinct bodies
with slightly distorted geometry and density values from −0.6 g · cm−3 to
−0.9 g · cm−3 (Figs. 7 and 8). Results from both XZ slices present a better
quality information for the interpretation of cavities. XZ slice at 93.2 m

Fig. 7. Visualization of the 2D Inversion result comparing MS (a) and L2 (b) stabilizing
functional. The slice is made in YZ direction at x = 86 m.
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(Fig. 8d) defines a body with 2m length and 1.6 m height, which resembles
the empty crypt below the surface.

Fig. 8. 2D Inversion results comparing MS (a, c) and L2 (b, d) stabilizing functional. The
slices are made in XZ direction at y = 88.7 m (a, b) and y = 93.2 m (c, d).

7. 3D results

The 3D inversion of gravity data was performed too, but due to the lack
of computer memory the model area has been discretized only into 245 000
(70× 70× 50) cells in x, y and z direction resulting in worse spatial slice
quality. The initial value of the regularization parameter λ in this case was
set at 10−6 and the focusing parameter ε at 0.1 (the number of iterations
used was 200). As expected, the results for L2 stabilizer produced more
smoothed images with not very sharp boundaries and shallower position
(Fig. 9). The ceiling starts at 0.3 m and the bottom level ends in 1.2 m,
which doesn’t describe the true geometry of crypts, although the algorithm
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Fig. 9. 3D Inversion result for the L2 stabilizer for two XZ slices (a, b) and one YZ slice
(c) located at same coordinates as in 2D case.

produced an image with two distinct bodies. Such kind of information alone
can later help other geophysical methods in interpretation, for instance it
can represent an additional information to the GPR interpretation.

The results from the MS stabilizer clearly indicate the presence of 2 ob-
jects with densities similar to empty (not watered) crypts (Fig. 10). Width
of both retrieved bodies is 3 m and height is approximately 2 m. However,
with the applied discretization, the received XZ and YZ inversion results
have a stronger “pixel-pattern” than in 2D case.

Comparing the video inspection image of the crypts (Terray, 2006b) with
the inversion result we came to conclusion that the inversion produces ac-
ceptable result and we are able to estimate with good certainty that there
are empty cavities under the surface (Fig. 11).

We can also make comparison between the results from 2D and 3D in-
version of real-world gravity data. It shows that even when it is applied
to anomalies of 3D character, the 2D inversion provide sufficient results.
It is probably the effect of different model sizes in both cases, the 3D in-
version requires a large amount of memory to process and store data, in
many cases it is almost impossible to achieve the same resolution as in 2D
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Fig. 10. 3D Inversion result for MS stabilizer for two XZ slices (a, b) and one YZ slice (c)
located at same coordinates as in 2D case.

inversion. However, the result of 2D inversion places the anomalous bodies
slightly deeper. In the case of 3D inversion, the anomalous bodies in vertical
XZ slice are less deformed and their geometry is closer to real character of

Fig. 11. Visualization of the 3D inversion result for the MS stabilizer (selected anomalies
E and F from St. Nicholas church in Trnava).

77



Zvara I. et al.: Density inversion of selected microgravity anomalies . . . (63–81)

crypts (Fig. 5). Generally, 3D inversion should give a better resolution and
details in the resulting models. But 3D inversion is, in itself, more time
and computation power consuming than 2D inversion, which made it time
difficult to fine-tune parameters sufficiently.

8. Conclusions

The inverse solution of gravity data can determine the subsurface den-
sity distribution. From obtained results we can tell that inversion applied
in archeogeophysics is a very helpful tool for determination of anomalous
source geometry and density distribution. Because of the nature of some ar-
chaeological anomalies (isolated objects) it is suitable to use the minimum
support (MS) focusing stabilizer, which yields models with sharp edges.
Note that the stabilizing functional is highly dependent on the choice of
correct focusing parameter, which can be calculated with help of various
statistical methods; in our case with the trial and error method (with typi-
cal values from the interval 〈0.1, 0.9〉).

The robustness of the proposed algorithm has been proved by the syn-
thetic model and a real gravity dataset from St. Nicholas church in Trnava.
Inversion results can tell us a lot about the fill of the anomalous source –
the obtained densities are close to the differential densities of an empty cav-
ity (with the MS focusing stabilizer), in our case to the value −2 g · cm−3.
In the case of St. Nicholas church in Trnava, the performed 3D inversion
(with the MS focusing stabilizer) estimated height at 2.1 m with the top
boundary 0.45 m under the surface and with length of 3.3 m for crypt E.
For crypt F the height is estimated at 2 m starting with the top boundary
0.41 m and with length of 2.7 m. These results demonstrate that proposed
algorithm can generate a satisfactory model, from which we can describe
real geometry, dimensions and physical properties of interpreted cavities.
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Pašteka R., Terray M., Hajach M., Pašiaková M., 2007: Microgravity measurements and
GPR technique in the search for medieval crypts: a case study from the St. Nicholas
church in Trnava, SW Slovakia. Proceedings of the Archaeological Prospection 7th
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Appendix A – Regularized Conjugate Gradient (RCG) Algorithm

Inputs:

A – kernel matrix,
d – observed gravity data vector,
m – model parameters vector,

(A ∈ RN×M , d ∈ RN , m ∈ RM ).

Variables:

rn – residual vector at nth iteration,

l̃α0 – initialization of ascent direction vector,

l̃αn – ascent direction vector at nth iteration (linear combination of the
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steepest ascent at nth step and the ascent’s direction at the
(n− 1)th step),

lαn – direction of the steepest ascent,

kαn – coefficient of the step’s optimum length,

βα
n – conjugate direction coefficient to all previous directions,

mn+1 – updating model vector parameter.

Algorithm:

If m is not given then it is set to zero vector.

rn = Amn − d ,

lλn = A∗W 2
d (Amn − d) + αW 2

mDn ,

βλ
n = (lλnl

λ
n)/(l

λ
n−1l

λ
n−1) ,

l̃λn = lλn + βλ
n l̃λn−1 ,

l̃λ0 = lλ0 ,

kλn = (l̃λn l
λ
n)/{(Wd A l̃λn,WdA l̃λn) + α (W l̃λn,W l̃λn)} ,

mn+1 = mn − kλn l̃
λ
n .

The inversion stops if the maximum number of iterations is reached or the
target data misfit Root Mean Square (RMS) is reached, which is calculated
as:

RMS =

√

√

√

√

√

√

N
∑

i=1

(

dcal
i

− dobs
i

errori

)

N
,

where dcali and dobsi represent calculated (predicted) and observed data and
errori is the estimated observation error. The calculated data are considered
good when the value of RMS is less than some pre-determined tolerance, if
RMS is too small it can indicate that the algorithm starts to fit the noise
in the interpreted data-set. The target misfit is usually set at 1.
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