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Abstract: The gravitational effects caused by normal and reverse faults are very close

to each other, both in amplitude and in the shape. We demonstrate the usage of the first

curvature as a tool for the setting the slope orientation without the additional geological

information. The curvature is calculated not only for the measured data, but for their

upward continuation, too. This step helps to lower instability of the curvature computa-

tion and is important in the interpretation of the resultant curvature as well. We applied

this method on the synthetic test and on the real regional gravimetric data as well. The

results show the method could be useful step before the density modelling process and

generally during qualitative interpretation in applied gravimetry.
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1. Introduction

There are several model geometries used to approximate the interpreted den-
sity inhomogeneity in the quantitative interpretation of gravimetric data.
Among them, the 2D inclined step plays an important role, while it satisfac-
torily describes sub-vertical density contacts of different tectonic units like
transitions between mountain belts and adjacent sedimentary basins. There
exist a huge variety of methods, which use this geometry for the modelling
or the depth estimation of the density contact itself (e.g. Geldart et al.,
1966; Chakravarthi, 2011; Essa, 2013; Abdelrahman et al., 2019).

One of the crucial steps in all methods connected with the inclined step,
is the direct estimation of the slope without any geological constraints.
There are several approaches, which try to solve this problem (Gupta and
Pokhriyal, 1990; Abdelrahman et al., 2013 a.o.). In this contribution, we uti-
lize the interesting properties of the gravitational effect’s curvature. There
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are, already, several contributions, using the properties of the curvatures
in the potential data interpretation (Schmidt and Götze, 2003; Phillips et
al., 2007; Li and Cevallos, 2013; Cevallos et al., 2013; Li, 2015 a.o.), but
based on our knowledge, none of them is focused on the inclined step’s slope
estimation problem. The first curvature of the gravitational effect of the in-
clined step model shows some interesting properties, which can be used for
the recognition of the main character of the slope’s sign. We present the
results from a synthetic modelling (with artificial noise added) and the ap-
plication of the presented method on some real datasets (acquired in the
Western Carpathian region, some of them with geological constraints as a
control of our results, too), as well.

We have to clarify the importance of the used terminology here. The
terms “normal” and “reverse” fault (from the geological terminology point
of view) are based on the orientation of the mechanical stress acting upon the
rock formations and the corresponding way of their movement (e.g. Svoboda,
1983). This means, that both terms can be assigned to e.g. a slope with
negative sign. Therefore, the geological assumptions related to e.g. density
distribution within models/real situations, are necessary to the assignment
of the correct term (fault’s type) to the solved situation.

2. Theory

The model we are dealing with is based on the inclined step – 11/2 body
from the direct problem point of view. The gravitational attraction vector
consists of V

z
component only:
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here k is the slope and q is the absolute term of the line, which controls the
inclination of the step, z and x are calculation point coordinates (positive
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part of vertical (z) axis is oriented upwards), ζ1 and ζ2 are edges of the
step in the vertical direction, σ is the density (assumed to be a constant),
κ stands for the gravitational constant. Note that presented formula is
valid only for the points located above the step, what is satisfactory for the
objective of our task. The scheme of two basic options (k < 0; k > 0) and
corresponding fields are displayed on Fig. 1.

Fig. 1. The scheme of two basic types of an inclined step: negative slope line p (k = −0.5
– black) and positive slope line p

′ (k = 0.5 – blue) with corresponding gravitational effect
Vz calculated on the level z = 0 m (the geometrical parameters are clear from the figure,
the density was σ = 3000 kgm−3).

The gravitational effect curves are very similar to each other in this
particular case. So, the question is: how to distinguish between them, or
how to set the correct sign of the slope? We will demonstrate the usage of
the first curvature K for the planar case (z = f(x)) given by (e.g. Rektorys,
1968, p. 260 or Thomas and Finney, 1996, p. 890):
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Karcol R., Pašteka R.: Normal vs. reverse fault – the example of . . . (447–461)

Next, the input data f(x) will not be the calculated/measured gravitational
field only, but its upward continuation, too. The idea behind this approach
is that the change in the shape of resultant curvature with increasing height
of upward calculation, could bring new information into discussed prob-
lem. The differentiation and upward continuation will be carried out in the
Fourier domain, while they are represented by simple multiplications of spec-
tra with corresponding spectral operators there. More, the differentiation
is an unstable operation (e.g. Pašteka et al., 2009) on the contrary to the
stable operation of the upward continuation. If the upward continued field
is used as the input for the curvature’s calculation, the instability caused
by differentiations will be “covered” by stabilizing effect of upward continu-
ation, because the differentiation is controlled by linear function (first order
differentiation) or by quadratic function (second order differentiation) in
the spectral domain, while the spectral characteristic of the upward con-
tinuation is the exponential function of the spectral variable. Finally, the
operators for differentiation and continuation can be simply combined into
single operation in the spectral domain.

The analytical solution (curvature curves) for the simple cases (displayed
on Fig. 1) requires following formulae:
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The resultant (theoretical/analytical) curves of the first curvature are dis-
played on Fig. 2a (the negative slope (normal fault), black) and Fig. 2b
(positive slope (reverse fault), blue).

The shape of these curves allows us to decide about the sign of the step’s
slope. The inflection point of the original input field curves (Fig. 1) is
clearly recognized as a local minimum close to the centre of the curvature’s
curves – closer look shows that local minimum is shifted to the left from
the x = 1000 m coordinate (the centre of the inclined side) for the nega-
tive slope (normal fault) or to the right from this coordinate for positive
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Fig. 2. The analytical curvature (K, equation (2)) curves for the elementary models at
level z = 0: a) negative slope b) positive slope.

slope (reverse fault). Next, the local maxima at these curves are related to
the beginning and end of the inclined side of the step and the amplitude
and position of them can reveal the information about the slope’s sign, too.
Next question could be: how will these properties look like for the more
complex/real situations and for the upward continued inputs. The answer
is clear from the direct problem attributes – the curvature curves will be
more symmetrical (the difference in the amplitude of the local maxima will
decrease) and the local minimum in the centre will move closer to the centre
of the inclined side, as the input field is getting smoother and more symmet-
rical with increasing of the calculation height, see Fig. 3 for the z = 400 m
as an example.

Fig. 3. The analytical curvature curves for elementary models at level z = 400 m for a)
negative slope (normal fault), b) positive slope (reverse fault).
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So, the workflow will be as follows – the solutions for the several heights
of the upward continuation will be obtained and the described changes in
the shape of the resultant curves are used as criteria for setting of the slope’s
sign.

3. Testing

3.1. Synthetic Test A

Two basic models (negative and positive slope based) are created. The
models consist of 3 blocks (A, B and C). We discuss two basic options of
the density ratios: a) the B block’s density is lower

(

σ
B
= 2400 kgm−3

)

than density of A and C blocks
(

σ
A
= σ

C
= 2700 kgm−3

)

and b) the B
block’s density is higher

(

σ
B
= 2700 kgm−3

)

than density of A and C blocks
(

σ
A
= σ

C
= 2400 kgm−3

)

, see Fig. 4a and Fig. 4b for the schemes and grav-
itational effects (the geometrical parameters of the models are in the Ta-
ble 1). The sampling step is 50 m on the profile of 6 km span. The input
data are corrupted with the truncated Gaussian noise from the interval
〈−0.005; 0.005〉mGal, i.e. the noise amplitude is 0.01 mGal, what is a reso-
lution of the present field gravity meters. Next, the curvatures calculated for

Fig. 4. The scheme of models (see Table 1 for parameters) and their gravitational effects
for the Synthetic Test A (two options of density distribution), a) negative slope model,
b) positive slope model.
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Table 1. The parameters of the models for synthetic test (ζ1 and ζ2 are limits in the
vertical direction).

Body ζ1 [m] ζ2 [m] positive slope line p negative slope line p

A −1100 −100

p : z = −
√

3

3
x− 100 p : z =

√

3

3
x− 1100B −600 −100

C −1100 −600

a several heights of upward continuation, will be normalized to the number
one for a better comparison, while we are interested in the shape of them
not the real amplitudes.

The surface solutions for both models and density distribution are dis-
played on the Fig. 5a and 5b, the solutions for the set of upward continued
inputs are displayed on Fig. 5c and 5d.

Fig. 5. T The normalized curvatures (K-normalized) for the Synthetic Test A, two options
of the density distribution: a) the surface solution for a negative slope, b) the surface
solution for a positive slope, c) the solutions for upward continued inputs, negative slope,
d) the solutions for upward continued inputs, positive slope.

453
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There are expected features on the surface solutions (Fig. 5a, b): the
results are disturbed, the lower of the local maxima is not developed well
– it is corrupted by an amplified noise (during the numerical calculation of
derivatives, entering into eq. (2)). The edge effects (unwanted but neces-
sary products of data manipulation within a spectral domain) are of higher
amplitudes than the central part we are interested in – that is why the side
parts of the results do not tend to zero, as they should. This occur for rest
of the solutions (Fig. 5c, d), too. This could be partly fixed if the normaliza-
tion is carried out after the side effects cutting-off. The left-right side shift
and amplitudes changes of the local extrema are clearly visible for solutions
obtained for the set of upward continuation heights, and so, reveal the sign
of the slope satisfactory. The one of the important properties of the pre-
sented normalized curvatures is not displayed at all – the solutions for the
second density distribution σ

B
> σ

A
= σ

C
are the same (indistinguishable)

as the solutions for σ
B

< σ
A

= σ
C
, for both slope’s signs. This means,

that not only the sign of the slope could be revealed, but the density’s ratio
could be discussed, too.

3.2. Synthetic Test B

Fig. 6. The 3-layered rift valley model
for the synthetic test B with the input
field (Vz – gravitational effect).

The more complicated rift valley model
is sprepared for the second synthetic
test, where each inclined step is of the
different slope with the 50 m sampling
step on the profile of 10 km profile
span, the density of the layers from
the surface to the bottom are: σ1 =
2400 kgm−3, σ2 = 2600 kgm−3, σ3 =
2750 kgm−3 (Fig. 6).

The truncated Gaussian noise from
the interval 〈−0.04; 0.04〉mGal, i.e. the
noise amplitude is 0.08 mGal, what is
about 4.2% of the input field amplitude.
The solutions are displayed on Fig. 7
and each solution is compared to the
result for the noise-free input.
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Fig. 7. The normalized curvatures for the several heights (z) of the upward continuation
for the Synthetic Test B: a) z = 300m (blue), solution for the noise-free input (black), b)
z = 400 m (green), solution for the noise-free input (black), c) z = 500 m (red), solution
for the noise-free input (black), d) the combination of the solutions for the set of upward
continuation heights: z = 300 m (blue), z = 400 m (green), z = 500 m (red).

The local minima are not shifting to the side significantly with the in-
creasing of the recalculation height. This is caused by larger sampling step.
However, the evaluation of the two pairs of local maxima is able to iden-
tify the sign of the slope. Precisely, the local maxima’s amplitudes of the
sinistral pair are in the ratio as described on Fig. 2a or Fig. 5c (the left one
is higher than right one), and vice-versa for the dextral pair of local max-
ima. Here, the satisfactory conclusion about slope sign is available for each
height of recalculation. However, the balance between solution’s noise level
and details in the curvature’s curve is the most acceptable for z = 400 m
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according to our opinion. For this height, the desired features in the curve
shape are still well visible and noise level is low enough already.

3.3. Real data Test A

The input field is the detailed gravimetry profile running from the Central-
Carphatian Paleogene (CCP) formations into Pieniny Klippen Belt (PKB)
located close vicinity of Jarabina village near Stara Lubovna, NE Slovakia
(Plašienka, 2018), see Fig. 8 for a location within Slovakia, detailed Bouguer

Fig. 8. The maps for the Real data Test A: top-left: a position of the studied area within
Slovakia; top-right: a detailed complete Bouguer anomaly map with highlighted position
of interpretation profile (thick black line); bottom: a selected part from the tectonic map of
Slovak Republic (modified from Bezák et al., 2004) with the position of the interpretation
profile (thick black line). Selected codes from the legend of the tectonic map: 28a – deep
water sediments (Middle Eocene – Early Miocene age), 38a – isolated klippes, carbonates
(Jurassic – Lower Cretaceous complexes), 38b – sediments (Middle – Upper Cretaceous
complexes), 35c – flysh sediments (Oravská Magura nappe, Oligocene age).
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anomaly map with position of the interpretation profile, and a geological
map with tectonic structures in the studied site. The detailed gravimetric
measurements have been realised along a line crossing the CCP-PKP contact
with an acquistion step 20 m (Mikuš, 2008) – we use the southern part of
the profile highlighted on the Fig. 8, where it “hits” the contact between
CCP and PKB. The geological assumption says, that KB (higher density)
is slightly shifted over the CCP (lower density) (a reverse fault (?)), what
is situation described at Fig. 4a, blue line (negative slope, with σ

B
> σ

A
=

σ
C
). The data are highly corrupted by the noise/effects of the shallow

sources and measurement errors, see Fig. 9a. We decide to cut-off the side
effects and carry out the normalization after that, too. The results are
displayed on Fig. 9b.

Fig. 9. The Real data Test A: a) the input field (Bouguer anomaly values), S and N
stands for cardinal points, b) the normalized curvature (after side effect’s cut-off) for two
heights of the upward continuation (z1 = 50 m, z2 = 100 m).

The first solution (z = 50 m, Fig. 9a, black curve) shows the desired
pattern clearly – two local maxima and local minimum in close vicinity
of the assumed position of the inflection point of the input field’s curve.
According to this, our statement is that this situation is in an agreement
with the upper mentioned geological suggestion. The situation around the
second solution (z = 100 m) is not that clear – the second local maximum
is almost erased by side effects, despite the fact, that the strongest one was
cut-off. However, if compared to the first solution, the indication of second
local maximum is visible/deductive. Therefore, the successful interpretation
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requires the set of upward continuation levels. According to the presented
results and geological assumptions, we can discreetly deduce about reverse
fault in this site.

3.4. Real data Test B

We are studying the contact between Malé Karpaty Mts. and the sedimen-
tary filling of Danube Basin in its western part (SW Slovakia) in the West-
ern Carphatians region (Kytková et al., 2007). The geological suggestions

Fig. 10. The maps for the Real data Test B: top-left: a position of the studied area
within Slovakia; top-right: a detailed complete Bouguer anomaly map with highlighted
position of interpretation profile (thick black line); bottom: a selected part from the
tectonic map of Slovak Republic (modified from Bezák et al., 2004) with the position of
the interpretation profile (thick black line). Selected codes from the legend of the tectonic
map: 75a – granodiorites and granites (Devonian and Lowe Carboniferous age), 7a –
synrift sediments (Badenian – Sarmatian age).
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shows negative slope related to the extension in the area (normal fault),
and the density distribution as described in Fig. 4a, black curve (the den-
sities of cristalline rocks in the Malé Karpaty Mts. are much higher than
those of the sedimentary rocks in the Danube basin). The input data are
taken/interpolated from the map of the complete Bouguer anomaly values
for the correction density 2670 kgm−3 (Zahorec et al., 2017) (Fig. 10) and
cubic splines were used to obtain regulary spaced data (100 m sampling
step), see Fig. 11a, for the input data. The results for the set of upward
continuation’s heights (normalized after strongest side-effects cut-off) are
displayed on Fig. 11b.

Fig. 11. The Real data Test B: a) the input field (interpolation of Bouguer anomaly
values), NW and SE stands for cardinal points, b) the normalized curvature (after side
effect’s cut-off) for two heights of the upward continuation (z1 = 300 m, z2 = 500 m).

Again, the results are in the coindicence with the geologic assumption,
i.e. the negative slope with density distribution as described on the Fig. 4a,
black line (negative slope, with σ

B
< σ

A
= σ

C
). These results can be

understand as another arguments for the extension nature of the discussed
site.

4. Conclusion

The problem of the slope sign could be prior to the 2D density modelling
process. The gravitational effects of the discussed situations (positive or
negative slope’s sign) are very close to each other. The deciding property of
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the calculated curvature’s curves are the positions and relative amplitudes
of local maxima – the higher of the local maxima pair is related to the
edge of the slope closer to the surface/measuring profile, the lower one
is related to the bottom edge of the slope. Their succession reveals the
orientation (a sign) of the slope: the negative slope is described by higher-
lower order of local maxima, and vice-versa for the positive slope. More,
local minimum (which separates the local maxima pair) and the change of
its position is helpful, too. The final decision about fault’s type requires the
geological information, too. The curvature seems to be the deciding tool as
we demonstrated on the synthetic and real data sets tests. Such curvature
test is simple and fast. However, the upward continuation seems to be
very important step in this procedure, because of its stabilization effect and
controlling of the changes in the curvature’s curves shape. The processing
in the spectral domain brings the side-effect problem into discussion, but
again, the upward continued inputs were successful in lowering this problem,
too. Future work would be focused on next tests in typical sites with faults
contact, and on the setting of the slope’s size, as well.
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