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Abstract: In this paper, for the first time an Improved Particle Swarm Optimization

(IPSO) algorithm, is developed to evaluate the 2.5-D basement of sedimentary basin and

consequently to simulate its bottom, by using the density contrast that varies parabolically

with depth simultaneously. The IPSO method is capable of improving the global search

of particles in all of the search fields. Finding the optimum solution is adjusted by

an inertia weight and acceleration coefficients. Here, we have examined the ability of

the IPSO inversion by the synthetic gravity data due to a sedimentary basin, with and

without noise. The calculated depth and gravity of the synthetic model do not differ too

much from assumed values due to set limits for model parameters and are always within

the range. Also, the mentioned method has been applied for the 2.5-D gravity inverse

modelling of a sedimentary basin in Iran. We also have modelled the sedimentary basin

in 2-D along seven profiles. Furthermore, using the depth values estimated by IPSO from

all profiles, a 3-D model of the sedimentary basin was generated. The obtained maximum

depth for this sedimentary basin is 2.62 km.
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1. Introduction

The sedimentary basin is one of the geological structures for the investi-
gation of hydrocarbon traps. For this aim, the gravity inversion is used
to estimate the depth of sedimentary basin. Several authors have proposed
various optimization approaches for the 2-D and 2.5-D sedimentary basin to
analyse gravity anomalies while the density of sediments is considered con-
stant (Gadirov et al., 2016; Annecchione et al., 2001; Barbosa et al., 1999;
Rao et al., 1994; Litinsky, 1989; Murthy and Rao, 1989; Murthy et al.,1988;
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Won and Bavis, 1987; Bhattacharya and Navolio, 1975). Chakravarthi and
Sundararajan (2005 and 2007) applied the parabolic density contrast to
simulate 2.5-D sedimentary basin. Chakravarthi and Ramamma (2015) uti-
lized exponential density function to compute a sedimentary basin basement
depth. Karcol (2018) generalized the solution for the gravitational poten-
tial and its derivatives of the right rectangular prism with depth-dependent
density that can be approximated by an n-th degree polynomial. Further,
many linear inverse modelling methods have been developed to simulate
the sedimentary basin basement (Sun and Li, 2014; Gallardo-Delgado et
al., 2003).

Particle Swarm Optimization (PSO) is a relatively recent method and
one of the most popular nature-inspired heuristic optimization algorithm
created by Kennedy and Eberhart (1995). PSO has been successfully em-
ployed in some fields of geophysics: such as reversal of self-potential of
idealized bodies’ anomalies (Monteiro Santos, 2010), gravity assessment of
a fault and estimation of its parameters such as angle of the fault, thick-
ness of the sheet, and left and right distances to the middle of the sheet
using PSO (Toushmalani, 2013a and b), the application of the members
of PSO family to the 2-D and 3-D gravity inversion and uncertainty as-
sessment of basement relief in sedimentary basins (Pallero et al., 2015 and
2017), focus on the use of a PSO algorithm to sample the region of equiv-
alence in non-linear inverse problems (Pallero et al., 2018), the use of PSO
for the inversion of gravity in 2.5-D sedimentary basins (Singh and Singh,
2017), inversion of residual gravity anomalies utilizing tuned PSO (Roshan
and Singh, 2017), interpretation of gravity data using PSO (Essa and El-
hussein, 2018a), utilizing a robust PSO to evaluate magnetic data of 2-D
dipping dike (Essa and Elhussein, 2017), and use of the PSO to interpret
magnetic anomalies due to simple geometrical bodies (Essa and Elhussein,
2018b).

The advantages of PSO are relative simplicity and easy implementation.
However, the algorithm disadvantages can be premature convergence and
possible falling into a local minimum. In this paper, for the first time, we
have suggested an IPSO algorithm with an improved inertia weight coeffi-
cient (w) and learning factors (c1,c2) to solve this problem and used it to
estimate the depth of sediments based on the gravity data, by using the
density contrast that changes parabolically with depth.
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2. Method

2.1. Gravity anomaly of a sedimentary basin

Fig. 1 demonstrates the geometrical form of the 2.5-D rectangular prism
that its strike length, width and a minimum distance between the centre
of each prism to the profile, RR*, their values are 2S, 2b, s, respectively.
Several juxtaposed 2.5-D rectangular prisms can be used to simulate the
sedimentary basin.

A gravity anomaly can be obtained at each point of observation, P (xk, 0),
that cover the sedimentary basin (Chakravarthi and Sundarajan, 2006) as:

gb =
N−1∑
y=2

gi(xk, 0) , (1)

where N is the number of gravity measurement points on the profile, RR*,
and gi(xk, 0) is the gravity anomaly of the i-th prism at any point that was
introduced by Chakravarthi and Sundararajan (2005) as:

g(xk, 0) =

∫ d2

w=d1

∫ S

v=−S

∫ b

u=−b

GΔρ(w)w dudvdw

[(y − xk)2 + v2 + w2]3/2
, (2)

Fig. 1. A 2.5-D rectangular prism that its strike length, width and offset distance of
profile, RR*, is 2S, 2b, s.
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where G is the universal gravitational constant and dudvdw is a volume
element of prism, d1 and d2 are upper and lower depth of the prism, re-
spectively. Δρ(w) is the parabolic density contrast that was developed by
Chakravarthi et al. (2001) as:

Δρ(w) =
Δρ0

3

(Δρ0 − αw)2
, (3)

Δρ0 is the density contrast evaluated at the ground surface and α is the
rate of variation of density contrast expressed in length units. Δρ0 and α
can be determined by fitting the field data of density contrast vs. depth in
the least square sense to Eq. (3) (Rao et al., 1995). Substituting Eq. (3) in
Eq. (2), the calculated gravity is obtained as:

g(xk, 0) = −2GΔρ0
3

{〈
αxkS

t4

(
1

t4
+

1

t3

)
ln

t5
t6

+
S

2t2
ln

(R+ xk)

(R− xk)
+

+
xk
2t3

ln
(R+ S)

(R− S)
+

Δρ0
α

[
1

t2
tan−1 SR

wXk
+

1

t3
tan−1 xkR

wS

]
−

− 1

αt5
tan−1 Sxk

wR

〉xk+b

xk−b

}d2

d1

.

(4)

Here:

R = xk
2 + S2 + w2 ,

t1 = xk
2 + S2 ,

t2 = S2α2 +Δρ0
2 ,

t3 = xk
2α2 +Δρ0

2 ,

t4 =
√
t1α2 +Δρ0

2 ,

t5 = Δρ0
2 − αw ,

t6 = −2(αRt4 + t1α
2 +Δρ0αw) .

2.2. Improved Particle Swarm Optimization (IPSO)

The PSO method simulates the social behaviour of particles, it optimizes
their situation based on artificial intelligence. During the assessment pro-
cedure, the situation of every particle may vary with every iteration. In the

306



Contributions to Geophysics and Geodesy Vol. 50/3, 2020 (303–323)

other words, during the trend of iteration, the particle position is renovated
so that the particle finds the best of its position, ‘pbest’, and the best of its
position among the collection of particles, ‘gbest’. Consequently, to find the
best position, each particle tries to change its current velocity to optimise
its position. The velocity of particle is modified to reach a new position
utilizing the following equations provided by Sweilam et al. (2007) as:

V t+1
i = wV t

i + c1 rand()(pbesti −Xt
i ) + c2 rand()(gbesti −Xt

i ) , (5)

Xt+1
i = Xt

i + V t+1
i . (6)

V t
i , X

t
i are current velocity and position of i-th particle at the t-th iteration,

rand() function generates random numbers between 0–1, c1, c2 are learning
factors with constant and positive values that control both the personal and
the social behaviour and w is an inertial coefficient with a magnitude gen-
erally marginally below 1. The aim of the w is to achieve a balance between
exploration and exploitation (global and local search).

Easiness and simplicity of execution are the advantages of the PSO al-
gorithm but falling into the local minimum and premature convergence are
its disadvantages. In this paper, we suggest an IPSO algorithm that adjusts
inertia weight (w) and learning factors (c1, c2) to solve this problem.

In order to avoid premature convergence to local optimality and increase
convergence speed, the IPSO algorithm is being used. For this purpose, the
inertia weight (w) coefficient and learning factors (c1, c2) are improved. The
various inertia weighting strategies are categorized into three classes: con-
stant and random inertia weight, time-varying inertia weight, and adaptive
inertia weight (Nickabadi et al., 2011). In this paper, we use time-varying
inertia in order to determine the value of w based on the iteration number.
This method can be linear or non-linear and decreasing or increasing. Here,
the linearly decreasing technique is used to modify the inertia weight of
particle in the following equation (Xin et al., 2009):

w =
Tmax − tit

Tmax
(wmax − wmin) + wmax , (7)

where tit and Tmax are the number of current and maximum iteration. The
value of w decreases from wmax to wmin. Based on the results obtained (Shi
and Eberhart, 1998) the performance of linearly decreasing strategy can be
improved significantly when wmax = 0.9 and wmin = 0.4.

307



Loni S., Mehramuz M.: Gravity field inversion using Improved Particle . . . (303–323)

The learning factors (c1, c2) are traditionally both equal to 2 (Sweilam et
al., 2007). However, utilizing recent literature, electing c1 more predomi-
nant than c2 and c1+c2 ≤ 4 may lead to the better conclusions (Parsopoulos
and Vrahatis, 2002). In order to improve the proficiency of PSO, the values
of two operators c1 and c2 are updated by two dynamic linear equation,
respectively, at each iteration (Yi, 2016) as follows:

c1 = 2.4− 1.4 tit
Tmax

, (8)

c2 = 0.9 +
1.6 tit
Tmax

. (9)

With this strategy, c1 can be decreased and c2 can be increased by increasing
the number of iterations. The global investigation capability of particles can
be improved by this approach in the whole search space.

When the differences between the observed and calculated gravity data
are minimized, the best exact values of the particles (model parameters) are
obtained. For this purpose, we use the following simple objective function:

Q =
2
∑N

i |goi − gci |∑N
i |goi − gci |+

∑N
i |goi + gci |

, (10)

where N is the number of the gravity measurement points, goi , g
c
i are the

observed and calculated gravity anomaly at the point P (xi), respectively.
The misfit between observed and calculated gravity data is estimated

through the average relative error, which is computed by the following equa-
tion:

ms =
100

N

√√√√ N∑
i

(
goi − gci

goi

)2

. (11)

The optimization process repeats until the required number of iterations is
completed or the current value of the objective function, Eq. (10), reaches
below a predetermined allowable error.

3. Synthetic example

Fig. 2 displays a view from above of a theoretical sedimentary basin struc-
ture which has been approximated by a series of rectangular prisms posi-
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Fig. 2. A sedimentary basin composed of a series of rectangular prisms.

tioned in adjacency and having the same widths as a top of each prism. The
characteristics of each prism have been brought in Table 1. The gravity ef-
fect of the sedimentary basin is computed at 24 points in the centre of each
prism over 115 km profile BB′ with 5 km interval. The values of Δρ0 and α
are assumed as −0.65 g/cm3 and 0.04 g/cm3/km, respectively.

Table 1. Specifications of each numbered prism shown in Fig. 2.

Prism Depth S s Prism Depth S s
[km] [km] [km] [km] [km] [km]

1 0 1 0 13 3 6 −2

2 0.5 1 −0.5 14 4 7 −2.5

3 1 2 −0.5 15 5 8 −2.5

4 1 3 −1 16 4.5 8 −2.5

5 1.5 3.5 −1 17 4 7 −2

6 2 4 −1 18 3.5 6 −1.5

7 2.5 4 −1.5 19 4.5 6 −1.5

8 3 4 −1.5 20 3 4 −1

9 3 5 −2 21 2.5 4 −1

10 3.5 6 −2 22 2 3 −1

11 3 6 −1.5 23 1 2 −0.5

12 2.5 6 −1.5 24 0 1 0
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According to the defined search ranges for the depth parameter, as shown
in Table 2, eighty primary models were randomly constructed. These ranges
include the values assumed for the initial model. The number of iterations
and predefined error are considered as 90 and 0.002, respectively. The code
has performed 90 iterations before the objective function error between the
calculated and synthetic gravity falls below the allowable error.

Fig. 3b depicts the assumed depths and estimated ones using IPSO for
each prism. The generated gravity anomaly using IPSO inversion has been
displayed in Fig. 3a. Fig. 3c shows the error variation versus iteration num-
ber. The numerical outputs of the IPSO inversion are listed in Table 2. The
estimated misfit by the Eq. (11) at the last iteration is 0.23%.

We assess the effect of error on the ability of the IPSO by adding 5%
noise to the gravity response of the sedimentary basin model (Fig. 4a) by
the following equation:

gnoise(xi) = g(xi) +M(rand(i)− 0.5) , (12)

where gnoise(xi) is the noisy gravity anomaly value at xi, M controls the
noise level (here M is 5) and rand(i) is a pseudo-random number that its
range varies between 0 to 1.

The initial presumptions for the synthetic gravity anomalies corrupted
with noise are the same as noise-free ones. Besides, for the noise corrupted
gravity data, 90 iterations were considered to be completed. Fig. 4b depicts
the assumed depths and estimated ones using IPSO for each prism by the
contaminated gravity data. The gravity responses corresponding with the
inverted depth using IPSO has been displayed in Fig. 4a. Fig. 4c shows the
error change versus iteration number. The numerical results of the IPSO
inversion for noisy data are given in Table 2. The estimated misfit by the
Eq. (11) at the last iteration is 1.307%.

According to IPSO results, the maximum depth error happens for the
first and latest prisms, because the gravity anomaly values at these stations
are known to be zero. Regardless of these foregoing points, the biggest
difference between the assumed and estimated depths, while the data are
noise-free and corrupted with noise, are 0.09 km and 0.14 km, respectively.
The estimated depths demonstrate the acceptable proficiency of the IPSO
inversion method.
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Fig. 3. (a) Synthetic and computed gravity due to (b) assumed and interpreted basement
model by IPSO (c) error changes estimated by objective function versus iteration number.

Fig. 4. (a) Synthetic gravity data with 5% added noise and computed gravity due to
(b) assumed and interpreted basement model by IPSO (c) error changes estimated by
objective function versus iteration number.
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Table 2. The values of assumed ranges for depths and inverted depths using IPSO, while
the data are noise-free and corrupted with noise.

Prism Assumed Estimated Prism Assumed Estimated
range for depth [km] range for depth [km]

depth [km] Free Noisy depth [km] Free Noisy

1 0 – 1 0.18 0.22 13 1.5 – 4.5 3 2.95

2 0 – 1 0.57 0.55 14 2 – 6 4 3.95

3 0.5 – 2 1.06 1 15 3 – 7 5 4.96

4 0.5 – 2 1.06 1 16 2 – 6 4.51 4.45

5 0.5 – 2.5 1.51 1.45 17 2 – 6 4 3.95

6 1 – 3 2 1.95 18 2 – 5 3.51 3.45

7 1.5 – 4 2.41 2.36 19 2 – 6 4.51 4.45

8 1.5 – 4.5 3 2.95 20 1.5 – 4.5 3 2.95

9 1.5 – 4.5 3 2.95 21 1.5 – 4 2.51 2.45

10 2 – 5 3.51 3.45 22 1 – 3 2 1.95

11 1.5 – 4.5 3 2.95 23 0.5 – 2 1.05 1

12 1.5 – 4 2.51 2.45 24 0 – 1 0.21 0.23

4. Field example

The region under investigation is located in Golestan Province, northeast-
ern Iran onto UTM zone 40N, between 367000–412500 mE and 4182000–
4198000 mN. This region lies on the Kopet-Dagh basin and structural unit
covered by the quaternary thick sediments and rock units of Cretaceous Pe-
riod. The Fig. 5 shows a geological map of the studied area. The Cretaceous
sediments of the Kopet-Dagh basin comprise Shurijeh, Trigan, Sarcheshmeh,
Sanganeh, Aitamir, Abderaz, Abtalkh, Neyzar and Kalat formation. This
general stratigraphy has been shown in Fig. 6. The Tirgan formation is
mainly formed by oolitic and bioclastic limestone with subordinate layers
of marl, marine limestone, and calcareous shale. It forms the basement of
the sedimentary basin because of its rigidity and erosion resistance.

In order to study the geological structures such as anticline and syncline
(that can capture pockets of hydrocarbons in the bend of the arch) and
determine the thickness of the sediments, the gravity data sampling was
done along 7 profiles with the interval of 1.5 km along profiles A, B, C, E,
G and interval of 3 km along profiles D, F by using LaCoste & Romberg
gravimeter with an accuracy of 0.01mGal. The distance between profiles is
approximately 2km. The values of are respectively assumed as −0.75g/cm3
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Fig. 5. Geological map of studied area. Scale 1:250000 (Geological survey and mineral
exploration of Iran).

Fig. 6. General stratigraphy of the Kopet-Dagh basin (Margottini et al., 2013, page 568).
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and 0.08 g/cm3/km.
Fig. 7 shows the Bouguer gravity anomaly map of the understudied re-

gion. The residual gravity anomaly was obtained by separating the effect
of the regional gravity anomaly from the Bouguer gravity anomaly (Fig. 8).
The extensive negative anomaly noticeable in the residual gravity map cen-
tre is related to a sedimentary basin structure where the 16 prisms simulated
the volume of the sedimentary basin (Fig. 8). The considered ranges for the
depth of each prism have been given in Table 3. The gravity data sampling

Fig. 7. The Bougure gravity anomaly map of the understudied region.

Fig. 8. The residual gravity anomaly map (the position of profile A and prisms have been
shown).
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was carried out at 16 stations with an interval of 1.5 km along the profile
A in the gravity anomaly for inverse modelling using IPSO, as shown in
Fig. 9a. The number of iterations and predefined error are considered as
100 and 0.01, respectively. The optimization process is finished before the
assigned limit of 100 iterations if the objective function error between the
computed and real gravity descends below the assigned error.

Table 3. Depth ranges used in IPSO inversion of the real gravity and obtained results.

Prism Ranges Results Prism Ranges Results
[km] [km] [km] [km]

1 – 0 9 0.5 – 3 1.37

2 0 – 1 0.17 10 0.7 – 3.5 2.1

3 0.1 – 2 0.44 11 0.7 – 3.5 2.35

4 0.2 – 2 0.64 12 0.5 – 3.5 1.85

5 0.3 – 2.5 0.77 13 0.5 – 3 1.55

6 0.5 – 2.5 1.05 14 0.5 – 2.5 0.95

7 0.3 – 2.5 0.63 15 0.3 – 2.5 0.63

8 0.3 – 2.5 0.74 16 – 0

The gravity response and the depth solutions using IPSO inversion have
been demonstrated in Figs. 9a and b. The inverted depths using IPSO have
been written in Table 3. Fig. 9c shows the error change versus iteration
number. The estimated misfit at the last iteration is 1.314%.

In order to create of a 3-D model of the sedimentary basin basement,
in addition, to profile A, another six profiles have been considered, as are
shown in Fig. 10. The sampling interval over profiles B, C, E, and G is
1.5 km and for profiles D and F is 3 km. The gravity field variations along
these profiles and generated gravity responses corresponding to the inverted
depths using IPSO are shown in Figs. 11 to 16. Figs. 11c to 16c show the
changes of error estimated by objective function versus the number of it-
eration for the profiles B, C, D, E, F, and G, respectively. The obtained
misfits from the interpretation of the gravity data due to the profiles B, C,
D, E, F and G at the last iteration are 1.26, 1.22, 1.88, 1.39, 1.16 and 1.04
percent, respectively.

We have extracted the geographical coordinates corresponding to the
each estimated depth value by IPSO. To simulate the basement of sedimen-
tary basin, Oasis Montaj software was applied. Fig. 17 presents the 3-D
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Fig. 9. (a) Real gravity along Profile A and computed gravity (b) interpreted basement
model by IPSO (c) error changes estimated by objective function versus iteration number.

Fig. 10. Location and direction of the profiles A, B, C, D, E, F and G over the residual
gravity anomaly map have been specified.

view of the sedimentary basin under study. The maximum depth of the
sedimentary basin basement, in other words, maximum sedimentary thick-
ness is 2.62 km.
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Fig. 11. (a) Real gravity along Profile B and computed gravity (b) interpreted basement
model by IPSO (c) changes of error estimated by objective function versus the number of
iteration.

Fig. 12. (a) Real gravity along Profile C and computed gravity (b) interpreted basement
model by IPSO (c) changes of error estimated by objective function versus the number of
iteration.
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Fig. 13. (a) Real gravity along Profile D and computed gravity (b) interpreted basement
model by IPSO (c) changes of error estimated by objective function versus the number of
iteration.

Fig. 14. (a) Real gravity along Profile E and computed gravity (b) interpreted basement
model by IPSO (c) changes of error estimated by objective function versus the number of
iteration.
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Fig. 15. (a) Real gravity along Profile F and computed gravity (b) interpreted basement
model by IPSO (c) changes of error estimated by objective function versus the number of
iteration.

Fig. 16. (a) Real gravity along Profile G and computed gravity (b) interpreted basement
model by IPSO (c) changes of error estimated by objective function versus the number of
iteration.
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Fig. 17. Interpreted 3-D model of the sedimentary basin basement under investigation.

5. Conclusion

In this study, we used the IPSO algorithm for the first time to estimate the
thickness of the sedimentary structures and simulate its model using gravity
data with and without random noise. The obtained admissible results from
the inversion verify the IPSO is an intelligent powerful tool for the inverse
modelling of the gravity data. Due to the preset limits on model parameters,
the calculated depth and gravity based on synthetic model do not differ too
much from the assumed values and are always within the range. The misfit
between assumed and calculated gravity was 0.23% in the last iteration.

Also, IPSO was applied to interpret the real gravity data related to a
sedimentary basin in Golestan Province, northeastern Iran. We modelled
the geometry of the sedimentary basin basement by two-dimensional ap-
proach along seven profiles. Furthermore, using the depth values estimated
by IPSO from all profiles, the 3-D model of the sedimentary basin basement
was generated. The obtained maximum depth value for this sedimentary
basin is 2.62 km.

From the comparison between the observed model parameters range (de-
rived using geological data and interpreter experience) with the calculated
value of the model parameters and also by analysing the misfit between
the observed and calculated gravity in each profile (A, B, C, D, E, F, and
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G are 1.314, 1.26, 1.22, 1.88, 1.39, 1.16 and 1.04 percent, respectively) we
concluded that the IPSO algorithm is a reliable method to investigate the
sedimentary basin depth and make qualified model simulations.

In this research, for the estimation of sedimentary basin depth and sim-
ulation of the 3-D shape of sedimentary basin, we used the gravity data
along several profiles. Our recommendation for the future investigation of
sedimentary basin structures is the direct utilization of the IPSO method;
its application can provide the reliable 3-D models and estimates of basin
depth using observed gravity data from the gravity network stations.
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gorithm for joint 3D inversion of gravity and magnetic data. Geophysics, 68, 3,
949–959, doi: 10.1190/1.1581067.

Karcol R., 2018: The gravitational potential and its derivatives of a right rectangular
prism with depth-dependent density following an n-th degree polynomial. Studia
Geophys. et Geod., 62, 427–449, doi: 10.1007/s11200-017-0365-7.

Kennedy J., Eberhart R., 1995: Particle swarm optimization. Proceedings of IEEE
Conference on Neural Networks, IEEE Service Center, Piscataway, 4, 1942–1948,
doi: 10.1109/ICNN.1995.488968.

Litinsky V. A., 1989: Concept of effective density: Key to gravity depth determinations
for sedimentary basins. Geophysics, 54, 11, 1474–1482, doi: 10.1190/1.1442611.

Margottini C., Canuti P., Sassa K., 2013: Landslide Science and Practice: Volume 1:
Landslide Inventory and Susceptibility and Hazard Zoning. Springer-Verlag, Berlin,
Heidelberg, doi: 10.1007/978-3-642-31325-7.

Monteiro Santos F. A., 2010: Inversion of self-potential of idealized bodies’ anomalies us-
ing particle swarm optimization. Comput. Geosci., 36, 9, 1185–1190, doi: 10.1016/
j.cageo.2010.01.011.

Murthy I. V. R., Krishna P. R., Rao S. J., 1988: A generalized computer program for two-
dimensional gravity modeling of bodies with a flat top or a flat bottom or undulating
over a mean depth. J. Assoc. Explor. Geophys., 9, 93–103.

Murthy I. V. R., Rao S. J., 1989: A FORTRAN 77 program for inverting gravity anoma-
lies of two-dimensional basement structures. Comput. Geosci., 15, 7, 1149–1156,
doi: 10.1016/0098-3004(89)90126-X.

Nickabadi A., Ebadzadeh M. M., Safabakhsh R., 2011: A novel particle swarm optimiza-
tion algorithm with adaptive inertia weight. Appl. Soft Comput., 11, 4, 3658–3670,
doi: 10.1016/j.asoc.2011.01.037.

Pallero J. L. G., Fernández-Mart́ınez J. L., Bonvalot S., Fudym O., 2015: Gravity inver-
sion and uncertainty assessment of basement relief via Particle Swarm Optimization.
J. Appl. Geophys., 116, 180–191, doi: 10.1016/j.jappgeo.2015.03.008.

Pallero J. L. G., Fernández-Mart́ınez J. L., Bonvalot S., FudymO., 2017: 3D gravity inver-
sion and uncertainty assessment of basement relief via Particle Swarm Optimization.
J. Appl. Geophys., 139, 338–350, doi: 10.1016/j.jappgeo.2017.02.004.

322



Contributions to Geophysics and Geodesy Vol. 50/3, 2020 (303–323)
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